СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

C 344. 1W 11-755 4546/2-74

Р.Ион-Михай, К.М.Муминов, Т.М.Муминов,

Ф.Ш.Хамраев

О ТОЧНОСТИ МЕТОДОВ ОБРАБОТКИ ВРЕМЕННЫХ СПЕКТРОВ

21/4-24 6 - 10829

6 - 10829

Р.Ион-Михай, К.М.Муминов,^{*} Т.М.Муминов,^{*} Ф.Ш.Хамраев^{*}

О ТОЧНОСТИ МЕТОДОВ ОБРАБОТКИ ВРЕМЕННЫХ СПЕКТРОВ

Of BEARING AND THOMAY MODELIN AND ADBAUNT BHIS NOTEKA

^{*}Самаркандский государственный университет им. А.Навои.

Ион-Михай Р., Муминов К.М., Муминов Т.М., Хамраев Ф.Ш. 6 - 10829

О точности методов обработки временных спектров

Приводятся результаты анализа зависимостей статистической $\Delta T - \sqrt{N}_{H} r_{pacчетной} |T - T_{p}|/T$ точностей от отношения $2r_{0}/T$ для основных методов обработки экспериментальных данных по измерению времен жизни ядерных уровней. Программы обработки написаны на языке ФОРТРАН для ЭВМ БЭСМ-6.

Работа выполнена в Лаборатории ядерных проблем ОНЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1977

С 1977 Объединенный институт ядерных исследований Дубна

Метод задержанных совпадений является одним из основных способов измерений времен жизни возбужденных состояний ядер в диапазоне $10^{-11} + 10^{-4}$ с. В настоящее время анализ временных распределений задержанных совпадений производится различными методами, которые можно разделить на две основные группы. Методы первой группы основаны на рассмотрении экспериментального временного распределения в экспоненциальном представлении, а методы второй – на сравнении моментов временных распределений задержанных и мгновенных совпадений.

Несмотря на то, что методам обработки временных спектров посвящен целый ряд работ /1-7/, вопросы, связанные с точностью и границами применимости того или иного метода обработки, оптимальной статистикой в исследуемом распределении, выбором цены канала временного анализатора и т.п., рассмотрены недостаточно полно.

В настоящей работе эти вопросы изучались для программ LIFTIM, GEXFIT и MOMENT^{/8/}, используемых в ОЯС и РХ ЛЯП ОИЯИ для анализа экспериментальных данных по измерению времен жизни ядерных уровней методом задержанных совпадений. В качестве экспериментальных временных распределений использовались искусственно генерированные спектры задержанных совпадений. Программы генерации спектров и обработки данных написаны на языке ФОРТРАН для ЭВМ БЭСМ-6.

1. Генерация спектров.

Генерация спектров производилась по формуле^{/8/} свертки экспоненциального и нормального распределений:

$$N_{i} = \frac{N_{0}}{\sqrt{2\pi\sigma}} \int_{0}^{\infty} e^{-\lambda \mathbf{x}} - \frac{(\mathbf{x} + \mathbf{x}_{0} - \mathbf{i})^{2}}{2\sigma^{2}} d\mathbf{x} + B(\mathbf{i}), \qquad (1)$$

где N_i – число импульсов в i-том канале, $N_0 = \lambda N$ – – число импульсов в нулевом канале, $N = \Sigma N_i$, $\lambda = \ln 2/T$, $\sigma = 2\tau_0/2\sqrt{2\ln 2}$, T – период полураспада, $2\tau_0$ – временное разрешение аппаратуры, x_0 – центр тяжести аппаратурной кривой (λ , σ , T, x_0 , $2\tau_0$ – задаются в единицах канала), В – фон, в качестве которого можно использовать как постоянную, так и переменную функции. Разыгрывание статистического разброса величины N_i в каждом канале і производилось на основе генератора случайных чисел. В качестве среднеквадратичного отклонения использовалась величина $\Delta N_i = \sqrt{N_i}$. Максимальный канал i_{max} генерированного спектра определялся из условия і $_{max} = x_0 + nT$, где n-число периодов полураспада, подлежащих обработке (обычно n = 5+6).

2. Программы обработки данных.

Обработка искусственно генерированных спектров производилась с помощью следующих программ: программы MOMENT, в которой период полураспада определяется по методу моментов первого порядка; программы ЦЕТІМ, определяющей величину Т по одному из склонов кривой задержанных совпадений; программы GEXFIT, в которой при нахождении величины Т используются как склон кривой задержанных совпадений, так и аппаратурная кривая.

Программа MOMENT находит центры тяжести кривой задержанных совпадений х_д и аппаратурной (мгновенной) кривой х₀ по формуле

$$\mathbf{x}_{g,0} = \frac{\sum_{i=1}^{i \max} N_i \cdot i}{\sum_{i=1}^{i \max} N_i} \cdot$$
(2)

Величина периода полураспада в этом случае определяется как^{/1/}

$$T = \ln 2 \left(x_g - x_0 \right) , \qquad (3)$$

а относительная ошибка -

$$\frac{\Delta T}{T} = \sqrt{\frac{2}{N}} \cdot \sqrt{\left(\frac{\sigma \ln 2}{T}\right)^2 + 1}.$$
 (4)

<u>Программа LIFTIM</u> предназначена для обработки временных спектров методом прямой подгонки к экспериментальным точкам N $_i$ теоретических величин N $_i^*$, рассчитанных по формуле

$$N_{i}^{*} = N_{0}e^{-\lambda \cdot i} + B.$$
(5)

Подгонка производится по программе FUMILI , в которой минимизируется функция χ^2 , зависящая от параметров λ , N, B:

$$\chi^{2} = \frac{\sum_{i=1}^{i_{max}} (\frac{N_{i} - N_{i}^{*}(\lambda, N, B)}{\sqrt{N_{i}}})^{2}$$
(6)

При использовании программы LIFTIM необходимо задать начальные значения параметров λ , N и B , полученных с помощью предварительной обработки, например при графическом анализе. В программе FUMILI эти данные используются как начальные занчения подгоняемых параметров. Окончательным результатом работы программы FUMILI является определение таких значений параметров λ , N и B, при которых функция χ^2 имеет минимальное значение.

<u>Программа GEXFIT</u> работает аналогично программе LIFTIM, но в этом случае теоретические величины N^{*} рассчитываются по формуле (1). В программе GEXFIT параметрами подгонки являются величины λ , N, B, σ и x₀. Более подробно эти программы описаны в работе /8/.

3. Результаты анализа

На рис. 1 А, Б приведены зависимости "расчетной" точности, т.е. относительных ошибок расчета величины $|T-T_p|/T$ (T_p - рассчитанное по программе значение величины T) и статистической погрешности $\frac{\Delta T}{\sqrt{N}} \sqrt{N}$ от отношения $2r_0/T$ в интервале от 0,01 до 100. Величина N варьировалась в пределах 600+100000 импульсов.

Из анализа этих рисунков можно заключить, что программы LIFTIM и GEXFIT могут быть применимы в случае 2r₀/T ≤ 10. При этом, начиная со значения 2r₀/T ~ 1, статистическая ошибка в определении периода полураспада резко возрастает.

Программа GEXFIT дает несколько лучшую статистическую погрешность по сравнению с программой LIFTIM, однако её использование ограничено необходимостью обеспечения близких условий измерений кривых задержанных и мгновенных совпадений.

Программа MOMENTможет быть использована во всем исследованном диапазоне величин $2r_0/T$, но её применение оправдано в области $2r_0/T > 5$, т.к. только в этой области она дает меньшую статистическую и "расчетную" точности по сравнению с программами GEXFIT и LIFTIM.

Зависимость "расчетной" точности от величины $\Delta t/T$ (Δt -цена канала) исследовалась на примере программы LIFTIM. Для этого генерированный спектр деформировался ("сжимался") по оси абсцисс в 2,3,..., 50 раз, т.е. производилось суммирование числа импульсов по 2,3,..... 50 каналам, и каждый из этих спектров обрабатывался программой LIFTIM. При этом величина N

Рис. 1. Зависимость "расчетной" (А) и статистической (Б) точностей от величины $2r_0/T$, рассчитанных по программам GEXFIT (сплошная кривая), LIFTIM (пунктирная кривая) и MOMENT (штрих-пунктирная кривая).

7

варьировалась от 600 до 6000 импульсов. Анализ результатов обработки показал, что даже при минимальной статистике N = 600 " расчетная" точность в диапазоне ~0,1+5,0 не зависит от величины Δt/T и с увеличением статистики этот диапазон расширяется.

4. Заключение

Таким образом, в результате проведенных исследований определены статистическая $\Delta T/T \sqrt{N}$ и "расчетная" $|T-T_p|/T$ точности в определении времени жизни по кривым задержанных и мгновенных совпадений с помощью программ LIFTIM, GEXFIT и MOMENT; определены границы применения этих программ в зависимости от отношения 2b/T; показано, что отношение $\Delta t/T$ некритично для точности определения времени жизни в достаточно широком диапазоне.

Литература

- 1. Bay Z. Phys.Rev., 1950, <u>77</u>, p.419.
- 2. Newton T.D. Phys.Rev., 1950, 77, p.490.
- 3. Malmskog S.G.Nucl.Phys., 1965,62,p.37.
- Bostrom L. e a .Nucl.Instr.Meth., 1966, 44, p.61.
- Dumont A.M., Camhy-Val C. Nucl.Instr.Meth., 1973, 106, p.413.
- 6. Gardner D.G. e a . Chem. Phys., 1959, 31, p.978.
- Lindskog J, Sundstrom T. Arkiv Fys., 1963, Bd24, S199, p. 206.
- 8. Аликов Б.А., Будзынски М., Ион-Михай Р., Морозов В.А., ЭЧАЯ, 1976, т.7, вып.2, с.419.
- 9. Соколов С.Н., Силин И.Н. ОИЯИ, Д-810, 1961.

Рукопись поступила в издательский отдел 7 июля 1977 года.