

5-84-509

А.А.Киваев, Г.А.Ососков, С.А.Элькинд

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ ДАННЫХ ИЗМЕРЕНИЙ ПОВЕРХНОСТИ РОГОВИЦЫ И КОНСТРУИРОВАНИЯ КОНТАКТНЫХ ЛИНЗ

Контактные линзы являются эффективным средством коррекции эрения при тех аномалиях рефракции и патологических состояних глаз, когда очки не позволяют повысить остроту зрения. Преимущества средств контактной коррекции объясняются компенсацией аберраций оптической системы глаза, увеличением контрастности изображения, расширением поля зрения и др. Это предопределило растущий интерес офтальмологов к проблеме контактной коррекции зрения, рост количества людей во всем мире, пользующихся контактными линзами, а также выдвинуло, как весьма актуальную, проблему создания математических методов обработки информации о поверхности роговицы с целью расчета оптимальных параметров контактных линз.

Всесоюзный центр контактной коррекции эрения при Московском НИИ глазных болезней им.Гельмгольца разработал аппаратуру и метод измерительного фотографирования роговицы - фотокератометрию, метод конструирования индивидуальных контактных линз, а также типовые конструкции линз для подавляющего большинства пациентов, нуждающихся в данном виде оптической помощи по медицинским и профессиональным показаниям.

Погрешность измерения роговицы, например, высоты у (рис.2) должна быть существенно меньше естественной толщины слезного слоя, составляющей приблизительно 0,01 мм, и не должна превосходить 2 мкм; с неменьшей точностью должен быть определен профиль оптимальной контактной линзы. Проблемы обеспечения столь высокой точности, создания конструкций линз для больных со значительной деформацией роговицы, ускорения и автоматизации измерения роговицы, а также статистической обработки результатов наблюдения большого числа пациентов – все это определяет необходимость развития средств измерения роговицы и методов математической обработки результатов измерений и конструирования линз.

Настоящая статья посвящена основным вопросам, возникающим при разработке этих методов. В разделе I анализируется точность фотокератометрии. В разделе 2 на основании результатов точных измерения ро-

Bellin, turyy RACOFLAT DE 2012 EMT

Pzc. I

говицы предлагается наиболее простое и достаточно точное математическое описание профиля роговицы. В разделе 3 сообщается о методах считывания и математического преобразования фотокератограмм, а также поиска ближайшей симметричной поверхности к заданной поверхности роговицы. Наконец, в разделе 4 исследуются гидродинамические условия переносимости контактной линзы, в частности условие статического равновесия линзы на роговице в центральном положении, условие создания непрерывного потока слезной жидкости под линзой при моргании, условия обеспечения оптимальной скорости движения линзы и ее ориентации при этом движении.

I. Принцип действия и ошибки фотокератометра

Фотокератометрия основана на фотографировании изображения координатной марки прибора на поверхности роговицы (см.фото, рис.1). Результаты измерения фотографии используются для вычисления геометрических параметров роговицы.

На рис.2, изображающем профиль сечения роговицы, помимо высоты У представлены и другие координаты, принятые для описания поверхности роговицы: это вторая декартова координата Х (или полудиаметр), коаксиальный радиус R, образуемый нормальны к профилю в данной точке, и топографический угол \propto . Между R и Х существует очевидное соотношение

$$\mathbf{X} = R \sin \alpha$$
. (1)

На рис.3, II изображены графики зависимости $R(\alpha)$ для нормальной роговицы и для роговицы вытянутой формы у больного кератоконусом.

Профиль сечения роговицы является огибающей семейства окружностей с нарастающей величиной радиуса R и центрами на оси OY. Как видно из рис.4, смещение центра на оси OO' при переходе от точки α с радиусом R к точке δ с радиусом $R + \Delta R$ равно $dz = dR/cos \alpha$ и, следовательно, расстояние между центрами вершинной окружности ($\alpha = o$) и периферийной окружности ($\alpha = \alpha_i$) равно

$$Z_{\alpha} - Z_{o} = \int_{R_{o}}^{R} \frac{(\alpha = \alpha_{i})}{\cos \alpha_{i}} \frac{dR}{\cos \alpha_{i}}, \text{ a искомое расстоя-}$$

ние между вершинами этих окружностей

$$\Delta \mathcal{Z} = R_{(\alpha = 0)} + (\mathcal{Z}_{\alpha} - \mathcal{Z}_{0}) - R_{(\alpha = \alpha_{i})} = \int_{R_{(\alpha = 0)}}^{R_{(\alpha = \alpha_{i})}} \frac{1}{(\cos \alpha - 1)} dR .$$
(2)

Можно оценить допустимую погрешность измерения R через погрешность измерения y. Из уравнения окружности, касающейся оси X в начале координат $y^2 - 2Ry + x^2 = 0$, следует $dR \approx -R \frac{dy}{d}$.

2

3

Для $dy = 3 \cdot 10^{-3}$ мм, R = 8 мм и y = 0,7 мм, получаем dR = 0,025 мм. Из зарубежных фотокератометров /1-2/ наибольшей точностью (dR = 0,03мм) обладает фотокератометр фирмы Изоптик (Франция). Дальнейшее повышение точности достигнуто в советском фотокератометре ФК-I, разработанном в Московском НИИ глазных болезней им.Гельмгольца /3/. Схема ФК-I представлена на рис.5; она содержит: I) марку в виде I5 концентрических тонких освещенных колец, расположенных на внутренней поверхности сферы, устанавливаемой на расстоянии L (~200 мм) от глаза; 2) объектив с диафрагмой в фокальной плоскости; 3) фотокамеру. Угол δ_i (см.рис.5) между осью фотографирования и направлением на i -ое кольцо марки из фокуса измеряемой сферы (поверхности роговицы) меняется от 10^0 до 80^0 через 5^0 .

Установка прибора относительно измеряемой роговицы (наводка по дистанции) осуществляется по резкому изображению прицельной кольцевой марки в центральной части роговицы.

Из рис.5 видно, что $\alpha_i = \chi_i / 2$ и, следовательно, фотокератометр измеряет коаксиальный радиус R_i в точках роговицы со значениями топографических углов α_i от 5° до 40° через 2,5°. Величина R_i определяется из результатов обмера пленки

$$R_{i} = \frac{\mathcal{X}_{i}}{\beta_{i} \sin \alpha_{i}} \qquad (или \quad R_{i} = \frac{\mathcal{A}_{i}}{2\beta_{i} \sin \alpha_{i}} \quad). \quad (3)$$

Здесь χ_i - полудиаметр (а d_i - диаметр) изображения кольца на пленке, β_i - коэффициент увеличения фотокамеры ($\beta_i \approx 2$). Величина $\kappa_i = \beta_i sind_i$ называется тарировочным коэффициентом *i*-го кольца фотокератометра. Она определяется в результате фотографирования эталонной стеклянной сферы с радиусом 7,8 мм.

Применение формулы (3) для расчета β_i означает допущение постоянных тарировочных значений углов \ll_i при фотографировании роговиц любых размеров и формы и при некоторой неточности наводки. Однако истинное значение угла ζ_i зависит от размеров и формы роговицы и от ее расположения относительно прибора. Расхождение $\Delta \delta$ между истинным и тарировочным значениями δ_i является основным источником ошибок фотокератометрии, и эти ошибки здесь рассматриваются подробно.

а) <u>Ошибка продольной наводки</u>. Если сфера смещена на расстояние Δ вдоль оси прибора, то угол χ отличается от тарировочного значения на

 $ds = \frac{\Delta \cdot sins}{L}$,

(4)

(5)

а значение
$$R = \frac{X}{sin\alpha}$$
 получится с ошибкой
 $dR = -\frac{X\cos\alpha}{\sin^2\alpha} d\alpha = -\frac{R}{t_{q\alpha}} \frac{d\delta}{2}$.

Из (4) и (5)

$$dR_{1} = -\frac{R}{L} \Delta \cos^{2} \alpha , \qquad (6)$$

откуда при ошибке наводки $\Delta = 0,5$ мм, L = 200 мм, R = 8 мм и $\propto = 30^{\circ}$ получается $dR_1 = 16$ мкм.

Как видно из (6), ошибка наводки тем меньше, чем больше расстояние L от роговицы до прибора. У ΦK -I это расстояние выбрано достаточно большим. Повышение точности за счет уменьшения Δ практически неосуществимо из-за подвижности пациента. Поперечное смещение роговицы относительно оси фотографирования создает на порядок меньшую ошибку, так как увеличение угла γ на одной стороне диаметра кольца (например, сверху) компенсируется уменьшением γ с другой стороны (снизу).

б) Ошибка за счет отличия cl_{R_o} измеряемого радиуса R от радиуса тарировочной сферы R_o . При $R \neq R_o$ смещается фокус F (см.рис. 5), и $d_T = \frac{cl_{R_o}}{L} = \frac{sl_{R_o}}{L}$; согласно (5), ошибка измерения радиуса

$$dR_2 = \frac{R}{tgd} \frac{dY}{2} = \frac{R}{2L} dR_0 \cos^2 d.$$
(7)

При $cl_{R_o} = I$ мм, L = 200 мм, R = 8 мм и $cl_{=30}^{\circ}$ получаем $cl_{R_2} = I6$ мкм. Поскольку в результате фотокератометрии радиус. R становится известным, в измеренное значение следует ввести поправку cl_{R_2} по формуле (7). Знак поправки совпадает со знаком разности $R_o - R$.

в) Ошибка за счет отличия формы измеряемой роговицы от сферы. На рис.6 изображен профиль вытянутой роговицы. Можно связать коаксиальный радиус R с радиусом кривизны профиля роговицы ρ в той же точке, исходя из (I) и соотношений для длины дуги $\rho = \frac{ds}{da}$ и $ds = \frac{dx}{coss}$:

$$\mathcal{G} = R + \frac{dR}{d\alpha} tg\alpha. \tag{8}$$

Из (8) следует, что ρ отличается от R, превосходя его на 0,2 – 0,4 мм. Ввиду не слишком большого отличия радиуса ρ соприкасающейся сферы в точке d от коаксиального радиуса R в этой точке мы можем считать фокус этой сферы расположенным в точке F на рис.6. Кроме того, вершина C сферы радиуса R смещена от вершины роговицы на осевой сдвиг Δ . В результате ошибка измерения периферийного радиуса вытянутой роговицы равна сумме ошибок dR_1 и dR_2 , определяемых, согласно (6) и (7), значениями Δ и R- R_0 . Поправка на dR_1 , (поправка всегда отрицательная) необходимо вычислить осевой сдвиг Δ по формуле (2). Таким образом, может быть исправлена ошибка dR_1 , вызванная осевым сдвигом вершины соприкасающейся сферы R_1 от вершины роговицы. Внесение поправок dR_1 и dR_2 устраняет ошибку измерения радиуса *R*, которая при развитой стадии кератоконуса может достигать 0,06 мм.

В результате, ошибка фотокератометрии, вызванная отличием формы и размеров измеряемой роговицы от тарировочной сферы, может быть исправлена при математической обработке результатов измерения. Неустраньтой ошибкой остается ошибка продольной наводки.

Здесь мы не рассматривали чисто инструментальные ошибки $\Phi K-I$, связанные с неточным расположением колец марки и нерезким и искаженным изображением роговицы объективом прибора. Для ограничения этих ошибок в приборе применены объектив с малой дисторсией, достаточной глубиной резкости, а также диафрагма диаметром 3 мм в фокальной плоскости. Эти меры обеспечивают ширину изображения колец на фотопленке, не превышающую 0,03 мм. В конструкции марки осуществлена установка ее колец с точностью 0,1 мм. В итоге основной ошибкой прибора является ощибка наводки, и прибор измеряет величину коаксиального радиуса R с точностью 0,016 мм и высоту профиля роговицы Y с точностью 2 мкм.

2. Математическое описание профиля роговицы

Фотокератометр позволяет измерять координаты профиля роговицы с высокой точностью, и это дает основу для математического описания поверхности роговицы. Очевидно, что, чем точнее математическое описание роговицы, тем точнее определяется конструкция контактной линзы для роговицы с данными размерами и тем меньшее количество стандартных типов линз необходимо для удовлетворения основного (90% и более) контингента пациентов.

Наиболее удобным геометрическим описанием профиля роговицы является график Коше-Амьяра /1/, т.е. кривая зависимости $\mathcal{R}(\alpha)$, построенная по экспериментальным точкам значений \mathcal{R}, α , полученным из фотокератометрии (см. рис.3). По оси ординат графика отложены значения коаксиального радиуса в мы, а ось абсцисе имеет 2 масштаба: один – неравномерный, для значений топографического угла α в градусах и другой – равномерный, для значений функции Ψ угла α :

$$\Psi(\alpha) = \frac{1}{\cos \alpha} - 1 . \tag{9}$$

На поле графика нанесены наклонные линии постоянного значения полудиаметра X. Переход от координат R, d к декартовым координатам профиля X, Y осуществляется по формулам

$$X = R \sin \alpha, \qquad (1)$$

$$\mathcal{Y} = \int_{R_0}^{R} \varphi(\alpha) dR + R(1 - \cos \alpha) . \tag{IU}$$

Формула (10) следует из (2) и (Э) (см.также рис.4). Она справедлива при монотонном возрастании R от X, то есть для профиля, уплошающегося от центра к рериферии. Графики Коше-Амьяра R(4) удобны не только тем, что на них можно непосредственно изображать результаты эксперимента (измерения R и &), но и тем, что они позволяют быстро и с большой точностью оценивать вертикальные зазоры, то есть отстояние по координате у между двумя профилями, например, между профилями роговицы и контактной линзы. Из формулы (10) следует, что зазор в центре между двумя профилями До, соприкасающимися на диаметре 2.X (полудиаметре X), численно равен площади Q, ограниченной на графике (рис.?) двумя кривыми $R_4(\varphi)$ и $R_2(\varphi)$, представляющими эти профили, осью ординат и линией постоянного значения Х в точке соприкосновения. Искомый зазор получится в мм. если при подсчете площади используются масштаб по оси ординат для R в мм и абсолютные значения величины 4 , отложенной на оси абсцисс. В случае пересечения кривых $R_1(\varphi)$ и $R_2(\varphi)$ надо учитывать знаки площадей 91 и 92, см.рис.8. Очевидно, что тот же зазор между поверхностями получится на полудиаметре X, если поверхности соприкасаются в центре, то есть $\Delta_x = \Delta_e$.

Однако для расчетов контактных линз иногда необходимо описать профиль аналитической функцией. Учитывая высокую точность графиков $\mathcal{R}(\mathcal{Q})$, целесообразно подобрать простую функциональную зависимость $\mathcal{R}(\mathcal{Q})$, представляющую хорошее приближение к экспериментальным кривым для профиля роговицы в координатах \mathcal{R}, \mathcal{Q} . Очевидно, что вид функции определяется характером профиля роговицы и допустимой погрешностью математического описания. Для определения характерного профиля роговицы были рассмотрены экспериментальные графики $\mathcal{R}(\mathcal{Q})$ около десяти тысяч так называемых простых роговиц. В это число не входят роговицы больных кератоконусом, травмированные роговицы и роговицы, имеющие торическую разность радиусов свыше I мм.

Результат рассмотрения показал, что все графики имели форму, общую с тремя кривыми $R(\mathcal{Q})$, представленными на рис.3. Оказалось, что так называемое периферическое уплощение $\Delta R_{nep} = R(35^{\circ}) - R(25^{\circ})$ изменяется в пределах от 0,2 до 0.9 мм, а разность значений радиусов $\Delta R_{\text{центр}} = R(25^{\circ}) - R(45^{\circ})$, или центральное уплощение, изменяется в пределах от 0,1 до 0,2 мм. Для четырех значений периферического уплощения $\Delta R_{\text{пер}} = 0,3$; 0.5; 0,7 и 0,9 мм наиболее вероятны значения центрального уплощения $\Delta R_{\text{центр}} = 0,1$; 0,13; 0,17 и 0,2 мм соответственно.

Все кривые простых роговиц, представленные на рис.3, оказалось возможным аппроксимировать с высокой точностью трехчленом 3-й степени

$$R = R_o + a_2 \varphi^2 + a_3 \varphi^3. \tag{II}$$

В формулу (II) не входит линейный член, что объясняется поведением экспериментальных кривых при φ , близких к нулю. Для определения постоянных коэффициентов a_2 и a_3 использовались экспериментальные эначения $R(25^\circ)$ и $R(35^\circ)$. На рис.9 показана экспериментальная кривая профиля роговицы с $R_0=7,82$, $R(25^\circ)=7,93$ и $R(35^\circ)=8,42$ и пунктиром – аппроксимация ее трехчленом (II) с $a_2=16,4$ и $a_3=-14,5$. Разность координат y между двумя профилями определяется разностью площадей q_4-q_4 на графике рис.9 и не превышает 2 мкм. Таким образом, формула (II), использующая результаты измерения трех радиусов R_0 .

 $R(25^{\circ})$ и $R(35^{\circ})$, дает достоверное аналитическое выражение для профиля простых роговиц. Отсюда следует, что точные измерения простых роговиц можно осуществить, измеряя изображения только трех колец, входящих в марку фотокератометра на топографических углах $\propto =15^{\circ}$; 25° и 35° . Радиус $R(15^{\circ})$ можно считать практически равным центральному радиусу роговицы R_{\circ} , разность $R(\pounds^{\circ}) - R_{\circ}$ не превышает 0,03 мм и на малом угле $\ll =15^{\circ}$ вызывает ничтожное изменение выосты у.

Следует сравнить описание профиля роговицы формулой (II) в координатах $\mathcal{R}(\mathcal{Y})$ с принятым в литературе^{2,4} споссбом описания в декартовых координатах X, Y с помощью эллписа, у которого большая ось $\underline{\ell}$ совпадает с осью Y, а вершина находится в начале координат (то есть совпадает с вершиной роговицы). Уравнение такого эллипса

$$x^{2} = 2R_{o}y - Py^{2}, (12)$$

где $R_o - радиус кривизны при вершине, а <math>\rho = (a/b)^2 (a/b)^2 - отношение ма$ лой полуоси эллипса к большой, или коэффициент формы). Для уплощающе $гося к периферии зллипса <math>o < \rho < 4$; при $\rho = 0$ уравнение (12) описывает параболу, а при $\rho = I - окружность. Уравнение (12) можно пре$ $образовать к координатам <math>R, \varphi$, используя (I) и (I0), и на графике $R(\varphi)$ сравнить контур роговицы с эллипсом. После преобразования получается уравнение для эллипса в координатах R, φ :

$$R = R_o \frac{1+\varphi}{\sqrt{1+2p\varphi+p\varphi^2}} , \quad (0$$

Соответственно, уравнения для параболы и окружности имеют вид

$$R = R_0 (1 + \varphi); (p = 0)$$

 $H = R_0; (p = 1)$

На рис.10 сравниваются экспериментальные кривые профиля роговицы с эллипсом. Расхождение высот У кривых сравнивается по площади *q*, и явно превосходит 0,02 мм. Если профили линз будут рассчитываться исходя из эллиптического профиля роговицы, то линзы окажутся явно непригодными. При конструировании линзы необходимо вносить эмпирическую коррекцию в размер линзы, см. $^{/4/}$; остается неясным как при этом компенсируется неточное описание геометрии роговицы, а как учитывается гидродинамика слезной жидкости. Поэтому коэффициент формы эллипса $\frac{\alpha}{E}$ может служить только условной мерой уплощения роговицы. Например, эллипс с $\frac{\alpha}{E} = 0.83$, согласно нашим экспериментальным данным, ближе всего подходит к профилю роговицы с наиболее распространенным уплощением $R(35^{\circ}) - R(25^{\circ}) = 0.5$ мм.

Следует остановиться на возможности математического описания профиля роговицы у пациентов с кератоконусом. На рис. II показаны типичные профили кератоконусных роговиц в координатах $R(\varphi)$ и аппроксимация одного из них полиномом третьей степени

$$R = R_0 + a_1 \varphi + a_2 \varphi^2 + a_3 \varphi^3.$$
(14)

Коэффициенты $a_{,a_{2}}a_{,3}$ и радиус R_{o} при вершине определяются из эначений R, рассчитанных по изображениям четырех колец фотокератометра, лежащих на углах $\propto =15^{\circ}$; 25° ; 30° и 35° . Как видно по площадям q_{1}, q_{2}, q_{3} на рис. II, расхождение приближенного математического описания (I4) с экспериментальной кривой профиля достигает 0,01 мм по координате y. Почти в 50% случаев такая точность оказывается удовлетворительной для конструирования контактной линзы. Для более точного математического описания профиля роговицы при кератоконусе следует использовать результаты измерения большего числа колец марки фотокератометра и применить формулу полиноме более высокой степени.

3. <u>Обработка результатов измерения фотокератограмм.</u> Задача симметризации

В настоящее время процесс считывания и обработки фотокератограмм весьма трудоемок. Поэтому для автоматизации этого процесса в ОИНИ проводилась пробная обработка фотокератограмм на устройствах для массовых измерений АЭЛТ-I и АЭЛТ-2/160. С помощью специально разработанных программ для математической обработки данных автсматического сканирования^(5,6) необходимая точность ~ 5 мкм была достигнута уже при 256 линиях на кадр.

При математическом конструировании линз по результатам измерений возникает задача нахождения близкого к роговице симметричного профиля, состоящая: (а) – в определении положения оси симметрии измеренного профиля и (б) – в преобразовании измеренного профиля в симметричный. Введем следующие условия симметрии

$$y(\alpha_{cun}) = y(-\alpha_{cun}); \quad X(\alpha_{cun}) = -X(-\alpha_{cun}), \quad (15)$$

где $\alpha_{cun} \sim 30^{\circ}$ - угловая координата середины зоны скольжения наиболее ответственной точки профиля. Выбрав некоторую меру асимметрии профиля, можно прежде всего убедиться в необходимости симметризации. Далее, либо, переходя от точки к точке, найти положение, минимизирующую эту меру, либо пытаться сразу найти уравнение оси симметрии как геометрического места точек, равноудаленных от ветвей кривой. Возвращаясь к мере асимметрии, рассмотрим зависимость X и \mathcal{G} от \mathcal{S} - длины кривой профиля, начиная от вершины θ (см.рис. 12)

$$y = \int_{\alpha=0}^{\alpha=\alpha_{cun}} \sin \alpha \, ds, \qquad X = \int_{\alpha=0}^{\alpha=\alpha_{cun}} \cos \alpha \, ds + \Delta;$$

$$y'_{=-} \int_{\alpha=0}^{\alpha=-\alpha_{cun}} \sin \alpha \, ds, \qquad X'_{=} \int_{\alpha=0}^{\alpha=-\alpha_{cun}} \cos \alpha \, ds - \Delta,$$

поскольку $dS = dx/cos \alpha$. Из условия (I5) можно найти уравнение для угла Ψ между осью фотографирования и искомой осью симметрии, т.е. $\Psi = \alpha_{\alpha} - \alpha$ (см. рис. I2):

$$\begin{aligned} & \overset{\alpha_{\varphi}= \prec_{cun} + \psi}{\int} & \overset{\alpha_{\varphi}= -\alpha_{c} + \psi}{\int} \\ & \overset{sin}{(\alpha_{\varphi}-\psi)} ds = - \int \frac{\sin(\alpha_{\varphi}-\psi)}{sin(\alpha_{\varphi}-\psi)} ds . \end{aligned}$$

Считая $sind \approx \infty$, получаем в качестве меры асимметрии разность площадей (рис.I3). Последовательно меняя Ψ , находим точку $\alpha = \alpha_{cus} + \Psi$, для которой площади будут равны, и для любого ∞ вычисляем x и y – искомые координаты профиля.

Другой способ нахождения оси симметрии также основан на знании угловых коэффициентов нормалей к каждой измеренной точке профиля. Это позволяет найти для каждой точки путем интерполяции на противоположной ветви вторую точку, соответствующую первой по принципу равенства нормалей, приведенных из этих точек до пересечения. Два множества точек, одно – точек пересечения нормалей к соответствующим точкам и второе – середин отрезков, их соединяющих, позволяют найти уравнение оси симметрии методом наименьщих квадратов.

Для решения задачи (б) после симметризации точки обвих ветвей переносятся в одну сторону (зеркальным отражением одной из ветвей), и находятся внешние точки этого общего набора.

4. Равновесие линзы на роговице и ее движение вниз под действием верхнего века

Для переносимости линзы важно, чтобы она занимала устойчивое центральное положение на роговице в промежутке между морганиями, когда сила действия век на линзу не имеет продольной составляющей.

4 1 P (10 gun /cm2)

Puc. 16

Линза удерживается от сползания вниз разностью вертикальных составляющих сил поверхностного натяжения слезной жидкости сверху и снизу линзы, причем вертикальная составляющая, действующая сверху, увеличивается при сползании линзы.

Условие равновесия линзы можно получить из расчета изменения поверхностной энергии ΔE_s слезной жидкости при опускании линзы вниз на высоту $d \times :$

$$\Delta E_{c} = \sigma \, ds \tag{16}$$

где б = 46 дин/см – коэффициент поверхностного натяжения слезы, а ds – увеличение поверхности слезы, смачивающей роговицу. Для расчета существенно, что внутренняя поверхность век не смачивается слезой. Перемещение линзы I – 3 из положения I в положение 3 на рис. I4 условно разобьем на параллельное перемещение I – 2 с опусканием на $dx = dA\cos \alpha$ и поворот 2-3 вокруг точки С на утол $d\alpha$. Тогда при переходе I – 2 открывается поверхность роговицы $dS_i = \mathcal{D}_k dA$, где D_k – диаметр роговицы на внешнем краю зоны скольжения, α – то-пографический утол и \mathcal{R} – коаксиальный радиус на этом диаметре, а dA – дуга открывающейся части роговицы. При переходе 2-3 закрывается поверхность роговицы , где $\frac{\pi D_k}{2} dB = \frac{\pi D_k}{2} \frac{D_{k-d\alpha}}{Sin\alpha}$, где dB – дуга, закрываемая при повороте на $d\alpha$. Но утол $d\alpha$ определяется радиусом кривизны роговицы β и равен $d\alpha = \frac{dA}{\beta}$, отсюда $ds = ds_1 - ds_2 = \pi D_k dA$ ($l - \frac{D}{2Rin\alpha}$), или

$$ds = \pi D_{\kappa} \frac{dx}{\cos \alpha} \left(1 - \frac{R}{\beta} \right) . \tag{17}$$

Для равновесия линзы необходимо выполнение условия возрастания знергии при опускании линзы на dx:

$$\Delta E_s - mg \, dx > 0, \tag{18}$$

где m - масса, а mg - вес линзы. Из (I7)-(I8) следует

$$\frac{G\mathbf{T} \mathbf{D}_{\kappa}}{\cos \alpha} \left(1 - \frac{R}{P} \right) > mg . \tag{19}$$

На роговице, близкой по форме к сфере, когда $\mathcal{R} \simeq \rho$, равновесие линзы невозможно. Далее, подставляя (8) в (19), получаем

$$\frac{\delta \mathbf{x} D_{\mathbf{k}}}{\cos \alpha} \frac{\frac{d\mathbf{x}}{d\alpha} \frac{t_{g\alpha}}{\mathbf{k}}}{1 + \frac{d\mathbf{x}}{\alpha \alpha} \frac{t_{g\alpha}}{\mathbf{k}}} , mg ; D_{\mathbf{k}} \simeq 2Rsin\alpha;$$
(20)

здесь $\frac{1}{R} \frac{dR}{d\alpha}$ — относительное уплощение радиуса роговицы ($d\alpha$ — прирадение топографического угла в радианах) на зоне скольжения. Таким образом, равновесие линзы определяется степеных уплощения роговицы. На графиках рис. 15 показано, каким должно быть отношение D_{κ}/m у линзы для ее равновесия при данном уплощении роговицы. При малом

13

уплощении $\frac{dR}{da} = \frac{0.2mm}{10}$ равновесие возможно только у линз с диа-

метром D > 9.6 мм и массой m < 20 mг, иначе линза сползает вниз.

Вместе с тем, отрыв линзы от роговицы связан с очень большим усилием F, порядка 40.10³ дин. Можно показать, что

$$F = 2\sigma s/h, \qquad (21)$$

где S (см²)-поверхность прилегания линзы к роговице в центральном положении, а h (см)-высота слезного слоя.

Для переносимости линзы во время моргания существенны ориентация и скорость линзы при ее движени вниз. Ввиду очень малой величины приведенного числа Рейнольдса $(h/R)^2 \rho \frac{UR}{U} = 5.40^{-4}$ (гле Р = $1 z / c u^3$ - плотность слезы, $\mu = 10^{-2} \frac{\text{дин. c}}{\text{см}^2}$ - ее вязкость, $h = 10^{-3}$ см – высота слезного слоя под линзой, U = 2 см/с – скорость

движения линзы, R =0,8 см - радиус линзы), для описания движения слезной жидкости гидродинамические уравнения Навье-Стокса заменяются упрощенными уравнениями Рейнольдса из теории смазки /7/, в которых опущены инерционные члены и зависимость давления от координаты Ч .

$$-\frac{1}{\mu}\frac{\partial P}{\partial x} + \frac{\partial^{2} u}{\partial y^{2}} = 0; \quad -\frac{\partial P}{\partial y} = 0; \quad -\frac{1}{\mu}\frac{\partial P}{\partial z} + \frac{\partial^{2} w}{\partial y^{2}} = 0;$$
$$\frac{\partial u}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial w}{\partial z} = 0; \quad (2z)$$

здесь и, V, w - составляющие скорости жидкости по координатам X , у, 2. Для упрощения расчетов мы, аналогично работе^{/8/}, заменим реальный слезный слой под линзой его двумерной моделью, изображенной на рис. 10. Такое допущение основано на нормальном астигматизме роговицы, благодаря которому зазор между периферией линзы и роговицей существенно меньше на горизонтальном меридиане, чем на вертикальном, и на учете малости скорости движения линзы вдоль ОЕ. Тогда уравнение (22) сводится к двум уравнениям:

$$\frac{\partial^2 u}{\partial y^2} = \frac{4}{\mu} \frac{dP}{dx} \qquad (23) \qquad \mathbf{H} \quad \frac{\partial u}{\partial x} = -\frac{\partial V}{\partial y} \quad (24)$$

Здесь р означает избыточное давление под линзой. Для упрощения расчета будем считать " линзу" на рис. 16 неподвижной, а роговицу - движущейся "вверх" со скоростью U (в сторону положительных X) и приближающейся к линзе со скоростью V (в сторону положительных у). В действительности линза движется вниз под действием продольного усилия верхнего века Епра и прижимается к роговице под действием поперечного усилия Fnonep. Высота слезного зазора h задана принятым профилем линзы, изображенным на рис.16.В обозначениях рис.16 справедливы следующие краевые условия для скорости слезной жидкости:

$$u = U$$
 при $y = 0$, $v = V$ при $y = 0$,
 $u = 0$ при $y = h$, $v = 0$ при $y = h$ (25)

и для давления р

$$O$$
 при $x = \pm \frac{D}{2}$. (26)

1200

Решение уравнения (23) с краевыми условиями (25-26) записывается в виле

$$u = \frac{4}{2\mu} \frac{dP}{dx} (y^2 - hy) + U(1 - \frac{4}{h}), \qquad (27)$$

и поток слезы через любое сечение х

P=

$$Q(x) = \int_{0}^{h} u dy = -\frac{1}{12\mu} \frac{dP}{dx} h^{3} + U\frac{h}{2} .$$
 (26)

Отсюла

$$\frac{dP}{dx} = \frac{42\mu}{h^3} \quad \left(U\frac{h}{2} - Q\right). \tag{29}$$

Поток Q можно представить в виде суммы двух потоков: потока \mathcal{Q}_{U} , вызванного только продольным движением со скоростью \mathcal{U} при V=0, и потока \mathcal{Q}_V , вызванного только поперечным движением линзы со скоростью V при U=0. Аналогично, давление под линзой P(x) можно представить в виде суммы двух давлений, возникающих в каждом из этих случаев: $P(x) = P_{T}(x) + P_{V}(x)$, причем для P_{V} и P_{V} справедливы граничные условия (26). Таким образом:

И

И

$$Q_{\nu}(x) = -\frac{1}{42\mu} \frac{dP_{\nu}}{dx} h^{3} + U\frac{h}{2}$$
(30)

$$\mathcal{Q}_{v}(x) = -\frac{4}{42\mu} \frac{dP_{v}}{dx} h^{3}.$$
(31)

Из несжимаемости жидкости (22) следует

$$\mathcal{X}_{U}(\mathbf{x}) = const, \tag{32}$$

$$Q_{V}(x) = \int_{0}^{x} V dx = Vx + C .$$
(33)

Из (26) следует $\int_{\mathcal{D}_2} \frac{dA_0}{dx} dx = 0$; и, интегрируя (30) при усло-вии (26), получаем \mathcal{D}_2 + \mathcal{D}_2

$$R_{U} = \frac{U}{2} \int_{-\frac{1}{2}dx} \frac{dx}{h^2} \left/ \int_{-\frac{1}{2}dx} \frac{dx}{h^3} = \frac{U}{2} \overline{h} \right, \qquad (34)$$

где \bar{h} - некоторая средняя высота слезного слоя, равная отношению интегралов в (34). Из (30) и (34) получаем

$$\frac{dP_{U}}{dx} = \frac{G_{U}}{h^{3}} U(h - \bar{h})$$
(35)

$$P_{U} = 6\mu U \int_{-3/2}^{x} \frac{h - \bar{h}}{h^{3}} dx .$$
 (36)

Из (31) и (33) получаем

$$\frac{dP_{\gamma}}{dx} = -12 \frac{4}{h^3} \left(Vx + C_1 \right). \tag{37}$$

Если записать C_1 в виде $C_1 = -VX_3$, то $\frac{\partial P}{\partial X} = 0$ при $X = X_3$ и, следовательно, X_3 - координата точки с экстремумом давления. Интегрируя (37), можно определить постоянные C_1 и C_2 из граничных условий (26) для P_V

$$P_{V} = -12\mu \ V \int_{-\frac{D}{2}}^{x} \frac{x - x_{2}}{h^{3}} dx + C_{2} \ ; \ \chi_{3} = \int_{-\frac{D}{2}}^{\frac{D}{2}} h^{-3} x \, dx \, / \int_{-\frac{D}{2}}^{\frac{D}{2}} h^{-3} dx \ ; \ C_{2} = 0 \ .$$
(38)

Распределения давлений P_U и P_V и их производных показаны на рис.16, 17. При этом поперечное усилие века $P_{\text{попер.}}$ принято равным 2.10³ дин. Из нечетной симметрии P_U следует

$$\mathcal{D} \int_{-\mathcal{D}/2} (P_U + P_V) dx = \mathcal{D} \int_{-\mathcal{D}/2} P_V(x) = F_{nonep.}$$
(39)

Уравнение (39) содержит скорость V и позволяет определить ее через $F_{nonep.}$ для данного профиля h(x). Оказывается, что скорость V весьма мала, $V = 2 \cdot 10^{-4}$ см/с. Таким образом, если в статическом по-ложении линзы слезный слой достаточно равномерный (например, $h_{max}/h_{min} \leq 3$), то ни в одной точке зазора не произойдет вытеснения слезы под давлением века.

Для расчета продольного движения линзы необходимо вычислить силу трения линзы о жидкость F_{TP} . Из уравнения движения линзы вдоль оси х: $F_{npog} - F_{TP} + mg = m \frac{dU}{dt}$ следует с достаточно большой точностью $F_{TP} = F_{rpog}$. из-за малости ускорения и массы линзы. Сила трения связана со скоростью U формулой Ньютона $dF_{TP} = \mu D \left(\frac{\partial u}{\partial y}\right)_{y=0}$ и, согласно (27), при y=0 $F_{TP} = -D \int_{-D/2}^{+D/2} \left(\frac{\mu U}{h} + h \frac{dP_U}{dx} + h \frac{dP_V}{dx}\right) dx$. (40) В уравнении (40) $\int_{-D/2}^{+D/2} \frac{h}{2} \frac{dP_V}{dx} dx = 3\mu U \int_{-D/2}^{+D/2} \frac{h-\bar{h}}{h^2} dx$, а $\int_{-D/2}^{+D/2} \frac{dP_V}{dx} dx$ равен нулю при четной симметрии P_V , как в

 $J_{N/2} 2 d_X$ сех разон нуло при четной симметрии P_V , как в рассмотренном случае на рис. 16 или вносит незначительный вклад в общую силу трения, поскольку асимметрия P_V невелика (в последнем можно убедиться из рассмотрения рис. 17, где показано распределение $P_V(X)$ для наклонного плоского профиля. Таким образом,

$$F_{npog} \approx F_{np} = -\mu U D \left(4 \int_{-D/2}^{+D/2} \frac{dx}{h} + \int_{-D/2}^{+D/2} \frac{\bar{h} dx}{h^2} \right) .$$
(41)

Уравнение (41) позволяет определить продольное воздействие века на

линзу по известной скорости U. При U =2+3 см/с, $\mu = 10^{-2} \frac{\text{дин.с}}{2}$, порядка 10^{-3} см и D =0,9 см $F_{\eta\rho\sigmag}$ =20+30 дин. Эта сила соизмерима с весом линзы и передается путем жидкого трения линзы о смазанную выделениями внутреннюю поверхность века.

Рассмотрение профиля рис.16 показывает, что главная роль центрального зазора линзы состоит в создании под линзой сильного давления с нечетной симметрией распределения. При таком распределении создается стабилизирующий механический момент, который способен уравновесить внешний момент поперечной силы верхнего века. В результате нижний край линзы не удаляется от роговицы. Заметим, что если при поступательном движении линзы со скоростями U и V момент силы века не уравновешивает момент сил давления под линзой, то возникает медленное изменение наклона линзы со скоростью порядка IU-4 см/с. При таком вращении изменяется распределение давления под линзой и сохраняется равновесие моментов. Для сравнения на рис.17 представлены результаты расчета наклонного плоского профиля. Наклон образуется под действием внешнего момента, при этом средняя величина зазора резко увеличена. Это очевидно из рассмотрения реальной трехмерной конструкции линзы: средняя высота слезного слоя у наклоненной линзы без центрального зазора превосходит среднюю высоту слоя у линзы с центральным зазором (и без наклона) в 2-2,5 раза. Согласно (41), во столько же раз больше скорость U у плоской линэн. Поэтому создание центрального слезного зазора полезно в тех случаях, когда скорость опускания линзы велика, т.е. при малом диаметре линзы и малом уплощении роговицы от центра к периферии.

Отметим, что образование зоны разрежения в нижней части линзы под влиянием центрального слезного зазора (область отрицательных значений ρ_v на рис.^{I6}) может привести к проникновению пузырьков воздуха под линзу, и это явление ограничивает сверху h_{max} при расчете центрального зазора.

Следует кратко остановиться на влиянии краевого зазора на динамику линзы. Качественно очевидно, что он создает механический момент, противоположный по знаку моменту, создаваемому центральным зазором и, как правило, уступающий ему по величине. Точный расчет влияния краевого зазора возможен лишь при решении трехмерной гидродинамической задачи с реальными краевыми условиями и выполним с привлечением сложных методов и современной вычислительной техники. Однако вышеприведенные расчеты дают необходимую оценку движения линзы и действующих на нее сил, позволяют рассчитать конструкцию линзы для данной роговицы и при этом предсказать выполнение статического равновесия линзы, получение необходимой ориентации (наклона) линзы при ее движении вниз, достижение оптимальной скорости этого движения, а также устранение проникновения воздуха под линзу.

5. Заключение

Вышеописанные математические методы, проведенные точностные оценки и качественные расчеты по оптимизации формы контактных линз послужили основой для разработки в МНИИ им. Гельмгольца типовых наборов линз, пригодных для подавляющего большинства пациентов и хорошо зарекомендовавших себя на практике, а также показали применимость упрощенной методики измерений роговицы, при которой с сохранением необходимой точности достаточно использовать отсчеты всего от трех--пяти колец фотокератометра.

Эти исследования дали возможность авторам при участии разработчиков из ОИЯИ и МНИИ им.Гельмгольца предложить простой электронный прибор – телекератометр – в котором изображения кольцевых меток проектируются не на фотопленку, а на линейный ШЗС, разрешающая способность которого (10⁻²мм) обеспечивает необходимую точность. Прибор предлагается оснастить счетным устройством для незамедлительной выдачи врачам данных для подбора линз.

Литература

- 1. Cochet P., Amiard H., Contact Lenses., Little Brown & Co, Boston 1969.
- 2. Townsley M. Contacto 14, 1970, pp. 38-43.
- Киваев А.А. Подбор контактных линз с применением фотокератометрии. В кн.: "Проблемы создания и применения аппаратуры для массовых исследований зрения". Тезисы докладов Симпозиума (СССР-Франция). Изд-во Минмедпром и Минздрав СССР, М., 1980, с.192-195.
- Guillon M_e, Lydon D_e, Sammons W., Journal of the British Contact Lens Association, vol.6, No.1, 1983, pp.19-25.
- Алакоз А.В. и др. В кн.: "Автоматизация научных исследований на основе применения ЭВМ (тезисы докладов УІ Всесоюзной конференции). Изд-во СО АН СССР, Новосибирск, 1981, с.184.
- 6. Ососков Г.А. ОИЯИ, PIO-83-187, Дубна, 1983.
- 7. Гидродинамическая теория смазки (сборник статей) ГТТИ, М.-Л., 1934.
- 8. Allaire P. Flack R., American Journal of Optometry and Physiol.

Optics, vol.57, No.4, 1980, pp.219-227.

Работа поступила в издательский отдел 13 июля 1984 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

	Труды VI Всесоюзного совещания по ускорнтелян заря- женных частиц. Дубна, 1978 /2 тона/	7 р. 40 к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 p. 00 ĸ.
	Труды УШ Всесоюзного совещания по ускорителям заряженных частиц. Протвино, 1982 /2 тома/	11 р. 40 к.
Д11-80-13	Труды рабочего совещания по системам и методан аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3 р. 50 к.
д2-81-543	Труды VI Международного совещания по пробленам кван- товой теории поля. Алушта, 1981	2 р. 50 к.
д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделировання в ядерно-физических мсследова- миях. Дубна, 1980	2 р. 50 к.
A17-81-758	Труды II Международного симпозиума по н зб ранным проблеман статистической механики. Дубна, 1981.	5 p. 40 ĸ.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решення научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д9-82-664	Труды совещания ло коллективным методам ускорения. Дубиа, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубиа, 1982.	5 р. 00 к.
Д11-83-511	Труды совещания по системам и методан аналитических вычислений на ЭВМ и их примемению в теоретической физике. Дубна, 1982.	2 р. 50 к.
Д7-83-644	Труды Международной школь-семинара по физике тяжелых ионов. Алушта, 1983.	6 р. 55 к.
Д2,13-83-689	Труды рабочего совещания по пробленам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
Д13-84-63	Труды XI Международного симпознума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
Д2-84-366	Труды 7 Междукародного совещания по проблемам квантовой теории поля. Алушта, 1984,	4 р. 30 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

1 A x 1 4

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Киваев А.А., Ососков Г.А., Элькинд С.А. 5-84-509 Математические методы обработки данных измерений поверхности роговицы и конструирования контактных линэ

Проблема создания математических методов обработки информации о поверхности роговицы глаза человека и получения оптимальных параметров для конструирования контактных линз является весьма актуальной. В этой связи в данной работе рассмотрены вопросы точности фотокератометрических измерений, предложено достаточно простое и точное математическое описание профиля роговицы. Изложены методы обмера и математической обработки фотокератограмм, в том числе и задача определения симметричной поверхности, ближайшей к измеренной поверхности роговицы. Вывод уравнений гидродинамики для движения слезной жидкости между роговицей и линзой и их решение, а также учет требований статического равновесия линзы.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ и Московском НИИ им. Гельмгольца. Сообщение Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

-

Kivaev A.A., Ososkov G.A., Elkind S.A. 5-84-509 Mathematical Methods of Data Handling of the Surface of Human Eye Cornea and Contact Lens Construction

There is a quite actual problem concerned with mathematical method for datahandling of the surface of the human eye cornea and contact lens construction. The accuracy of photoceratometer measurements is considered. A sufficiently simple and exact mathematical description is suggested. The methods of measurement and data handling are presented including the problem of determining a symmetrical surface nearest to a measured cornea surface. The hydrodynamic equations for the tear liquid flow between the cornea and lens are given and solved. Their solution together with static balance requirements made it possible to introduce the quantitative criteria of the lens suitablity.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR and the Helmholtz Institute of Eye Deseases.

Communication of the Joint Institute for Nuclear Research. Dubna 1984