ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

C346 3-38

Б.Н. Захарьев

- МЕЗОМОЛЕКУЛЯРНЫЕ ИОНЫ ВОДОРОДА И м - МЕЗОМОЛЕКУЛЯРНЫЕ ПРОЦЕССЫ

Автореферат диссертации, представленной на соискание ученой степени кандидата физико-математических наук

Научный руководитель доктор физико-математических наук

488

профессор Я.А. Смородинский

Дубна 1960 год

<u>0346</u> 3-38

488

Б.Н.Захарьев

- мезомолекулярные ионы водорода и мезомолекулярные процессы

Автореферат диссертации, представленный на соискание ученой степени кандидата физико-математических наук

Научный руководитель доктор физико-математических наук

профессор Я.А.Смородинский

объединенный институт ядерных исследования БИБЛИОТЕКА

А -мезоны занимают особое место среди элементарных частиц, известных в настоящее время. Подобные электронам и позитронам во многих явлениях. они однако очень сильно различаются по массе и времени жизни /период полу-=2.2 10⁻⁶ сек/. С полевой точки зрения такое различие распада для 🖍 : 7 в массах должно было бы быть следствием различий во взаимодействиях М мезонов и электронов с другими элементарными частицами, что однако пока не было обнаружено. В связи с этим большой интерес представляет изучение взаимодействий м -мезонов с другими частицами. Особенно заманчивыми, являются эксперименты по захвату м - ядрами водорода. В этом случае мы имеем дело с наиболее "чистым" случаем по сравнению с захватом 🎢 другими элементами, когда необходимо учитывать различные ядерные струк турные факторы, не известные до сих пор с требуемой точностью, из-за недостаточного знания волновых функций ядра.

Взаимодействие 🖍 -мезона с ядрами в большой степени зависит от состояния, в котором он находится. Это состояние в свою очередь зависит от тех процессов, которые происходят с м в веществе до его захвата ядром.

Поводом для целого ряда работ, посвященных изучению поведения "-мезонов в веществе послужило открытие группой Альвареца в водородной камере ядерной реакции синтеза:

p+d+p - He3+p

предсказанной в теоретических работах Франком², Зельдовичем³ и Сахаровым.

В данной работе рассматривается ряд процессов, связанных с 🗡 -мезонами в среде водорода и его изотопов 5,6 и вычислены соответствующие сечения и вероятности. К таким процессам относятся:

а/ упругое рассеяние мезоатомов на ядрах изотопов водорода

H⁽⁴⁾ + *H*^{(2) +} → *H*⁽⁴⁾ + *H*^{(4) +} б/ обмен м⁻ -мезоном между различными ядрами /так называем*а*я перезарядка/

How + Hast - Hout + How

с/ образование мезомолекулярных конов:

 $H_{\mu}^{(\omega)} + H^{(\omega)^{+}} \longrightarrow \left(H^{(\omega)}H^{(\omega)}\right)_{\mu}^{+}.$

Последнее может происходить различными способами и на различные уровни мезомолекулярных ионов.

В работе вычислены значения для энергетических уровней мезомолекулярных ионов и соответствующие собственные функции.

Задача о вычисленин сечений вышеуказанных процессов и нахождении собственных значений н собственных функций мезомолекулярных ионов сводится в основном к задаче о движенин трех тел, взаимодействующих между собой при помошн кулоновских сил: двух положительно заряженных ядер изотопов водорода с массами $M_{,,M_{g}}$, $\mu_{,m}$ мезона. Решение проводилось с точностью до поправочных членов $\sim \left(\frac{m_{A}}{m}\right)^2$, где m_{A} - масса μ -мезона, а Mприведенная масса двух тяжелых частиц. Особенно сложным оказывается случай неравных масс $M, \neq M_{g}$. В этом случае центр масс и центр заряда водородных ядер не совпадают, вследствие чего появляется дипольный момент⁷, который делает возможными переходы между состояниями различной симметрии относительно перестановки ядер.

Прн этом задача своднтся к решению системы двух дифференциальных уравнений второго порядка, решение которой проводилось на электронной счетной машине БЭСМ в вычислительном центре АН СССР. Результаты вычислений представлены в таблицах 1-1У.

Рассмотрен вопрос о деполяризации⁸ мезонов в водороде, дейтерии, тритии за счет перезарядок.

Показано, что / -мезоны деполяризуются в среде жидкого водорода еще до замедления мезоатомов до тепловых энергий.

Определенный интерес представляет также вопрос о переходах \mathcal{M}^- мезонов с ядра водорода на ядро с зарядом Z > 1. В работе рассматривается перезарядка \mathcal{M}^- -мезона с водорода на ядро He_3^- (2.2)

Таблица 1

Сечения перезарядки и упругого рассеяния

	$P_{\mu} + d$	Print.	dp+t
Bex . V	3.42 • 10 ⁻¹³ <u>см</u> сек.	1.49 10 ^{-13 <u>см</u> сек}	1.15 10 ^{-15 <u>см</u> сек}
Bynp	1.98 10 ⁻¹⁹ см ²	1.53 10 ⁻¹⁹ см ²	2.41 10 ⁻¹⁹ см ²

настальная на правод Таблица 🎚 у во сказа за

на водатомов сечения упругого рассеяния мезоатомов

$d_{\mu} + p \neq d_{\mu} + p$		t,+p-+t,+p	$t_{\mu} + d - t_{\mu} + d$		
بر ا	2,03	10		8,7	
2,,, (0)	3.39 10 ⁻²⁰ см ²	2.24 10 ⁻¹⁹ cm ²	38.9	10 ⁻²⁰ см ²	

Таблица Ш уровни мезомолекул в еv

/Для мезомолекул с различными ядрами уровни энергии отсчитываются от уровня более тяжелого изотопа/

	1.0		L=1		L=2	L- 3
	0	n•1	7-0	1-1	7204	7:0
(PP)_	252	-	109		23 a 2 _ 28 a	a a <u>s</u> e destra e
(dd) *	330	40	227	7	5995 yr 88 (***	
(tt); -	367	86	288	45		50
(pd).	220	-	90	-		-
(pt);	213	-	98	-		
$(olt)^{+}_{\mu}$	318	32	232	-	102	-
•		1.		194		

Таблица 1У

Вероятность образования молекул в единицах 106 сек-1 в жидком водороде

(PP)	(plal) +	(tt)	(pd)_	$(dt)^{+}_{\mu}$	(pt)
1,53	0,006	0,38	0,7	~0,001	0,25

В случае мезомолекулярных нонов $(dd)^*_{\mu}$ и $(dt)^*_{\mu}$ из-за наличия близкого к нулю колебательного уровня следует учитывать вероятность образования молекул с помощью механизма 0-0 перехода. Вероятности этих процессов вычислены в работе.

В заключение выражаю глубокую благодарность Я.Б.Зельдовичу, А.Д.Сахарову, Я.А.Смородинскому, С.С.Герштейну, В.Б.Беляеву, С.П. Ломневу за помощь и весьма полезные дискуссии.

> Рукопись поступила в издательский отдел 18 февраля 1980 года.

Литература

1. L.W. Alwarez et al., Phys. Rev. 105, 1125, (1957).

2. F.C. Frank, Nature 160, 525, (1947).

3. Я.Б.Зельдович. ДАН, 95, 493 /1954/.

4. А.Д. Caxapob. Отчет ФИАН /1948/.

 В.Б. Беляев, С.С. Герштейн, Б.Н. Захарьев, С.П. Ломнев. Препринт Р-397 ОИЯИ /1959/.

6. В.Б. Беляев, С.С. Герштейн, Б.Н. Захарьев, С.П. Ломнев. ЖЭТФ 37 6 /12/ /1959/

7. Я.Б. Зельдович, А.Д. Сахаров. ЖЭТФ, <u>32</u>, 947 /1957/.

8. В.Б. Беляев, Б.Н. Захарьев. ЖЭТФ, <u>35</u>, 98 /1958/.