ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

6/11-78

6 - 11056

A-722 701/2-78

И.Драйер, Р.Драйер, Ю.В.Норсеев, В.А.Халкин

ПОЛУЧЕНИЕ

НЕКОТОРЫХ НЕОРГАНИЧЕСКИХ ФОРМ АСТАТА И ИЗУЧЕНИЕ ИХ СВОЙСТВ ЭЛЕКТРОФОРЕЗОМ НА БУМАГЕ И БУМАЖНОЙ ХРОМАТОГРАФИЕЙ

6 - 11056

И.Драйер, Р.Драйер, Ю.В.Норсеев, В.А.Халкин

ПОЛУЧЕНИЕ НЕКОТОРЫХ НЕОРГАНИЧЕСКИХ ФОРМ АСТАТА И ИЗУЧЕНИЕ ИХ СВОЙСТВ ЭЛЕКТРОФОРЕЗОМ НА БУМАГЕ И БУМАЖНОЙ ХРОМАТОГРАФИЕЙ

Направлено в "Radiochemical and Radioanalytical Letters"

092. MERCENTON XLIEGER **GHEAMOTEKA**

Драйер И. и др.

6 - 11056

Получение некоторых неорганических форм астата и изучение их свойств электрофорезом на бумаге и бумажной хроматографией

Найдены условия окисления астата до пяти- и семивалентного состояния. Приводится сравнение поведения астата и перастата с иодатом и лериодатом при электрофорезе на бумаге и при бумажной хроматографии.

Показано, что перастатат стабилен в шелочных и нейтральных средах, но при подкислении растворов перастатата последний восстанавливается до астатата.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1977

© 1977 Объединенный инспипут ядерных исследований Дубна

Кислородсодержащие анионы астата были идентифицированы по аналогии их поведения с периодатом и нодатом при электрофорезе на бумаге в нейтральных электролитах / 1,2/. Соединение, идентифицированное как перастатат, подобно периодату, оставалось на месте нанесения. Изоморфная сокристаллизация этого аниона с периодатами калия и цезия подтверждала правильность его идентификации. Анион, определенный как астатат, мигрировал вдвое медленнее астатида. Примерно такое же отношение скоростей миграции наблюдалось для пары JO3/J . Основной задачей нашей работы был анализ продуктов окисления астата различными реагентами. Очевидно, что электрофорез на бумаге, позволяющий определять известные соединения и, вероятно, наблюдать новые /если бы они образовались в условиях эксперимента/ - наиболее удобный для этой цели метод. Нами также была изучена хроматография валентных форм астата на бумаге в нескольких элюнрующих системах, которые ранее использовались для разделения аннонов йола ^{/3/}.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Астат выделяли газотермохроматографически^{/6/} из тория, облученного протонами с энергией 680 *МэВ*. Адсорбированный на платине или серебреастат возгоняли при 500°С и пары элемента поглощали в воде. Нейтральный раствор астата служил исходным при приготовлении препаратов различных валентных форм астата. Для этого к 0,2 *мл* исходного раствора добавляли указанные ниже количества окислителей и 15-20 *мин* нагревали до 90°С.

Астат окисляли:

2М КОСІ – 1М КОН/О,ОЗ мл/; 2О% раствором хлорамина $B-C_6H_5SO_2NaNCI/O,O3$ мл/; ХеF₂/1-2 мл/ в нейтральных и щелочных /O,5 M NaOH // растворах; 3.10⁻⁴M /O,O5 мл/ н 3.10⁻²M /O,1 мл/ КЈО₄; O,1 M КМпО₄ /O,1 мл/ в щелочном растворе /O,2 M NaOH/, с последующим восстановлением перманганата до MnO₂ этанолом /O,O3 мл/. Астат до Ат восстанавливали N_9H_5OH .

Электрофорез соединений астата проводили при 1000-1200 В в нейтральных или слабощелочных электролитах: 0,1M Na₂SO₄или диметилформамид /ДМФ/-3M NH₄OH, при объемном соотношении компонентов смеси 1:2.

Для эффективного теплоотвода полоски бумаги ватман 1 закрывались тефлоновыми пленками и зажимались между металлическими пластинами, охлаждаемыми водой.

Хроматографию соединений астата проводили на бумаге ватман 1 или FNII / ГДР, VEB Niederschlag / со следующими элюентами: ДМФ - 3M NH_4OH /от 1:2 до 8:1/, ацетон-вода /4:1/, бутанол - 3M NH_4OH /5:1/.

Распределение астата на бумаге после электрофореза или хроматографии определялось сцинтилляционными счетчиками.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Электрофоретический анализ исходных препаратов астата в нейтральных и слабощелочных электролитах обнаружил только одну, немигрирующую, форму / рис. 1/. Подкисление препаратов до O,5 M H_2SO_4 свойств астата не меняло. Мы предполагаем, что из-за ультрамалых количеств элемента / ~10⁻⁹ г/ и более низкой, чем для других галогенов, энергии диссоциации At

5

Puc. 3. Электрофорез соединений At в $O, IM \operatorname{Na}_2 SO_4$; 1000 B, 20 B/cm, 45 мин. $a/\operatorname{At}^\circ$ окислен XeF₂ в щелочном растворе; б/ At° окис-

а/ At° окислен XeF_2 в щелочном растворе; б/ At° окислен XeF_2 в нейтральном растворе; в/ At° восстановлен гидразингидратом.

/28 ккал/моль - экстраполяцнонная оценка/, астат возгонялся с платины или серебра и поглощался в воде в атомарной форме. Следовательно, исходные растворы это, вероятно, растворы атомарного астата: At^o. Очевидно, потому, что в растворах не было молекул At₂, в слабощелочных электролитах не наблюдался At, который должен был бы образоваться в результате реакций диспропорционирования At₂ и распада иона гипоастатита. Гидразин-гидрат восстанавливал At^o до аниона, скорость миграции которого при электрофорезе составляла O,72-O,76 от скорости иодида / рис. 2/. Анион идентифицирован нами как астатид.

Окисление астата в нейтральных растворах XeF_2 /puc. 36/, $3 \cdot 10^{-4}$ M KJO₄/puc. 46/, хлорамином B /puc. 5/ и KOCl в щелочном растворе, приводило к образованию аниона, скорость миграции которого составляла O,53-O,57 от скорости астатида. Для иодата и иодида это отношение было O,54. Такое совпадение отношений скоростей миграции дало нам основание идентифицировать окисленную форму астата как астатат. Из одинаковых отношений скоростей миграции астатата и астатида, иодата и нодида следует, что отношение скоростей AtO₃ и JO_3^- такое же, как у пары At⁻ и J⁻: 0,72-0,76. По аналогии с йодом мы пытались окислить At^o до AtO₃⁻ перманганатом в щелочной среде. Однако исследовать полученную форму астата не удалось, так как, в отличие от иодата, он полностью сорбировался на MnO₂, которая выпадала при восстановлении перманганата этанолом.

Окисление астата XeF₂ в O,5 M NaOH, в соответствии с ранее полученными результатами⁽²⁾, приводило к образованию перастатата - неподвижной при электрофорезе форме / puc. За/.Перастатат, подобно периодату⁽³⁻⁵⁾, оказался неустойчивым в кислых растворах: при pH < 1, после непродолжительного нагревания раствора /5-10 мин, 90° C/ он переходил в астатат /puc.6/. Неустойчивостью перастатата в кислых растворах, очевидно, объясняются различия в результатах окисления At^o дифторидом ксенона в нейтральных и щелочных средах: в первом случае, из-за подкисления раствора образующейся в процессе разложения дифторида ксенона HF, конечным продуктом окисления оказывался AtO₃. Восста-

7

Puc. 5. Электрофорез AtO_3^- в O,1 M Na₂SO₄; 1000 B, 20 B/cm, 45 мин. AtO_3^- получен окислением At° хлорамином B^- или KOC1 в щелочном растворе.

новление перастатата в кислых растворах позволяло отличать высшую окисленную форму от нейтрального астата, на электрофоретические свойства которого подкисление не влияло.

В работе $^{/7/}$ очень коротко, в подстрочном примечании, без указаний каких-либо условий опыта упоминалось об окислении астата до перастатата парой JO_3^{-}/JO_4^{-} . Эти данные подтвердились в наших экспериментах: при концентрации периодата порядка 10^{-2} M, окисление At^o быстро проходило до перастатата / *рис.* 46 и 76/ в нейтральных и щелочных средах. Подкисление растворов, например, до 0,5 M H₂SO₄. приводило к восстановлению семивалентного астата до пятивалентного, несмотря на относительно высокую концентрацию периодата.

Рис. 6. Электрофорез AtO_3 в O,1 M Na₂SO₄; 1000 B, 20 B/см, 45 мин. AtO_3 был получен после подкисления AtO_4 O,5 M H₂SO₄.

Таблица

Значения R_f астата и йода при хроматографии на бумаге ватман 1 с элюентами: I/ ацетон-вода /4:1/, II/ ДМФ-3M NH₄OH /2:1/, III/ Н-бутанол - 3M NH₄OH /5:1/.

мюент	At ^o	At ⁻	ſ	At03	J0 ₃	At 0	JOŢ
I	0	0,9- 0,95	Q9 0,95	Q9 Q95	0	0	0
I	0	88,0 - 6 0	0,9 0,8 <i>8</i>	Q 8 5	Q,42	0	0
I	0	0,3	0,3	0,9 0,95	0	0	0

9

Окисление At[°] периодатом, вероятно, наиболее простой и надежный путь получения препаратов астатата и перастатата, удобных для изучения свойств анионов различными методами, в том числе и бумажной хроматографией.

Полученные значения R_f для различных валентных состояний астата и йода в нескольких элюентах приведены в *таблице*.

Для всех элюентов наблюдалось резкое различие в поведении AtO_3^- и JO_3^- при хроматографии на бумаге: зона астатата всегда находилась вблизи фронта растворителя. Благодаря этому были возможны разделения астатида / R_f = 0,3/ и астатата / R_f = 0,9-0,95/ с бутаноламмиачным элюентом / *рис.* 7/ и не годились для этой цели растворы ДМФ-3М NH₄ OH, с которыми очень хорошо разделялись соединения йода^{/3/}.Результаты анализов методом хроматографии на бумаге с бутанол-аммиачным элюентом, при идентификации кислородсодержащих анионов астата, полученных в различных условиях, всегда совпадали с результатами электрофореза. В частности,

Рис. 7. Хроматография на бумаге в растворе H-бутанол-3M $NH_4OH/5:1/. a/At$, b/AtO, AtO, At

🕳 СМ

бумажной хроматографией было подтверждено образование астатата при восстановлении перастатата в кислых средах.

ЛИТЕРАТУРА

- 1. Nagy G.A., Khalkin V.A., Norseev Yu.V. Mag. Kemiai Foly, 1967, 73, p. 191.
- 2. Халкин В.А. и др. ДАН СССР, 1970, 195, с. 623.
- 3. Драйер И. и др. ОИЯИ, 12-11055, Дубна, 1977.
- 4. Das M., Heyn A.H.N. Agarwal R.P. Talanta, 1970, 17, p. 925.
- 5. Galliford O.J., Nuttal R.H., Ottaway J.M. Talanta, 1972, 19, p. 871.
- 6. Вахтель В.М. и др. ОИЯИ, P12-8896, Дубна, 1975.
 7. Samson G. Organic Compounds of Astatine Dissertation, 1971, Amsterdam.

