ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

И.И.Громова, Я.Дупак, Я.Коничек, Т.И.Крацикова, Н.А.Лебедев, Б.С.Неганов, В.Н.Павлов, И.Прохазка, М.Фингер, В.М.Цупко-Ситников, А.Ф.Щусь, А.Махова, У.Д.Гамильтон, Р.А.Фокс

141/2-79

11 11 11

5-874

-

ИЗУЧЕНИЕ РАСПАДА ОРИЕНТИРОВАННЫХ ЯДЕР

160 Tb

15/1-79

6 - 11871

И.И.Громова, Я.Дупак, Я.Коничек, Т.И.Крацикова, Н.А.Лебедев, Б.С.Неганов, В.Н.Павлов, И.Прохазка, М.Фингер, В.М.Цупко-Ситников, А.Ф.Щусь, ¹ А.Махова, ² У.Д.Гамильтон, ³ Р.А.Фокс ³

ИЗУЧЕНИЕ РАСПАДА 160 Tb ОРИЕНТИРОВАННЫХ ЯДЕР

Направлено в"Известия АН СССР" /сер. физ./

Харьковский государственный университет.
 Политехнический институт, Прага.
 Сассекский университет, Брайтон, Великобритания.

Громова И.И. и др.

6 - 11871

Изучение распада ориентированных ядер¹⁶⁰ Тb

Методом ядерной ориентации при сверхнизких гемпературах проведено исследование распада ядер ¹⁶⁰ Ть внедренных в гадолиниевую матрицу. Образцы, содержащие микроскопические количества Ть в гадолинии, были приготовлены пятью различными способами. Измерены асимметрии углового распределения для 20 гамма-переходов при температуре ≈ 14 мК. Получены эначения параметров смешивания мультипольностей для 17 гамма-переходов в ¹⁶⁰ Dy. Параметры $\delta(872) = -0,70\pm0,10$ (M1 + E2) и $\delta(1251) = 0.02 \pm 0.12$ (E1+M2) ранее не определялись. На основе анализа температурной зависимости асимметрии углового распределения для гамма-переходов 299 и 1178 кзВ определены параметры сверхтонкого взаимодействия для атомов ¹⁶⁰ Ть в гадолинии:

- $a_0 = (8,81\pm0,62) \times 10^{-18}$ spr;
- $P = (0,79\pm0,14) \times 10^{-18}$ spr.

Для сверхтонкого магнитного поля получено значение H_{bf}=(3,10<u>+0</u>,22) МГс.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубиа 1978

Gromova l.I. et al.

6 - 11871

The Nuclear Orientation Investigation of the Decay of ¹⁶⁰Tb

The technique of nuclear orientation at low temperatures has been used for the investigation of the decay of ¹⁶⁰ Tb nuclei dissolved in gadolinium lattice. The samples containing a microscopic amount of Tb in gadolinium were prepared by five different methods. Asymmetries for twenty gamma-rays have been measured at the temperature of ~ 14 mK. Multipole mixing ratios have been determined for seventeen gamma-transitions in ¹⁶⁰ Dy. The parameters δ (872) = -0.70±0.10 (M1+E2) and δ (1251) = 0.02 ± 0.12 (E1+M2) were not determined previously. The constants of hyperfine interaction for the ¹⁶⁰Tb atoms in gadolinium, $a_0 = (8.81\pm0.62)10^{-18}$ erg, $P=(0.79\pm0.14)\times10^{-18}$ erg, were evaluated from the analysis of asymmetry for the 299 and 1178 keV transitions measured as a function of temperature. For the magnetic hyperfine field we obtained then the value $H_{\rm hf}=(3.10\pm0.22)$ MGs.

The investigation has been performed at the Laboratory of Nuclear Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

і. введение

Сверхтонкое взаимодействие для изотопов тербия в гадолинии было изучено в нескольких работах^{/1-3/}. Кобаяши и др.^{/1/} методом ядерного магнитного резонанса на ядрах ¹⁵⁹ Ть в сплаве Ть – Gd /концентрация Tb – 10 ат %/ определили параметры сверхтонкого взаимодействия для примесных атомов тербия. Результаты работы^{/2/} показывают, что для микроскопического количества изотопа ¹⁶⁰ Ть в гадолинии параметры сверхтонкого взаимодействия отличаются от величин, полученных Кобаяши и др.^{/1/}, в то время как данные^{/3/} их подтверждают.

В настоящей работе мы выполнили опыты по ядерному ориентированию ¹⁶⁰ Ть в гадолинии с целью получения новой информации о параметрах сверхтонкого взаимодействия для примесных атомов Ть в Gd. Особое внимание уделялось методике приготовления образцов.

В работе получены также значения параметров смешивания мультипольностей для 17 у-переходов в ¹⁶⁰ Dy.

Все измерения были выполнены на установке /4/°, созданной в Лаборатории ядерных проблем ОИЯИ.

2. УСЛОВИЯ ЭКСПЕРИМЕНТА

2.1. Приготовление образцов

Радиоактивный изотоп 160 Tb / T $_{1/2}$ = 72,3 ∂ н/ в форме окиси тербия Tb_4O_7 был получен из В/О "Изотоп".

3

Для измерений было приготовлено пять разных образцов Tb(Gd):

Образец 1. Окись тербия вместе с металлическим гадолинием весом ~ 0,05 г /чистота Gd - 99,9%/ плавилась на танталовой фольге толщиной 0,1 мм в вакууме ~ 10⁻⁶ мм рт.ст.

Образец 2. Изотоп ¹⁶⁰Ть имплантировался на электромагнитном масс-сепараторе при ускоряющем потенциале 25 кВ в заранее подготовленную гадолиниевую матрицу на танталовой фольге. Затем производилась плавка в вакуумной печи.

Образец 3. Окись тербия переводилась в хлорид тербия. TbCl₃ наносился на танталовую фольгу, высушивался и вместе с металлическим гадолинием весом ~O,O5 г плавился в вакуумной печи.

Во всех трех случаях плавка осуществлялась при температуре 1400° С в течение нескольких секунд /образец 2/ или нескольких десятков секунд /образцы 1 и 3/. Последующее охлаждение образцов велось сначала медленно - в течение 10 мин до температуры 950° С, а затем при выключенном нагревателе печи.

Активность ¹⁶⁰ Ть в полученных образцах составляла несколько микрокюри при концентрации тербия в гадолинии менее O,1%.

Каждый из полученных образцов припаивался в вакууме к медной пластинке с помощью активного титанового припоя при температуре ~800 °C.

Образцам придавалась форма диска диаметром ~ 5 мм, затем производилась механическая очистка их поверхности.

Образцы 4 и 5. После проведения серии измерений с образцами 1 и 2 они отжигались в вакууме при температуре 400°С в течение 24 ч. Таким образом были получены соответственно образцы 4 и 5.

2.2. Экспериментальная аппаратура

Охлаждение образцов до сверхнизких температур осуществлялось с помощью комбинированного рефриже-

ратора растворения ³ Не в ⁴ Не^{75/}, конструктивные особенности которого позволяют вводить образцы непосредственно в ванну растворения.

Исследуемый образец вместе с ядерным ориентационным термометром 54 Mn (Ni) припаивался к тепловой подложке рефрижератора. Матрицы Gd и Ni приводились в состояние магнитного насыщения внешним магнитным полем 8,5 кГс, создаваемым парой сверхпроводящих катушек Гельмгольца.

Гамма-излучение регистрировалось одновременно под углами О° и 90° по отношению к направлению внешнего магнитного поля 'Ge (Li) - детекторами с рабочими объемами от 30 до 50 см³/разрешение ~ 3,5 кэВ при энергии 1332,5 кэВ/. Детекторы устанавливались на расстоянии 10-11 см от радиоактивного источника.

В измерениях использовались 4096-канальные анализаторы ICA-70.

Обработка гамма-спектров проводилась на ЭВМ "Минск-2" и БЭСМ-6 при помощи программ^{/6/}.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Угловое распределение гамма-излучения ориентнрованных радноактивных ядер при температуре Т может быть записано /⁷/:

$$W(\theta, T) = \sum_{k} B_{k}(T) A_{k} U_{k} Q_{k} P_{k}(\cos\theta), \qquad /1/$$

где θ - угол между направлением излучения и осью ориентации, $B_k(T)$ - параметры ориентации, A_k - коэффициенты угловой корреляции, U_k - коэффициенты деориентации предшествующими переходами, Q_k - поправки на конечный телесный угол детектора, P_k - полиномы Лежандра. Суммирование ведется в пределах $0 \le k \le$ $\le \min(2L, 2I_i, 2I)$, где L - мультипольность наблюдаемого гамма-перехода между состояниями со спинами I_i и I_f , I - спин распадающихся ориентированных ядер.

Для определения асимметрий 1 – W(0⁹) и W(90[°]) – 1 было проведено девять серий измерений /по одной серии с образцами 1,2, 4 и по три - с образцами 3 и 5/. Длительность экспозиций в каждой серин - $10^4 c$. Нормированные интенсивности $W^{ex}(\theta, T)$ определялись как отношения S(T) / S(-1K) / S(T) - площадь пика в спектре при температуре T; S(-1K) - площадь соответствующего пика в спектре при температуре ~ 1 K, при которой угловое распределение гамма-излучения изотропно/. В пределах экспериментальных ошибок результаты,

Таблица 1

Асимметрии гамма-лучей с энергиями 299 и 966 кэВ, полученные с разными образцами

Номер	[1 - W	(0°)]%					
образца	Е у=299 кэВ	Еу=966 кэВ	Примечание				
I	30,3(10)	32,0(20)	ТЬ, О, , плавка				
2	31,7(10)	31,0(20)	Ть, О, , имплантация, плавка				
3	22,5(8)	24,9(II)	ТьСе, плавка				
4	30,8(10)	32,0(10)	Гь, О, , плавка, отжиг				
5	30,5(6)	33,2(10)	ТЬ, О, , имплантация, плавка, откиг				

полученные для образцов 1,2,4 и 5, совпадают между собой и превышают в 1,5-2 раза асимметрии, полученные при измерениях с образцом 3. В *табл. 1* сравниваются асимметрии 1 – W(0°) для гамма-переходов с энергиями 299 и 966 *кэВ*, измеренные для всех пяти образцов.

На рис. 1 показан фрагмент схемы распада 160 Tb, взятый из работы / $^{15/}$.

В табл. 2 приведены значения асимметрий углового распределения для 20 гамма-переходов в ¹⁶⁰ Dy, полученные при измерениях с образцами 5 / T = 13,5/5/ мК и 3 / T = 15,5/7/ мК/. Там же для сравнения приведены результаты Фокса и др.⁸/, полученные при температуре 9,8/2/ мК и значении внешнего магнитного поля 6 кГс. Отметим, что Фокс и др. при изготовлении образца использовали хлорид тербия и их результаты в пределах экспериментальных ошибок согласуются с нашими данными, полученными с образцом 3.

-3,0(27) 6,2(20) -0,8(21) 6,5(I9) -2,7(I4) -I,3(8) [I-(°00)W] 6,6(7) 9,5(3) -2,6(3) 8 . R≊ Асимметрии гамма-лучей, сопровождающих распад ¹⁶⁰Тb DORC [[-W(0⁰)] % -I2,0(30) I6,7(6) -2,5(20) I8,0(I0) -5,3(3) -5,7(IO) -4,3(8) -3,5(5) -7,5(3) I4,0(3) I9**.**4(3) 4,7(8) -13,3(90) I0,9(30) ĿЯ -3,6(30) II,5(IO) -2,0(IO) **-5,8(IO)** 2,4(I3) -5,6(24) 9,2(IO) [N⁽⁹⁰⁰⁾] 3,8(8) II,I(6) ო Образец 88 -I5,5(40) I8,6(20) -7,5(44) 24,9(II) I5,0(I9) (01)6''-2,0(20) -6,9(50) [(°0)W-I] 3,3(20) -8,0(25) 22,5(8) padora ७२ Настояцая [W(90°)-I] -II,0(30) I3,7(IO) -5,5(60) (06)0,61--5,3(20) -2,9(30) 2,7(20) 6,8(38) 8,2(30) I7,0(I2) -3,4(I3) I7,3(I2) -6,5(5) ഹ Образец 86 33,2(IO) 2,9(20) -9,4(50) -II,8(IO) -I6,4(I5) -9,6(IO) -22,3(30) 30,0(6) -8,8(28) -8,4(25) 6,9(I3) [(0)]] 22,4(5) 30,5(6) Энергия 337,3 309,6 392,5 765,3 872,0 879,4 86,8 0°46I 2I5,6 298,6 962,3 966,2 I002,9 кэВ

Ταблица 2

				Ταблица 2	/продолжение	/2
I	2	3	4	5	6	- 4
II02,6	3I,3(25)	I5,3(46)	I6,6(30)	6,9(50)	I6,I(IO)	8,9(34)
III5,2	-I0,3(I5)	-2,7(20)	-6,9(20)	-3,7(I6)	-6,0(7)	-I,7(20)
1178 . 0	27,4(8)	I2,6(9)	19 , I(8)	9,I(IO)	17,4(3)	8,5(5)
6 * 66II	-27,9(8)	-13,8(16)	-21,7(18)	-9,3(IO)	-15,7(5)	-7,8(I2)
1271 , 9	30,3(8)	I5,9(9)	20,I(IO)	9,5(I0)	I9,0(3)	I0,0(7)
I3I2,2	-25,2(I0)	-I6,5(22)	-18,8(13)	-9,5(9)	-I5,7(4)	-5,I(II)
1251,3	33,5(90)					

Рис. 1. Фрагмент схемы распада ¹⁶⁰Ть, на котором приведены гамма-переходы, изученные в настоящей работе.

Для проверки степени магнитного насыщения матрицы образца 3 были проведены измерения зависимости для гамма-переходов ¹⁶⁰ Тъ от асимметрин $1 - W(0^\circ)$ величины внешнего магнитного поля H₀. На *рис. 2* эта зависимость приведена для перехода 299 кэВ. Видно, что при значениях магнитного поля > 7 кГс матрица находится практически в состоянии полного насыщения.

٨

-4

8

9

Рис. 2. Зависимость асимметрии углового распределения гамма-квантов с энергией 299 кэВ от величины внешнего магнитного поля Н.

Размагничивающее поле, рассчитанное согласно^{/9/}, в нашем случае получено равным 1,5 кГс.

4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

4.1. Параметры смешивания мультипольностей

Для гамма-переходов между состояниями I_i и I_f коэффициенты угловой корреляции А_k записываются в виде:

$$A_{k} = [F_{k}(L, L, I_{f}, I_{i}) + 2\delta F_{k}(L, L+1, I_{f}, I_{i}) + \delta^{2}F_{k}(L+1, L+1, I_{f}, I_{i})](1+\delta^{2})^{-1},$$
/2/

где δ - параметр смешивания мультипольностей L + 1/L

 $(\delta = \frac{\langle I_f || L + 1 || I_i \rangle}{|\langle I_f || L || I_i \rangle})$. Значения коэффициентов F_k табу-

лированы, например, в работе /10/.

Параметры δ были определены из средних взвешенных значений коэффициентов A_2 , полученных по экспериментальным асимметриям, измеренным во всех 9 сериях.

Коэффициенты Q_k , учитывающие геометрию опыта, мы вычисляли аналогично^{/11/},Получены следующие численные значения /точность не хуже $O,5\%/: Q_2(0^\circ) =$ = O,99O, $Q_4(0^\circ) = O,967$, $Q_2(90^\circ) = O,972$, $Q_4(90^\circ) = O,910$ /образец 3/ и $Q_2(0^\circ) = O,964$, $Q_4(0^\circ) = O,883$, $Q_2(90^\circ) =$ = O,98O, $Q_4(90^\circ)O,951$ /образец 5/.

Значения коэффициентов $B_2(T)$ для каждой серии определялись по данным для перехода 299 кэВ. При этом из разных значений $\delta(299)$, опубликованных в работах /12-14/ выбрано наиболее точное значение $\delta(299) =$ = 0,029/5//12/Для серий, приведенных в *табл.* 2, получены значения: $B_2(T) = 0.84 / 2/$ - образец 5 и $B_2(T) =$ = 0,61/2/ - образец 3.

Переходы с уровней отрицательной четности являются переходами типа E1 с малой примесью M2, поэтому членом с k = 4 в выражении /1/ можно пренебречь $\frac{1}{8}$. Полученные значения δ для этих переходов приведены в табл. 3, где они сравниваются с результатами работ^{/8, 12-14/}. Отметим, что значение δ для гаммаперехода 1251 кэВ с уровня 1535 кэВ $(I = 4)^{/15/}$ ранее не определялось. Поскольку для этого перехода получено только значение W(0°), анализ проводился в предположении, что его мультипольность либо типа E1 + M2, либо M1 + E2. В последнем случае необходимо знать величину $B_A(T)$, и она будет приведена ниже. Из четырех возможных значений δ только одно: $\delta = 0.02^{+0.19}_{-0.12}$ полученное для смеси E1+M2, находится в соответствии с экспериментальным значением коэффициента конверсин $a_{\rm L} \leq 0,0004^{/15/}$ Таким образом, отрицательная четность уровня 1535 кэВ подтверждается.

Для переходов с уровней положительной четности член с k = 4 в выражении /l/ не обязательно мал. В этом случае на основе экспериментальных асимметрий 1 – $W(0^\circ)$ и $W(90^\circ) - 1$, полученных во всех сериях, из уравнений /l/ исключались произведения $B_4 A_4 U_4$ и определялись средние взвешенные значения коэффициентов A_2 . Однако такой подход дает для

		Яклевич и др. /13/					0,063+0,086			-0,199(49)	-0,02(2)	0,040(43)
		Thurrep m mp. /I2/				0,023(7)					0,029(5)	
	rz/EI)	Крэйн и др.				-0,02(8)	-0,03(3)			-0,18(10)	0*002(I0)	0,02(2)
	δ (1	Фокс я др. /8/		0,000(12) -0,017(8)	0,039(32) -0,156(25)	-0,020(14) -0,043(15)	-0,003(I2)	-0,004(17)	-0, 017(8)	-0,003(6)		-0,031(12)
		Настоящая работа	0,02 ⁺⁰ ,19	0,0II(I4) -0,045(II)	0,034(27) -0,013(46)	-0,06(3) -0,018(17)	0,026(9)	•0,094(21)	-0,050(II)	0,016(8)	0,023(I8)	-0,0I5(8)
	F	1: - 1; - 1	4 - 4+	3 4+ 3 2+	4- 3+ 4- 4+	2 3+ 2 2+ 2 2+	2 5+	3 ⁻ - 4 ⁺	3- 2+ 3-	2" - 3 ⁺	22+	2 ⁻ - 2 ⁺
	Еγ,	. Her	1251	III5 I3I2	337 1103	310 392	1272	I003	1200	216	299	1178
		Ľ	0,905	0,750	0,905	0,828		0,750		0,828	•	
	ц.	den E	1535	1399	I386	I358		I287		I265		

Параметры смешнвання $\delta(M2/E1)$ для гамма-переходов с уровней отрицательной четности

Таблица 3.

• •

Tabauya 4

Параметры смешивання $\delta(E2/M)$ для гамма-переходов с уровней положительной четности

		fiknebry z zp.		-	7,0 +6,I	-11 +13 -11 -3
	S (E2/MI)	Thurep R MD.				-17,7 +2,8 -5,2
		Kpaira R II		-7 +20	I8 (5)	-17,7+2,8
		Coke n m.		-7,7(7)		-18 ±4 -8
		Настоящая работа	-0 , 70(I0)	-9,0 +2,4	6,5(45)	-I2,8(I5)
	$I_{i}^{n} - I_{f}^{n}$		4+ - 4+	3 ⁺ - 4 ⁺	3 + - 2 +	2+ - 2+
	1	7 1	0,58(IO)	0,I8(2)		0,08(I)
	m²		0,86(I2)	0,72(2)		0,63(2)
	Е,	Jex	872	765	362	879
	Eyp.	Ясл	1156	10 49		996

12

13

параметра δ два корня. Для выбора одного из них анализ данных одной из серий /с образцом 5/ проводился с учетом члена с k = 4. При этом эначение коэффициента B₄(T) = 0,43(30) / T = 13,5/5/ *мK*/ получено из анализа температурной зависимости асимметрии углового распределения для гамма-перехода 299 кэВ. Полученные значения параметров смешивания приведены в *ma6л. 4*.

При расчете коэффициентов U_k предполагалось, что бета-переходы на уровни положительной четности переносят одну единицу углового момента, а на уровни отрицательной четности - являются чистыми переходами типа Гамова-Теллера. Необходимые значения интенсивностей бета- и гамма-переходов взяты из работы $^{/15/}$.

Переходы 197 и 966 кэВ являются чистыми E2-переходами. Из экспериментальных значений асимметрий для них, полученных в одной из серий /с образцом 5/, определены соответственно независимые значения $B_2(T)$ = = 0,85/4/ и 0,92/6/. Первое хорошо согласуется с величиной 0,84 /2/, определенной ранее, и позволяет получить независимо параметр δ /299/ = 0,023/18/. Второе значение несколько выше, что связано, по-видимому, с примесью L = 2 в бета-переходе /3⁻ 2⁺/ на уровень 966 кэВ/8/.

4.2. Параметры сверхтонкого взаимодействия для ¹⁶⁰Ть в гадолинии

Коэффициенты ориентации $B_k(T)$ зависят от средних заселенностей p(m) энергетичёских подуровней. В состоянии теплового равновесия заселенности p(m) подчиняются распределению Больцмана:

$$p(m) \sim exp(-E_m/kT).$$
 /3/

Здесь энергии подуровней Е_т являются собственными значениями гамильтониана, описывающего сверхтонкое взаимодействие, который для нашего случая можно записать в виде^{/16/}

$$H = -a_{0}I_{z} + P[I_{z}^{2} - \frac{1}{3}I(I+1)], \qquad /4/$$

где $a_0 = \mu H_{hf}/I$ и $P = 3eQV_{zz}/4I(2I-1)$ - параметры соответственно магнитного дипольного и электрического квадрупольного взаимодействий, μ и Q - магнитный и квадрупольный моменты исследуемых ядер, H_{hf} сверхтонкое магнитное поле на ядрах примеси, V_{zz} составляющая градиента электрического поля вдоль оси z, параллельной направлению внешнего магнитного поля.

Сверхтонкое взаимодействие для 160 Tb в гадолинии исследовалось нами на основе анализа температурной зависимости углового распределения для гамма-переходов 299 и 1178 кэВ. Измерения проведены в интервале температур $16 \le T \le 120$ мK с образцом 3. Указанные переходы являются переходами типа E1 с малой /< O,1%/ примесью M2. Поэтому полученные температурные зависимости $W(0^\circ, T)$ сравнивались с выражением /1/, записанным как

$$W(\theta, T(\Omega)) = 1 + K_2 B_2 (I, a_0, P, T(\Omega)), \qquad /5/$$

где температура Т исследуемого образца выражается через нормированную интенсивность Ω гамма-излучения ядерного ориентационного термометра. Подбор параметров K_2 , a_0 и Р производился на ЭВМ CDC-6500, методом минимизации функционала:

$$\chi^{2} = \sum_{i=3}^{N} \left[\left(\frac{W_{i}^{ex} - W_{i}^{t}}{\Delta W_{i}^{ex}} \right)^{2} + \left(\frac{\Omega_{i}^{ex} - \Omega_{i}^{t}}{\Delta \Omega_{i}^{ex}} \right)^{2} \right], \qquad /6/$$

где W_i^{ex} и Ω_i^{ex} - экспериментальные значения нормированных интенсивностей исследуемого перехода и перехода ядерного ориентационного термометра; W_i^t и Ω_i^t - их расчетные значения, подчиняющиеся условию связи: $W_i^t = 1 + K_2 B_2(T(\Omega_i^t))$; N - число экспериментальных точек.

На рис. З приведена зависимость $W = W(0^\circ, T(\Omega))$ для перехода 299 кэВ /точки - экспериментальные значения, сплошная линия - соответствующая расчетная кривая/.

Рис. 3. Температурная зависимость нормированной интенсивности $W(0^0, T(\Omega))$ для гамма-перехода с энергией 299 кэВ. Точки изображают экспериментальные значения, а соответствующая расчетная кривая показана сплошной линией.

На основе проведенного анализа получены следующие значения параметров сверхтонкого взаимодействия для ¹⁶⁰ Tb в гадолинии: $a_o = /8,81\pm0,62/10^{-18}$ эрг = = /1,74±0,12/ я.м.×МГс и р = /0,79±0,14/10⁻¹⁸ эрг. Эти значения получены как средние взвешенные для гамма-переходов 299 и 1178 кэВ. В табл. 5 они сравниваются с соответствующими значениями, полученными другими авторами.

Для проверки полученных результатов анализ экспериментальных данных проводился и несколько иным способом. В этом случае отношения $[1 - W_i^{ex}]/[1 - W_R^{ex}]$ сравнивались с теоретическим выражением $B_2(T(\Omega_i)) / B_2(T(\Omega_R))$, где индексом R обозначена одна из всей совокупности экспериментальных точек i = 1,2,...N. Минимизация функционала типа /6/ с соответствующими условиями связи дает возможность получать значения параметров a_0 и Р независимо от

значения параметра K_2 , входящего в выражение /5/. В результате получены значения параметров а = $= /9,2\pm1,0/x10^{-18}$ эрг и P = $/0,97\pm0,26/x10^{-18}$ эрг, хорошо согласующиеся с приведенными выше величинами.

Используя значение магнитного момента 160 Tb $\mu = 1,685/8/$ я.м. $^{/16}$, для сверхтонкого магнитного поля мы получаем величину $H_{hf} = /3,10\pm0,22/$ *МГс*, которая хорошо согласуется со значениями, приведенными в работах Кобаяши и др. $^{/1}$ и Ерзинкян и др. $^{/3}$ /см. *табл.* 5/.

Параметры сверхтонкого взаимодействия и значения сверхтонкого магнитного поля для изотопов тербия в

Таблица 5

· · ·						
Изотоп	Концентра- ция ТЬ "%	0, x10 ¹⁸ , эрг	P xIO ¹⁸ , əpr	Литера- тура	Hht, Mrc	
159 _{ТЬ}	100	20,671	2,233	/16/	3,08	
159 _{ТЬ}	10	20,327(20)	2,326(13)	/1/	3,03(3)	
160 _{Tb}	∠ 0,I	9,6	2,0	/2/	3,4	
160 _{ТЬ}	∠ 0,I	8,60(87)	1,38(21)	/3/	3,06(31)	
160 _m	(0 T	8 81(62)	0.79(74)	Naca Dod	3 10(22)	

Полученная нами величина параметра электрического квадрупольного взаимодействия P=O,79/14/ 10^{-18} зрг в пределах экспериментальных ошибок согласуется с величиной P = 1,1/2/ 10^{-18} зрг, которая получена путем пересчета значения Кобаяши и др.^{/1/} для 159 Tb на изотоп 160 Tb при использовании значений квадрупольных моментов Q(160 Tb) = 3,O/5/ бари $^{/17}$ и Q(159 Tb) = = 1,32/10/бари $^{/18}$, Некоторое несогласие со значением P = 1,38/21/ 10^{-18} зрг $^{/3}$ можно, по-видимому, отнести за счет вклада в величину P от кристаллического поля решетки и электронов проводимости. Этот вклад может быть разным при различной ориентации зерен Gd в поликристаллической матрице, что связано с технологией приготовления образца.

5. ЗАКЛЮЧЕНИЕ

В связи с тем, что значения параметров сверхтонкого взаимодействия для Tb в гадолинии, полученные методом ядерной ориентации при сверхнизких темперане согласуются между собой, нами были $Typax^{/2,3/}$ проведены новые измерения этих параметров тем же методом. Полученное нами значение параметра сверхтонкого магнитного взаимодействия находится в хорошем согласии со значениями Ерзинкян и др. 3/, а также с результатом Кобаяши и др/1/ полученным независимым методом ядерного магнитного резонанса. Значение параметра электрического квадрупольного взаимодействия, как отмечено выше, согласуется с результатом Кобаяши и др., но несколько отличается от значения Ерзинкян и др.

Определенные нами значения параметров смешивания мультипольностей гамма-переходов в ¹⁶⁰Dv в основном согласуются с данными предыдущих работ.

Особое внимание уделялось методике приготовления образцов. Что касается вопроса о заметной разнице в величинах асимметрий гамма-излучения ¹⁶⁰ Tb. измеренных с образцами, приготовленными на основе окиси и хлорида тербия, то его решение требует дополнительных исследований.

В заключение авторы считают своим приятным долгом выразить благодарность Хан Хен Мо за помощь при изготовлении образцов.

ЛИТЕРАТУРА

1. Kobayashi S., Sano N., Otoh J. J. Phys. Soc. Jap., 1967, 23, p.474.

- 2. Fox R.A., Hamilton W.D. In: The International Conference on Hyperfine Interaction Studies in Nuclear Reactions and Decay, Uppsala. 1974, p.176. 3. Ерзинкян А.Л. и др. ЖЭТФ, 1977, 72, с. 1902.
- 4. Громова И.И. и др. ОИЯИ, Р13-11363, Дубна, 1978.
- 5. Pavlov V.N. e.a. Cryogenics, 1978, 18, b.115.
- 6. Гаджоков В. ПТЭ, 1970, 5, с.82; Аврамов С.Р., Сосновская Е.В., Цупко-Ситников В.М. ОИЯИ, **Р10-9741.** Дубна, 1976.
- 7. Hamilton W.D. In: The Electromagnetic Interactions in Nuclear Spectroscopy, Ed. W.D.Hamilton, North-Holland, Amsterdam, 1975, p.645.
- 8. Fox R.A., Hamilton W.D., Warner D.D. J. Phys.. 1974, A7, b.1716.
- 9. Osbórn J.A. Phys. Rev., 1945, 67, p.351.
- 10. Krane K.S. Preprint LA-4677, Los Alamos, 1971.
- 11. Krane K.S. Nucl. Instr. and Meth., 1972, 98, p.205.
- 12. Günther C. e.a. Z. Phys., 1965, 183, p.472.
- 13. Jaklevic J.M., Funk E.C., Mihelich J.W. Nucl. Phys., 1967. A99. b.83.
- 14. Krane K.S., Steffen R.M. Nucl. Phys., 1971, A164, *b.439*.
- 15. Tuli J.K. Nucl. Data Sheets, 1974, 12, p.477.
- 16. Bleaney B. In: Magnetic Properties of Rare Earth Metals, Ed. R.J. Elliott. Plenum Press, New York, 1972, *b*.383.
- 17. Easley W.C., Barclay J.A., Shirley D.A. Phys. Rev., 1968, 170, p.1083.
- 18. Линдгрен И. Возмушенные угловые корреляции. /Ред. Э.Карлссон, Э.Маттиас, К.Зигбан/. Атомиздат, M., 1966, c.340.

Рукопись поступила в издательский отдел 5 сентября 1978 года.