ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

21/3-74 6 - 10293

A-50 1016 2-74

.......

11 11 11

Б.А.Аликов, Я.Ваврыщук, К.Я.Громов, В.Жук, М.М.Маликов, Т.М.Муминов, И.Холбаев

ИЗМЕРЕНИЕ ВРЕМЕН ЖИЗНИ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ И УГЛОВЫХ КОРРЕЛЯЦИЙ у -ЛУЧЕЙ В ЯДРЕ ¹⁵⁵ ТЬ

6 - 10293

Б.А.Аликов, Я.Ваврыщук, К.Я.Громов, В.Жук,² М.М.Маликов,³ Т.М.Муминов,¹ И.Холбаев¹

И ЗМЕРЕНИЕ ВРЕМЕН ЖИЗНИ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ И УГЛОВЫХ КОРРЕЛЯЦИЙ у -ЛУЧЕЙ В ЯДРЕ 155 ТЬ

Направлено в "Известия АН СССР" /сер. физ./

² Университет им. М.Кюри-Склодовской, Люблин, ПНР.

³Институт ядерной физики Академии наук УзССР, Ташкент.

Объединенный институт янсоных моглевованый **ENGINOTEKA**

Самаркандский государственный университет.

Аликов Б.А., Ваврыщук Я., Громов К.Я., Жук В., Маликов М.М., Муминов Т.М., Холбаев И.

÷

Измерение времен жизни возбужденных состояний и угловых корреляций гамма-лучей в ядре ¹⁵⁵Ть

Методами эадержанных е-у и е-е совпадений измерены периоды полураспада возбужденных состояний 155 Tb с энергиями 65 кэВ (0,25±0,03 нс), 155 кэВ ($\leq 0,2$ нс), 227 кэВ (0,29±0,03 нс) и 250 кэВ (0,56±0,05 нс). Иссследованы у-у угловые корреляции каскадов 641 - (23) - 227, 664 - 227, 724 - 227, 835 - 227, 841 - 227, 905 - (23) - 227 и 928 - 227 кэВ.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1976

О 1976 Объединенный инстипут ядерных исследований Дубна

Возбужденные состояния ${}^{155}_{65}$ Tb₉₀ изучались в ядерных реакциях типа (α , 2n γ), (d, 2n γ), (p,n), (3 He,d), (α ,t)/1,2/ и при исследовании спектров конверсионных электронов, γ -лучей и γ - γ -совпадений при радиоактивном распаде 155 Dy/3-10/.

В настоящей работе измерены времена жизни нижних уровней ротационных полос, построенных на состояниях 3/2 + [411] и 5/2 - [532] и изучена угловая анизотропия улучей в интервале от 500 до 1000 кэВ, совпадающих с переходом 227 кэВ.

РАДИОАКТИВНЫЕ ИСТОЧНИКИ

Исследования проводились с радиоактивными источниками 155 Dy / T_{1/2} = 10 ч/. Изотопы Dy были приготовлены в реакции глубокого расщепления при облучении Та мишени на внутреннем пучке протонов /E_p =660 *МэВ*/ синхроциклотрона ОИЯИ. Из облученных мишеней радиохимическими методами выделялись изотопы Dy, которые затем разделялись по массам на электромагнитном масс-сепараторе. Для временных измерений ионы 155 Dy внедрялись в Al фольги толщиной от 2,5 до 10 мкм. Для корреляционных измерений фольга с радиоактивным источником растворялась в водном растворе соляной кислоты.

3

АППАРАТУРА

Временные измерения проводились методами $e-\gamma$ и е-е задержанных совпадений с использованием сцинтилляционного детектора /сцинтиллятор типа NE111, фотоумножитель типа XP1O2O/ и магнитно-линзового β - спектрометра - для измерений $e-\gamma$ совпадений и двух соосно соединенных магнитно-линзовых β -спектрометров - для измерений e-e совпадений /11/. Измерения угловой анизотропии γ -лучей проводились на корреляционном спектрометре с Ge(Li) и двумя сцинтилляционными детекторами при временном разрешении $2\tau_0 = 40$ нс /12/.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

а/ Измерения времен жизни

На рис. 1 приведены некоторые измеренные нами временные распределения задержанных совпадений, спектр конверсионных электронов и фрагмент схемы распада 155 Dy .Временные спектры обрабатывались по программам LIFTIM и GEXFIT / 13/. Время жизни уровня 65,5 кэВ Т½ = /0,25±0,03/ нс определено нами впервые по экспоненциальному спаду кривых задержанных совпадений, у /30÷70 кэВ/ - L90 и M65 - L90 /левые склоны кривых/.

Время жизни уровня 155,8 кэВ измерялось ранее $^{/14/}$ в совпадениях между *у*-лучами и К-электронами перехода 90 кэВ, выделяемыми вместе с KLL-электронами Оже. Полученная в этих измерениях временная кривая состояла из мгновенной части / Т $\frac{1}{12} \leq 0,3$ нс/ и задержанной / Т $\frac{1}{12} = 1,16\pm0,07$ нс/, причем интенсивность мгновенной компоненты более чем в 3 раза превосходила интенсивность задержанной. Авторы $^{/14/}$ ошибочно приписали задержанную компоненту совпадениям К90-*у*. Наши измерения задержанных совпадений между L-электронами перехода 90 кэВ и *у*-лучами /30÷70 кэВ/ показали,что временное распределение этих совпадений Puc. I. Участок спектра конверсионных электронов 155 Dy. Фрагмент схемы распада 155 Dy. Временные распределения задержанных совпадений $\gamma / 30 \pm 70$ $\kappa_3 B/$ -L90, M65 – L90, $K227 - \gamma$ ≥ 50 $\kappa_3 B/$, $\gamma/ \Rightarrow 300$ $\kappa_3 B/$ -K184 в 155 T_b.

5/2⁺0.25нc

55.5

1227 5

S9

1/2⁺≤0.2 H

5000 312

*L*ZZX

o/uwn_c0L× ∼

7/2⁻ 0.56 5/2⁻ 0.2 5/2[532] /правый склон K3C/ не отличается от мгновенных. Это позволило определить верхнюю границу периода полураспада уровня 155,8 кэВ, как Т $\frac{1}{12} \leq 0,2$ нс. По-видимому, задержанная компонента, проявившаяся в совпадениях (K90 + KLL) – $\gamma^{/14}$, была обусловлена совпадениями KLL электронов, сопровождающих К-конверсию интенсивного перехода 105,3 кэВ, разряжающего уровень с энергией 105,3 кэВ с Т $\frac{1}{12} = /1,11\pm0,06/$ нс $^{/15/}$ в дочернем 155 Gd.

Время жизни уровня 227 кэВ измерялось методами задержанных совпадений различными авторами: $T_{\frac{1}{2}} =$ = /0,32±0,05/ нс^{/16,17/}, /0,44±0,05/ нс^{/18,19}и /0,306± ±0,022/ нс^{/20/}.Наши измерения совпадений К227 - у />400 кэВ/ позволили определить время жизни этого состояния как $T_{\frac{1}{2}} = /0,29\pm0,03/$ нс.

Время жизни уровня 250 кэВ измерено нами впервые в совпадениях между конверсионными электронами К 184 кэВ и у-лучами с $E_{\gamma} \gtrsim 300$ кэВ - $T_{\frac{1}{2}} = /0,56 \pm \pm 0,05/$ нс.

б/ измерения у-у угловых корреляций.

Значения спинов возбужденных состояний 155 Tb, образующихся при распаде 155 Dy,были определены на основе анализа мультипольностей γ -переходов $^{6,9, 10}$, при этом однозначно установлены значения спинов всех состояний с энергиями меньше 335 кэВ и для некоторых сильно заселяемых высоколежащих состояний.

В настоящей работе исследовались $\gamma - \gamma$ угловые корреляции перехода 227 кэВ с переходами 641, 664, 724, 835, 841, 905 и 928 кэВ. Измерения проводились в совпадениях γ -перехода 227 кэВ /фотопик которого выделялся в обоих сцинтилляционных трактах/ с γ -лучами в диапазоне энергий от 600 до 1200 кэВ/регистрируемых Ge(Li) детектором/. Так как переход 227 кэВ имеет мультипольность E1 /коэффициент A₄ =O/, то для определения значений коэффициентов A₂ функции угловой корреляции достаточно было провести измерения для углов между детекторами θ =90° и 180°. Спектр совпадений и одиночный γ -спектр¹⁵⁵ Dy в указанном диапазоне приведены на *рис. 2.*

Угловые положения сцинтилляционных детекторов менялись циклическим образом с временем экспозиции 200 с. Спектры совпадений регистрировались в памяти 1024-канального анализатора импульсов, разделенной на два сектора.

Полученные в этих измерениях значения коэффициентов A_2 функции угловой корреляции изучаемых каскадов с учетом поправок на телесные углы и эффективности детекторов приведены в *табл.* 1.

	Та	блица	ι1		
Значения	коэффициентов	Α, φγ	нкции	<u>}'</u> – _{}'}	угловых корреля-
	ций в	ядре	$^{-155}$ Tb		

Каскад / кэ В /	$A_{2}(A_{4}=0)$
641-/23/-227	-0,089+0,057
664-227	+0,343+0,016
724-227	-0,155+0,062
835-227	-0,297+0,066
841-227	-0,043+0,060
905-/23/-227	-0,058+0,068
928-227	-0,275+0,034

АНАЛИЗ РЕЗУЛЬТАТОВ

Каскадные переходы, для которых нами определены значения коэффициентов A_2 функции $y \leftarrow y'$ угловой корреляции, связывают высоколежащие состояния 891, 951, 1062, 1068 и 1155 кэВ с основным состоянием ¹⁵⁵ Tb, через промежуточные состояния 250 и 227 кэВ.

Спины состояний 250 кэВ $[7/2^{-1}]$ и 227 кэВ $[5/2^{-1}]$ определены на основе анализа мультипольностей у переходов при радиоактивном распаде 155 Dy $^{/9, 10}$ и в работах по ядерным реакциям $^{/1, 2}$. Спин основного состояния $3/2^{+}$ установлен в экспериментах с атомными пучками $^{/20/}$. Исходя из этих данных и принимая переход 227 кэВ как чистый дипольный переход типа E1, мы попытались установить значения спинов начальных состояний исследуемых каскадов и определить мультипольный состав переходов 664, 724, 835, 844, 9О5 и 928 кэВ, для которых, по данным работ $\frac{76,7,9,10}{7}$, следует приписать мультипольности типа M1 или M1+E2.

Совместный анализ значений коэффициентов A_2 каскадов 641/E2/-23/M1+2%E2/-227 кэВ и 664-227 кэВ позволяет приписать уровню 891 кэВ спин 3/2 и определить коэффициент смешивания для перехода 664 кэВ: δ /664 кэВ/ = +0,36±0,05 или +1,3±0,1. Учитывая значение коэффициента внутренней конверсии a_k /664 кэВ//10/, следует отдать предпочтение первому значению δ /664 кэВ/.

Аналогичным образом из корреляций каскадов 905-23-227 кэВ и 928-227 кэВ вытекает значение 5/2 для спина уровня 1155 кэВ и следующие значения коэффициентов δ_{γ} для переходов 905 и 928 кэВ:

 δ /905 кэВ/ =-/0,27±0,13/ н δ /928 кэВ/=-/0,28÷0,93/.

Уровню 951 кэВ в работе $^{/10/}$ предлагаются характеристики 3/2⁻ или 5/2⁻. Коэффициент А₂ каскада 724--227 кэВ при неизвестном мультипольном составе перехода 725 кэВ допускает также значение 7/2. Вероятно, что это состояние соответствует состоянию /950±3/ кэВ со спином и четностью 3/2⁻, которое наблюдалось в реакциях 154 Gd(3 He, d) 155 Tb/2[/]. Если это так, то переходу 724 кэВ следует приписать отрицательный знак коэффициента δ_{γ} , и, по-видимому, значительную /~98%/ примесь мультипольности типа Е2. Последний вывод находится в согласии со значением коэффициента внутренней конверсии a_k для этого перехода, полученного в работе /10/.

Состояния 1062 и 1068 кэВ, согласно данным работ ^{/6,7,10/}, имеют отрицательную четность и наиболее вероятные значения спинов 5/2 и 3/2, соответственно. Наши измерения угловых корреляций каскадов 835--227 кэВ и 841-227 кэВ подтверждают эти выводы и требуют приписать для перехода 835 кэВ мультипольность M1+/5÷5O/%E2 и $\delta_{\chi} < 0$, а для перехода 841 кэВ-мультипольность M1+/6⁺⁴/₋₃ /%E2 или M1+ $\geq 99\%$ E2 и $\delta_{\chi} < 0$.

^{*} Выводы о квантовых характеристиках исследуемых состояний и переходов приведены в *табл. 2*.

Таблица 2

Квантовые характеристики исследуемых состояний и мультипольный состав некоторых переходов в ядре¹⁵⁵ Tb

				the second s	
Eyp /10/ (x3B)	I [#]	Еу (хэВ)	6L ^{a)}	δr ^{a)}	6L ^{/10/}
891.1	3/2	641,0	E2		E 2
,-		664,0	∐ +(11,5 <u>+</u> 2,9)≸ E2	+(0,36 <u>+</u> 0,05)	MI
951.1	3/2	724,I	MI+(98 ^{+I})≸ E2	-(7 <u>+</u> 3) нан	E2,E2+MI
			(HAN MI+(16±8)#E2)	-(0,43 <u>+</u> 0,13)	
1062.1	(5/2)	835,2	MI+(5+50)% E2	-(0,23+1)	NI
1068.2	(3/2)	841,4	MI+(6 ⁺⁴ ₋₃)≸ E2	-(0,25 <u>+</u> 0,08)	MI+E2
;-	X =+ = /		(MAN MI + 99≸ E2)		
1155.4	5/2	905,6	MI+(7 ⁺⁷ ₅)≸ E2	-(0,27 <u>+</u> 0,13)	MI
		928,6	Ⅲ +(8+46) % E2	-(0,28+0,93)	MI.

а) Принято, что переход 227 ков типа ЕІ.

Анализ вероятностей внутриротационных переходов позволил нам определить значения внутренних квадрупольных моментов и разности гиромагнитных отношений (g_K-g_R) для ротационных полос 3/2⁺[441] и 5/2⁻[532] в ¹⁵⁵Tb. Эти значения приведены в *пабл. 3*.

Приняв для рассматриваемых полос, как и в соседних изотопах 157,159 Tb, значение $g_R \simeq 0.4^{/23/}$, мы вычислили значения магнитных моментов, которые приведены в *табл.* 4.

Таблица 3

Анализ вероятностей внутриротационных переходов в ¹⁵⁵ Ть

Ej (x3B)	$I_{i} \rightarrow I_{f}$ $K^{T}[Nn_{g}\Lambda]$	6L ^{/7/}	B(6L)	F. (6L)	F _N (NI)	Q., барн	β20	19 9. 1
65,5	5/2 - 3/2 3/2* /411/	₩I+ +1,3≸ E2	(6,2 <u>±</u> 0,9).10 ^{*2} 0,61±0,14	26,6 8,2.10 ⁻³	3,6	4,2 <u>+</u> 0,5	0,20 <u>±</u> 0,C2	0,66 <u>±</u> 0,04
90,4	7/2 - 5/2 3/2 ⁺ /411/	MI + +2,7% E2	≥5,4.10⁻² ≥0,2	≥27 ≥1,7.10 ⁻²	4,9	≥ 3,1	≥0,15	३ 0,49
155,8	7/2 - 3 /2 3/2* /411/	E 2	≥0,084	∢ 4,3.10 ⁻²		≱ 2,5	>0,12	
23,1	7/2 ~ 5 /2 5/2 [*] /532/	NI + +I,7% E2	(2,0 5±0,50).10⁻² 0,91±0,29	80,8 0,55.10 ⁻²	12,5	5,I <u>+</u> 0,8	0,24 <u>±</u> 0,04	0,25 <u>±</u> 0,03

Таблица 4 Магнитные моменты состояний в нечетных изотопах Ть

ядро состо- яние	¹⁵³ Tb [/]	21/ ¹⁵⁵ Tb	^{1 57} Tb ^{/ 2 2/}	¹⁵⁹ Tb ^{/22/}
3/2+ [411] 5/2 [532]	1,2	1,20 <u>+</u> 0,05 1,17 <u>+</u> 0,05	2,0 <u>+</u> 0,1	1,99 <u>+</u> 0,04 -
		или О,55 <u>+</u> О,О5		

В табл. 5 вероятности E1-переходов между ротационными полосами $5/2^-$ [532] и $3/2^+$ [411] в 155 Tb сопоставляются с одночастичными оценками по Мошковскому и Нильсону. Полученные факторы торможения для рассматриваемых переходов хорошо согласуются с систематикой подобных переходов в деформированных ядрах/24/.

Е _γ кэ В	I _i 5/2 ⁻ [532]	I _f 3/2 ⁺ [41]	B(E1) эксп l] (e ² · барн)	F _{sp} (E1)	F _N (E1)
71,2	5/2	7/2	$2,11\cdot 10^{-6} 5,69\cdot 10^{-6} 1,20\cdot 10^{-4} 9,2\cdot 10^{-5}$	2,95.10 ⁵	1,41
161,5	5/2	5/2		1,10.10 ⁵	3,14
227,0	5/2	3/2		5,2.10 ³	0,35
184,6	7/2	5/2		6,8.10 ³	0,37

Таблица 5 Вероятности Е1-переходов в ¹⁵⁵Tb.

Авторы глубоко благодарны И.И.Громовой и Н.А.Лебедеву за приготовление радиоактивных источников, использованных в измерениях, Р.Р.Усманову и У.С.Салихбаеву - за помощь в измерениях.

ЛИТЕРАТУРА

- 1. G. Winter, L.Funke, K.-H.Kaun, P.Kemnitz and H.Sodan. Nulc. Phys., A176, 609 /1971/.
- 2. J.C. Tippett and D.G. Burke. Can. J. Phys., 50, 3152 /1952/.
- 3. В.Гнатович, К.Я.Громов, Ф.И.Мухтасимов. Препринт ОИЯИ, Р-2729, Дубна, 1965.
- 4. А.Баланда, И.И.Громова, К.Зубер, К.Круляс. Препринт ОИЯИ, Д6-5783, Дубна, 1971.
- 5. L. Persson and H. Ryde. Ark. Phys., 25, 397 /1963/.
- 6. J.Jursik, V.Hnatovicz and J.Zvolsky. Czech.J.Phys., B19, 870 /1969/.
- 7. B.Harmatz and T.H.Handley. Nucl. Phys., A191, 497 /1972/.
- 8. P.H.Blichert-Toft, E.G.Funk and J.W.Mihelich. Nucl. Phys., A100, 369 /1967/.
- 9. J.L.Barat and J.Theherne. Nucl. Phys., A199, 386 /1973/.
- 10. К.Зубер, Ц.Вылов, И.И.Громова, Я.Зубер. Сообщение ОИЯИ. 6-8517, Дубна, 1975.
- 11. Б.А.Аликов, Г.И.Лизурей, Т.М.Муминов, С.Орманджиев, У.С.Салихбаев, Р.Р.Усманов, И.Холбаев. Препринт ОИЯИ, Р13-9516, Дубна, 1976.

- 12. Б.А.Аликов, М.Будзынски, Я.Ваврыщук, В.Жук, Р.Ион-Михай, Э.Крупа, Г.И.Лизурей, М.М.Маликов, Т.М.Муминов, Я.Сажински, В.И.Стегайлов, М.Суботович, В.Таньска-Крупа, В.И.Фоминых, И.Холбаев. Препринт ОИЯИ, Р13-9607, Дубна, 1976.
- 13. Б.А.Аликов, М.Будзынски, Р.Ион-Михай, В.А.Морозов. ЭЧАЯ, том 7, вып. 2, 419 /1976/.
- 14. Я.Ваврыщук, В.А.Морозов, Т.М.Муминов, В.И.Разов, Я.Сажински. Препринт ОИЯИ, Р6-5484, Дубна, 1970.
- 15. W.Meiling and F.Stary. Nucl. Phys., 80, 74 /1966/.
- 16. П.Бедросян, А.С.Кучма, В.А.Морозов. ЯФ, 4, 905 /1966/.
- 17. U.Hauser, G.Knissel. Phys.Lett., 24B, 232 /1967/.
- 18. S.G.Malskog, A.Marelius and S.Wahlborn. Nucl. Phys., A103, 481 /1967/.
- 19. А.Кокеш, И.Звольски. Изв. АН СССР, сер.физ., 31, 133 /1967/.
- 20. A.Rosen and H.Nyqvist. Physica Scripta, v. 6, 24 /1972/.
- 21. Б.А.Аликов, Я.Ваврыщук, К.Я.Громов, Р.Ион-Михай, Н.З.Марупов, Т.М.Муминов, И.Холбаев. Препринт ОИЯИ, Р6-10043, Дубна, 1976.
- 22. V.S.Shirley. Hyperfine Interactions in Excited Nuclei. Ed. by G.Goldring and R.Kalish, New-York, London, Paris, p. 1255, 1971.
- 23. М.И.Базнат, Н.И.Пятов, М.И.Черней. ЭЧАЯ, том 4, вып. 4, 941 /1973/.
- 24. L.Andrejtscheff, K.D.Schilling. Atomic Data and Nuclear Data Tables, 16, 515 /1975/.

Рукопись поступила в издательский отдел 10 декабря 1976 года.