СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

3/2-78

A-394

5 - 10992

-78

П.Т.Акишин, И.В.Пузынин

РЕАЛИЗАЦИЯ МЕТОДА НЬЮТОНА В РАЗНОСТНОЙ ЗАДАЧЕ ШТУРМА-ЛИУВИЛЛЯ

5 - 10992

П.Г.Акишин, И.В.Пузынин

РЕАЛИЗАЦИЯ МЕТОДА НЬЮТОНА В РАЗНОСТНОЙ ЗАДАЧЕ ШТУРМА-ЛИУВИЛЛЯ

OGLERING CLARKER TOTTT BREDHLAX ULCREADINIHI **ENE MOTERA**

Акишин П.Г., Пузынин И.В.

5 - 10992

Реализация метода Ньютона в разностной задаче Штурма-Лиувилля

В настоящей работе предлагается способ определения собственных значений разностной задачи Штурма-Лиувилля как корней некоторого полинома при помоши метода Ньютона.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1977

Akishin P.G., Puzynin I.V.

5 - 10992

Realization of Newton's Method in the Sturm-Liouville Difference Problem

A procedure is suggested for determination of eigenvalues of the Sturm-Liouville difference problem as rootes of a certain polynomial using Newton's method.

The investigations has been performed at the Laboratory on Computing Techniques and Automation, JINR,

Communication of the Joint Institute for Nuclear Research. Dubna 1977

С 1977 Объединенный инспитут ядерных исследований Дубна

I. Рассматривается задача вычисления уровней энергии и соответствующих волновых функций рациального уравнения Шредингера.

$$\frac{d^2}{dr^2} (Y(r)) + V(r)Y(r) = \lambda Y(r).$$
 (1)

Предполагается, что потенциал V(r)-0 при г-∞ . Математическая постановка задачи формулируется следующим образом: для уравнения (I) найти нетривиальное решение Y(r), ограниченное на полуоси 0 ≤ r < ∞ , удовлетворяющее условию регулярности в особой точке r=0 (Y(r)=0) и стремящееся к 0 при г-∞.

Для シック нетривиальные решения существуют лишь при цискретном наборе значений $\lambda = \lambda_{\kappa}$. Волновые функции при этом имеют ассимптотику при _{г→}∞.

$$Y(\mathbf{r}) \sim \exp(-\sqrt{\lambda_{\kappa}} \mathbf{r})$$
 (2)

Будем предполагать, что свойства V(r) обеспечивают существование такых решений.

Задача нахождения уровней энергии и волновых функций дискретного спектра для уравнения Шредингера известна в математике как задача Штурма-Лиувилля на полуоси [0,∞).

В ряде работ, посвященных численному решению задачи Штурма-Лиувилля, уравнение (I) заменяется разностным уравнением с двумя граничными условиями на конечном интервале.

Теоретическое обоснование метода конечных разностей в задаче Штурма-Лиувилля дано в работах А.Н.Тихонова, А.А.Самарского /1/,/2/ и других авторов, см. например, 3/,/4/.

Мы остановимся на вычислительных проблемах разностной зацачи Штурма-Лиувилля на примере трех работ /5/,/6/,/7/

3

В монографии /5/ показывается, что) есть корень детерминанта однородной системы алгебраических уравнений специального вида, который вычисляется для каждого λ по рекуррентной формуле $D_{k+1} = \mathcal{A}_k D_k + \mathcal{A}_k D_{k-1}$

Далее на заданном отрезке изменения 👃 вычисляются значения цетерминанта с некоторым шагом △ 人 . Выделяются отрезки изменения), на которых детерминант меняет знак. После локализация корней они уточняются с помощью процедуры деления отрезка пополам.

В работах /6/ применяется похожая процедура, когда при заданном) одновременно с двух концов решаются две задачи Коши. В некоторой внутренней точке из условия равенства логарифмических производных следует, что существует уравнение для λ , решения которого ищутся с помощью алгоритма деления отрезка пополам.

В работе / // для локализации собственных значений разностной задачи и определения начальных приближений используется процедура, преиложенная в /5/, и далее полученные приближения уточняются с помощью итерационной процедуры непрерывного аналога метода Ньютона.

В настоящей работе предлагается способ определения собственных значений разностной зацачи Штурма-Лиувилля как корней некоторого полинома при помощи метоца Ныютона с последующим уточнением собственных функций с цомощью процедуры, изложенной в /7/.

В отличие от работы /7/, алгоритм поиска начальгде ных приближений не гарантирует нахождения всех собственных значений, в настоящей работе методом Ньютона решается полная проблема нахождения собственных значений и собственных функций для разностной задачи Штурма-Лиувилля. Это особенно важно для ряда задач квантовой механики (например, для задач теории ядра), в которых цискретный спектр уравнения Шрецингера имеет много уровней энергии и для которых процедура определения всех начальных приближений особенно актуальна.

2. Уравнение (I) на полуоси [0, ∞) заменяется уравнением

$$Y''+V(x)Y-\lambda Y = 0, \qquad (3)$$

где x изменяется на отрезке [O.R], с граничными условиями Y(0)=0,

(4) $Y'(R) = -\sqrt{\lambda} Y(R)$.

Рассмотрим разностную аппроксимацию задачи (3),(4). Пусть $\lambda = k^2$. тогла разностная задача

$$\frac{Y_{n+1} - 2Y_n + Y_{n-1}}{H^2} + V_n Y_n - k^2 Y_n = 0, \qquad (5)$$

$$Y_{0} = 0$$
, (6)

$$\frac{Y_{N} - Y_{N-2}}{2H} - kY_{N-1} = 0 , \qquad (7)$$

где $Y_n = Y(H \cdot n)$, $V_n = V(H \cdot n)$, $n=0,1,2,\ldots,N$, аппроксимирует исходную задачу (3), (4) на равномерной сетке с шагом Н с точностью порядка Н².

Зададим k=k, Y = 0, Y = 1. Тогда из (5) мы можем определить последовательно все Y, n=2,3,...,N. Нетрудно заметить, что все Y будут полиномами конечной

степени от к с цействительными коэффициентами. Отсюда $Q(k_0) = \frac{V_N - V_{M-2}}{2H} k_0 Y_{N-1}$ буд будет полином конечной степени с цействительными коэффициентами. И для того. чтобы найти к , удовлетворяющее условию (7), необходимо найти корень полинома Q(к)

Пусть поляном P(t) с действительными коэффициентами в области Re(t) < A имеет только действительные корни

$$X_1 < X_2 < \dots < X_L < A$$
.
Пусть Z_1, Z_2, \dots, Z_N - действительные корни $P(t)$, большие
и $\propto \pm iA$ - комплексные корни $P(t)$

A, $\mathbf{M} \propto_1 \pm i\beta_1$, ..., $\alpha_{\mathbf{M}} \pm i\beta_{\mathbf{M}}$ $(\mathcal{L}_1 \gg \mathbf{A} \ \mathbf{i}=1,2,\ldots,\mathbf{M}$).

Лемма

Пусть λ_{o-} действительное,

Тогда процесс Ньютона

$$t_{k+1} = t_{k} - \frac{P(t_{k})}{\frac{d}{dt} (P(t))}, \qquad (8)$$
$$t_{0} = \lambda_{0},$$

определен для всех k п существует

$$\lim_{\kappa \to \infty} t_k = X_1$$

5

Доказательство леммы основывается на представлении $P(t) = d \bigcap_{0} \bigcap_{K=1}^{n} (t-X_k) \times \bigcap_{\ell=1}^{n} (t-Z_N) \times \bigcap_{\ell=1}^{n} ((t-\alpha_\ell)^2 + \beta_\ell^2)$ и детально и детальном рассмотрении формулы (8).

При достаточно малом шаге Н Q(к) в нашем случае удовлетворяет условию леммы с А=О.

Выберем начальное приближение к, меньшее минимального корня. Тогда процесс Ньютона от этого приближения сойдется к минимальному корню (обозначим его k_1 ; остальные корни - k_2, \ldots, k_L).

Для того, чтобы построить процесс Ныютона, нам необходимо знать производную Q'(к) .

Для этого продифференцируем (5), (7) по к. Имеем:

Y = 0,

$$\frac{Y'_{n+1} - 2Y'_{n} + Y'_{n-1}}{H^{2}} + V_{n}Y'_{n} - 2kY_{n} - k^{2}Y'_{n} = 0, \qquad (9)$$

$$Q' = \frac{Y'_{N} - Y'_{N-2}}{2W} - kY'_{N-1} - Y_{N-1} , \qquad (10)$$

(II)

(12) $Y_1 = 0$

Зная Y_n, из (9), (I2), (II) можно найти все Y_n. Далее, поцставив значения Y_n, Y_n в (IO), получим Q. Для того, чтобы найти следующий корень, мы вместо полинома Q(k) рассмотрям полином $Q_1(k) = Q(k)/(k-k_1)$ и k_0 выберем меньше к. .

Тогда процесс Ныютона цля Q₁(k) будет расписываться следующим образом:

$$t_{k+1} = t_k - \frac{\binom{Q(t_k)}{(t_k - k_1)}}{\frac{d}{dt} (\frac{Q(t)}{t - k_1})},$$

ШЛИ

$$t_{k+1} = t_k - \frac{Q(t_k)}{Q'(t_k)-Q(t_k) \times 1/(t_k-k_1)} .$$

B odmem случае, когда известны первые ℓ корней $k_1, k_2, \ldots,$
 k_ℓ , процесс расписывается следующим образом:

$$t_{k+1} = t_k - \frac{Q(t_k)}{Q'(t_k)-Q(t_k)\cdot R},$$

где

$$R = \sum_{m=1}^{C} \frac{1}{(t_k - k_m)}$$

t выбирается меньше k. Аналогично нахождению первой производной от Q можно найти вторую производную от о . Следовательно, можно легко построить процесс более высокого поряцка. Для того, чтобы уменьшить ошибки, накапливающиеся при счете по рекуррентным формулам, можно применить прием из / 0/, т.е. решать две начальные задачи для рекуррентных соотношений с разных концов отрезка [О.R] и приравнять логарифмические производные во внутренней точке.

Для этого случая все сказанное выше остается в силе. Этим метоцом удается достаточно точно определить собственные значения, но собственные функции опрецеляются существенно хуже. Для уточнения их применяется процедура, предложенная в / //.

В качестве начального приближения берутся полученные собственные значения и собственные функции. За одну - две итерации с шагом, по времени равным единице, удается получить собственные значения и собственные функции с заданной точностью. С помощью этого метоца находятся последовательно все решения, при этом не пропускается ни одно собственное решение.

3. Рассмотренный метод применяется в задачах определения колебательных уровней энергий и волновых функций молекулы воцорода /8/.

Результаты расчетов приведены в таблице І.

Как видно из таблицы, вычисленные значения уровней энергии хорошо согласуются с экспериментальными данными.

В случае более редкой разностной сетки метод применялся для вычисления энергетических уровней оптического потенциала (сумма потенциала Саксона-Вудсона и его производной) и потенциала Морзе.

Уровни энергии для оптического потенциала вычислены другим методом /9/.

Уровни энергии для потенциала Морзе находятся аналитически /I0/ Параметры потенциалов и данные для сравнения взяты из работы

С точностью аппроксимации пифференциальной задачи при помощи конечноразностной найдены все уровни энергии для обоих потенциалов.

Результаты расчетов приведены в таблицах 2,3.

4. Изложенный метод можно применять в тех линейных и нелинейных запачах на собственные значения, которые при их конечноразностной анпроксимации сводятся к нахождению корней полиномов.

Метод может быть обобщен на случай комплексного потенциала и комплексных собственных значений.

Для этого необходимо расширить область применения метода для нахождения комплексных корней полиномов. При этом был опробован следующий алгоритм:

I) Выбирается z_o -начальное приближение, const, ρ . 2) Строится последовательность Z_k . a) $Z_{k+1} = Z_k - \frac{f(Z_k)}{f'(Z_k) - f(Z_k) \cdot R}$, если $|f'(Z_k)| > \text{const};$ b) $Z_{k+1} = Z_k + \int \times j_k$, если $|f'(Z_k)| < \text{const};$ где j_k -случайный комплексный вектор на единичной окружности;

$$R = \begin{cases} 0, & \text{если не найден ни один корень.} \\ \sum_{i=1}^{N} \frac{1}{(Z_k - \lambda_i)}, & \text{если } \lambda_i, \lambda_k - \text{первые найден-} \\ & \text{ные }_N \text{ корней полинома.} \end{cases}$$

Алгоритм был проверен при решении трех уравнений:

I) $z^{20} - 1 = 0$,

2) $z^{200} - 100002 + 1 = 0$,

$$3) \quad z^{400} - 10000z + 1 = 0.$$

Во всех случаях были найдены все корни уравнений. Время счета на машине СДС-6500 в первом случае составило 0,7 сек, во втором - 104 сек. в третьем - 270 сек.

Таблина I Колебательные уровни молекулы водорода

NENE	Настоящая работа	Настоящая работа Данные ^{/8/}	
· I	0,51602	0,5159	
2	1,00287	I,0025	
3	I,46II7	I ,4606	
4	1,8912	1,890 6	
5	2,29314	2,2925	
6	2,6668I	2,6662	
7	3,0II 73	3,0112	
8	3,32685	3,3266	
9	3,61053	3,6109	
10	3,8617	3,8622	
II	4,0776	4,0774	
12	4,2528	4,2530	
13	4,3829	4, 383I	

Таблина 2

Уровни энергии связанных состояний для оптического потенциала

X.F	Данные /10/	Настоящая работа	
I	49,457	49,46I	
2	48.148	48,158	
3	46.290	46,310	
4	43,968	43,998	
5	41.232	41,274	
6	38,122	38,17 8	
7	34,672	34,743	
8	30,912	30,998	
9	26.873	26,976	
0	22, 588	22,708	
II	18,094	18,231	
[2	13, 436	13,590	
[3	8,676	8,844	
[4	3,908	4,086	

9

Таблица З

Уровни энергии связанных состояний для потенциала Морзе

N	ine	Данные /10/	Настоящая р	Настоящая работа	
<u> </u>			H = 0,0I5	H = 0,03	
Ι	178,798		I78,799	I78,803	
2	160,283		160,289	160,321	
3	I42 , 780		I42,794	I42,835	
4	126,288		126,312	126,384	
5	IIO,808		II0 ,844	110,951	
6	96 ,34 0	r	96, 387	96,5 30	
7	82,884		82,942	82,119	
8	70,439		70,508	70,715	
9	59 ,0 06		59,083	59 , 31 6	
IO	48,585		48,668	48,919	
II	39,I7 6		39,262	39,529	
12	30,778		30,865	31,128	
13	23,392		23,476	23, 735	
14	17,018		17,097	17,336	
15	II,655		11,726	11,941	
16	7 ,3 05		7,364	7,546	
17	3,966		4,012	4,193	
18	I,639		I,669	I,764	
19	0,323		0,337	0,382	

ЛИТЕРАТУРА

- I. А.Н.Тихонов, А.А.Самарский. ЖВМ и МФ, I, с.784, 1961.
- А.А.Самарский. Введение в теорию разностных схем. "Наука", М., 1971.
- 3. Г.И.Багмут. ЖВМ и МФ, 12, с.776, 1972.
- 4. В.Г.Приказчиков. ЖВМ и МФ, 9, с.315, 1969.
- 5. Г.И.Марчук, В.Е.Колесов. Применение численных методов для

расчета нейтронных сечений. Атомиздат, М., 1970.

- 6. Ф.А.Гареев. ОИЯИ, Р4-5639, Дубна, 1971.
- 7. М.Х.Гизаткулов, И.В.Пузынин, Р.М.Ямалеев. ОИЯИ, PII-I0029, Дубна, 1976.
- 8. T.E.Sharp.Atomic Data, 1971,2,p.119.
- 9. Gy.Bencze. Comm. Phys. Math., 1966, 31, p.1.
- IO. Gh. Adam, L.Gk.Ixary, A. Corciovei. J.Comput. Phys., 1976, 22, p.1.

Рукопись поступила в издательский отдел 5 октября 1977 года.