ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

481

П.С. Исаев

ПРИМЕНЕНИЕ ДИСПЕРСИОННЫХ СООТНОШЕНИЙ ДЛЯ ПРОВЕРКИ КВАНТОВОЙ ЭЛЕКТРОДИНАМИКИ НА МАЛЫХ РАССТОЯНИЯХ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель доктор физико-математических наук

А.А. Логунов

Дубна 1960 год

П.С. Исаев

ПРИМЕНЕНИЕ ДИСПЕРСИОННЫХ СООТНОШЕНИЙ ДЛЯ ПРОВЕРКИ КВАНТОВОЙ ЭЛЕКТРОДИНАМИКИ НА МАЛЫХ РАССТОЯНИЯХ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель доктор физико-математических наук

А.А. Логунов

Объединенный институт сцерных исследования БИБЛИОТЕНА 481

Темой диссертации является получение дисперсионных соотношений для процессов тормозного излучения электронов и рождения электронно-позитронных пар фотонами на нуклонах и применение их для проверки квантовой электродинамики на малых расстояниях.

В первой главе методом Н.Н.Боголюбова получены дисперсионные соотношения для виртуального комптон-эффекта, объединяющего в себе оба выше названных процесса. Для процесса тормозного излучения электрона на нуклоие е+ N-+ 2+ N+ у матричный элемент S-матрицы, соответствующий диаграмме 1, может быть записан в виде:

$$\langle f|S'|i7 = -ie^3 \frac{m}{\sqrt{2k_c z_c z}} \cdot \frac{(2\pi)^{\vee}}{\chi^2} \cdot \delta \left(k+p-\chi-p_o\right) l^{n} e^{e} T_{ne}^{\circ} \left(\frac{k+\chi}{2}\right), \quad 11$$

где $k(k, \tilde{k})$ и $\mathcal{X}(\mathcal{X}, \tilde{\mathcal{X}})$ – 4х импульсы реального и виртуального фотонов, р и β - 4-х импульсы нуклона в конечном и начальном состояниях, \mathcal{E} и \mathcal{E} – энергия электрона в начальном и конечном состояниях, \mathcal{M} – масса электрона, ℓ^{+} – вектор поляризации реального фотона, \mathcal{E} – вектор поляризации виртуального фотона. Матричный элемент процесса рождения пар фотоном на нуклоне получится из /1/ заменой $k \rightarrow \mathcal{X}$.

Диаграмма 1.

Амплитуда виртуального комптон-эффекта T^c определяется следующим образом: $T' = l' \varepsilon^{\ell} T_{n\ell}^{c}$.

/2/

Исследование аналитических свойств амплитуд процессов / /и тем самым, доказательство существования дисперсионных соотношений/ дано в работах А.А.Логунова^{1/} и В.С. Владимирова и А.А.Логунова^{2/}.

В первых параграфах диссертации /88 1-4/ получены дисперсионные соотношения /в брайтовской системе координат/, связывающие реальную и мнимую части амплитуды виртуального комптон-эффекта. В дальнейшем рассмотрение проведено для процесса тормозного излучения, так как переход к процессу рождения пар получается простой заменой импульсов реального и виртуального p -квантов. Показано, что для исследуемых процессов ненаблюдаемая область отсутствует для интервала импульсов $|\vec{p}|$, определяемого из неравенства

$$(|-\Delta||\vec{P}| < \frac{2Mm_x + m_\pi^2 - 2(1-\Delta)|\vec{P}|}{2\sqrt{M^2 + \vec{P}^2}},$$
 (3)

где $\Delta = -\frac{\chi^2}{\sqrt{p^2}}$, \vec{p} - импульс отдачи нуклона, M -масса нуклона, m_{π} -масса π -мезона. В случае реального комптон-эффекта ($\chi^2 = 0$) выражение /3/ переходит в выражение следующего вида:

$$|\vec{p}| < \frac{2Mm_{\pi} + m_{\pi}^2}{2(M + m_{\pi})}$$

что согласуется с результатами Н.Н. Боголюбова и Д.В.Ширкова^{3/}. Доказано, /см. 4/ что неоднородныя член рассматриваемых дисперсионных соотношений содержит формфакторы, зависящие лишь от одной переменной. Такие формфакторы для отрицательных значений аргумента /это соответствует процессу тормозного излучения/ были исследованы в работах Хофстадтера^{4/}.

В § 5 получена структура амплитуды виртуального комптон-эффекта Т Амплитуду Т можно представить в виде:

$$T^{c} = \ell^{n} \varepsilon^{e} T^{c}_{ne} = \overline{w}(p) \ell^{n} \varepsilon^{e} \sum_{\substack{i=1,\dots,n\\ i \neq j}} \mathcal{Q}_{st} \Lambda^{(s)} \mathcal{Q}_{na} \mathcal{Y}_{ep} \mathcal{R}^{(t)}_{ap} w(p_{a}), \qquad 141$$

где $\tilde{\mathbf{W}}(p)$ и $W(p_o)$ – спиноры, описывающие нуклон, $\mathcal{Q}'_{\mathcal{H}}$ – некоторые скалярные функции, зависящие только от скалярных произведений 4-х импульсов.

ynd u yng

автоматически учитывающие условия градиентной инвариатности,

 $\Lambda^{(2)} = \sqrt{1}, \quad \Lambda^{(2)} = \hat{k};$

Из четырнадцати структур /4/ две оказываются линейно-зависимыми. Таким образом, амплитуда виртуального комптон-эффекта T° содержит двенадцать независимых структур R_i , удовлетворяющих требованиям релятивистской инвариантности, градиентной инвариантности и условиям типа теоремы 'crossing symmetry':

$$T^{\circ} = \sum_{i=1}^{n} \Omega_i R_i . \qquad (5)$$

факторы,

При переходе к реальному комптон-эффекту /2²=0/ четыре структуры обращаются в нули и для реального комптон-эффекта остается восемь независимых структур. Этот результат согласуется с результатом работы Ритуса^{5/}.

В последних пара́графах первой главы /88 6-7/ исследо аны аналитические свойства лоренц-инвариантных коэффициентов Ω_i и получены дисперсионные соотношения для физических амплитуд M_k в системе центра масс.

Предполагается, что амплитуда T^{c} убывает на бесконечности не медленнее чем $\frac{1}{k_{o}}$. Анализируя поведение коэффициентов Ω_{i} в плоскости комплексных k_{o} , получим, что все они являются аналитическими функциями переменной k_{o} .

Таким образом, дисперсионные соотношения могут быть написаны для всех релятивистски-инвариантных коэффициентов Ω_i /для одного из двенадцати коэффициентов Ω_i дисперсионные соотношения пишутся с одним вычитанием/. Переход от брайтовской системы к системе центра масс совершается теперь простым переходом от переменных в одной системе координат к переменным в другой системе координат. Переход от дисперсионных соотношений для коэффициентов Ω_i в системе центра масс к дисперсионным соотношениям для физических амплитуд $M\kappa$ в той же системе можно осуществить, используя следующие разложения:

$$T^{c} = \sum_{i=1}^{N} \Omega_{c_{i}} R_{i} = \sum_{k=1}^{N} M_{k} \rho_{k}, \qquad 187$$

где $\int_{\mathbf{k}} -$ независимые трехмерные структуры в системе центра масс. Из соотношения /8/ получаем, что $R_i = \sum_{k} b_{ik} f_k$; b_{ik} -известные функции переменных: W - полной энергии и $Cos \theta$ - угла рассеяния реального h-кванта относительно первичного направления падения электрона.

Матрица $\|C_{i\epsilon}\| = \| B_{i\epsilon} \|^{-1}$, нужная для получения дисперсионных соотношения находится из решения системы $M_{\kappa} = \sum_{i} \Omega_{i} B_{i\epsilon}$. Используя далее соотношение

 $\sum_{k} b_{ik} C_{kj} = \delta_{ij},$ получаем из дисперсионных соотношений для \mathcal{Q}_i дисперсионные соотно-

шения для физических амплитуд M_{k} в системе центра масс. Эти соотношения могут быть использованы для дальнейших практических приложений.

Основные результаты, содержащиеся в первой главе, опубликованы * в работе⁶/.

В главе II заново проведен расчет известных Бете-Гайтлеровских сечений тормозного излучения и рождения пар, но уже с учетом формфакторов, аномального магнитного момента и отдачи нуклонов ^{7,8/}. Дифференциальное сечение тормозного излучения, полученное в диссертации, условимся обозначать dб_T в отличие от бете-гайтлеровского сечения dб_{5-г}. В низшем по электрическому заряду e приближении метод дисперсионных соотношений, примененный к бете-гайтлеровским диаграммам – см. диаграммы 2а и 26 – тривиальным образом приводит к матричным элементам соответствующих процессов, записанных по теории возмущений с учетом формфакторов. Совершая в $d \mathbf{6}_{T}$ предельный переход: a/ $M \rightarrow \infty$, 6/ считая нуклон точечным /т.е. полагая форм-факторы равными единице/ и в/ полагая аномальный магнитный момент нуклона равным нулю, можно из полученных в работе формул дифференциального сечения получить бете-гайтлеровские форм улы.

Влияние структуры нуклона на процессы тормозного излучения и рождения пар было рассмотрено также Дятловым⁹⁷. Однако его рассмотрение проведено для у глов θ_o , удовлетворяющих условиям

$$\theta_{o}^{2} \ll \frac{M}{|\vec{q}|}$$
, $|\vec{q}| \gg M$, (71)

где 191 импульс электрона, θ_o – угол между J^{μ} -квантом и падающим электроном. Условия /7/ ограничивают рассмотрение вопроса энергиями частиц > 10 Бэв и углами $\theta_o \leq 5^{\circ}$ /в этом случае оказывается достаточным ограничиться одной диаграммой 24/. В 8 9 исследовано, влияние формфакторов, аномального магнитного момента и отдачи нуклона на сечение рассматриваемых процессов. Если форм-факторы \mathcal{F}_i , соответствующие распределению электрического заряда (\mathcal{F}_i) и распределению аномального магнитного момента (\mathcal{F}_2) , равны, то полное выражение, например, для дифференциального сечения тормозного излучения может быть записано в виде:

$$dG_{T} = \mathcal{F}^{2}(ME - M^{2})\left[dG_{I}(1+M)^{2} + M^{2}dG_{E}(1+2M^{2}\frac{ME-M^{2}}{M^{2}})\right], \qquad 18$$

где $d f_1$ и $d f_2$ соответствуют некоторым частям дифференциального сечения, M - аномальный магнитный момент нуклона, выраженный в ядерных единицах, а E - энергия нуклона в конечном состоянии.

 \mathcal{F}^{2} изменяется в пределах [0,1]. Поэтому формфактор уменьшает сечение тормозного излучения /конечно, кроме случая $\mathcal{F}^{2} = 1/.$ Присутствие магнитного момента увеличивает дифференциальное сечение тормозного излучения. Влияние отдачи нуклона на сечение можно определить путем сравнения $d6_{7.}$ с $d6_{6.7.}$, предварительно полагая $\mu = 0$ и $\overline{\tau}_{i} = \overline{f_{i}} \cdot 1$ в $d6_{7.}$. Оказалось, что отдача перераспределяет сечение, т.е. в одной области углов увеличивает, а в другой – уменьшает сечение $d6_{7.}$ по сравнению с Бете-Гайтлеровским /сравнение проведено при энергии падающего электрона ≈ 500 Мэв и энергии фотона ≈ 250 Мэв/. В области малых передач импульса и в области малых углов величина $ME - M^{2} \rightarrow 0$ и выражение /8/ переходит в следующее:

/при этом F²→ 1 /. Вклады, пропорциональные и, оказываются малыми. При увеличении углов и энергий падающих частиц /что соответствует, вообще говоря, увеличению передач импульсов/ вклад, пропорциональный ано-

мальному магнитному моменту, возрастает, а при больших углах (> 120°) и большой энергии падающих электронов / > 500 Мэв/ он становится главным.

В диссертации исследован ход изменения сечения d67. с уменьшением энергии тормозного d -кванта. В § 10 проведено интегрирование дифференциального сечения $d6_{T.}$, полученного в § 3, по двум углам \mathcal{Y} и θ из трех $(\mathcal{J}, \theta, \theta_{\bullet}) / \theta_{\bullet}$ - угол между векторами \vec{q} . и \vec{k} ; θ - угол между векторами \vec{q} и \vec{k} , \mathcal{I} угол между векторами $[\vec{k} \cdot \vec{q}_{\bullet}]$ и $[\vec{k} \cdot \vec{q}] / .$ Такое интегрирование приводит к формуле, содержащей зависимость только от одного угла, что значительно упрощает сравнение с экспериментом. Интегрирование, проведенное после замены $|\vec{q}_{\bullet}| + \mathcal{L}$. и $|\vec{q}| + \mathcal{L} - \frac{m^2}{\mathcal{I}(\mathcal{I}_{\bullet} \cdot \mathbf{k}_{\bullet})}$ и для случая $\mathcal{F}_{\bullet} = \mathcal{F}_{\bullet}$, оказалось технически весьма сложной операцией, а выражение $G(\theta_{\bullet}) = \int d6_{T.} d\mathcal{I} \mathcal{A}\theta$ очень громоздким ¹⁰. Аналогичное приближенное интегрирование формулы Бете-Гайтлера провел Хоуг ¹¹ в 1948 г.

Совершая в $6(\theta \cdot)$ предельный переход $(M \to \cdots, \mu = 0, f_i = f_i - 1)$ и сравнивая полученную при этом формулу с формулой Хоуга, можно оценить погрешность в последней, получающуюся из-за приближенного интегрированвя по θ . Она оказалась довольно малой.

Для оценки влияния формфакторов, аномального магнитного момента и отдачи на интегральное сечение было проведено сравнение сечения $6(\theta_0)$ с сечением $5_{\mathfrak{s},\mathfrak{r},\mathfrak{s}}(\theta_0) = \int d\theta_{\mathfrak{s},\mathfrak{r},\mathfrak{s}} d\mathfrak{q} d\theta$, полученным Хоугом.

При этом отношение $\frac{6(\theta_{\bullet})}{6\epsilon - r_{\bullet}(\theta_{\bullet})}$ как функция угла θ_{\bullet} меняется следуют щим образом /для $\epsilon_{\bullet} = 0,54$ и $K_{\bullet} = 0,25$ - в единицах $h = c \cdot M = 1$ /:

θ.	5 (8.)	θ.	6(0.)
	G(0.)		65.r. (8.)
10 ⁰	1.3930	90 ⁰	0.4040
20 °	1.5092	120 ⁰	0.4770
30 ⁰	1.2474	150 ⁰	0.9505
60 ⁰	0,6057		

В интервале углов $0 \le \theta^{\circ} \le 10^{\circ}$ величина $6(\theta_{\circ}) \rightarrow 5_{\epsilon-\epsilon}(\theta_{\circ})$, так что уже при $\theta_{\circ} = 5^{\circ}$ разница между ними не превышает 3%. Таким образом, для экспериментального обнаружения влияния формфактора при энергиях электронов \sim 500 Мэв необходимо мерять сечение $6(\theta_{\circ})$ как функцию θ_{\circ} для углов > 5°.

8 -

В главе в славе методом дисперсионных соотношений, в однонуклонном приближении, вычислены поправки к дифференциальному сечению $d {\it G}_{...}$ с учетом формфакторов нуклона и приведены оценки поправок в одномезонном приближении и оценки поправок высшего по ℓ порядка ^{12,13/}.

Поправки к df_{L} , вычисленные в диссертации, складываются из трех частей: первая часть соответствует дифференциальному сечению df_{M} , происходящему от диаграммы 1 и взятому в однонуклонном приближении; вторая часть соответствует интерференционному дифференциальному сечению df_{J} ; третья часть соответствует однолионному вкладу.

Расчеты поправок $d \delta_N$ и $d \delta_J$ были проведены также Бергом и Линднером 14/. Однако авторы необоснованно ввели хофстадтеровские формфакторы в фейнмановские диаграммы и интересовались лишь приближенным интегральным вкладом тормозного излучения в конкурирующий процесс рождения \mathcal{F} -мезона $\ell + \mathcal{N} + \ell + \mathcal{N} + \mathcal{R}$. В § 11 детально исследован вклад однонуклонного приближения. Дифференциальное сечение в однонуклонном приближении может быть записано в виде:

$d\sigma_{N} = A_{0} + \mu A_{1} + \mu^{2} A_{2} + \mu^{3} A_{3} + \mu^{4} A_{4} .$

Для углов $\leq 90^{\circ}$ вклад $\sum_{i=1}^{i} \mu^{i} A_{i}$ оказывается малым по сравнению с вкладом A_{\circ} и составляет $\leq 2\%$ от суммы вкладов $d\epsilon_{7} + d\epsilon_{8} + d\epsilon_{7}$. В области углов $\Psi \approx 0$ и $\theta \approx \theta_{\circ}$ вклад A_{\circ} имеет острый максимум, превышающий $d\epsilon_{7}$. при $\theta \approx \theta_{\circ}$ волад A_{\circ} имеет острый максимум, превышающий $d\epsilon_{7}$. при $\theta \approx \theta_{\circ} \ge 30^{\circ}$, цримерно, на пять порядков. С увеличением Ψ максимум довольно быстро убывает. Появление этого острого максимума связано с тем, что $A_{\circ} \sim \frac{i}{(q_{\circ} - q)^{\prime}}$, а отдача $(q_{\circ} - q)^{\prime}$ является быстроменяющейся функцией углов в области $\Psi \approx 0$ и $\theta \approx \theta_{\circ}$. Детальное рассмотрение максимума показывает, что он состоит из двух максимумов. При уменьшении начальной энергии электрона вклад однонуклонного члена уменьшается, уменьшается и высота максимума. Это подтверждено расчетами, проведенными для энергии падающего электрона $\xi = 0.54 / 0.14 /$ и энергии фотона $k_{\circ} = 0.25 / 0.07 / .$ Было исследовано поведение максимума с изменением энергии $\mu = -$ кванта. Из расчетов, проведенных для случая $\xi = 0.54$ и k = 0.25; 0.15; 0.05 следует, что максимум сначала убывает /при k = 0.15 /, а затем начинает возрастать / k = 0.025 / . Однако при всех энергиях двойной максимум имеет симметричную форму. Для детального исследования вклада *dб м* были получены кривые дифференциальных сечений для случая **%** = 0.54 и **%** = 0.25.

При этом, как и предполагалось, вклад $d\epsilon_{N}$ оказался малым по сравнению с $d\epsilon_{T}$. в области малых углов и сравнимым с $d\epsilon_{T}$. в области больцих углов.

В области углов > 90° вклад $\sum_{i=1}^{y} \mu^{i} A_{i}$ становится значительным и им пренебрегать нельзя.

В максимуме оценка погрешности, приведенная выше / < 2%/, не годится.

В 8 12 рассчитан вклад dб, Дифференциальное сечение d6, может быть представлено в виде:

$$d\sigma_{7} = B_{0} + \mu B_{1} + \mu^{2} B_{2} + \mu^{3} B_{3}$$
.

В интерференционном члене нельэя ограничиться вкладом \mathcal{B}_{\bullet} , а необходимо учесть и вклад /4 \mathcal{B}_1 . Величина \mathcal{B}_{\bullet} , вообще говоря, оказывается значительной и, например, для углов $\mathcal{Y}=0$. $\mathcal{B}=30^\circ$ и $\mathcal{O}_{\bullet}=60^\circ$ достигает 20% от $d\mathcal{G}_{F,\Gamma}$. Вклад /4 \mathcal{B}_1 примерио на порядок меньше вклада \mathcal{B}_{\circ} /за исключением точек максимума/. При больших углах вклады \mathcal{B}_{\circ} и \mathcal{M}_{\bullet} , становятся сравнимыми. Ошибка, вносимая в сумму сечений $d\mathcal{G}_{\tau}+d\mathcal{G}_{\Lambda}+d\mathcal{G}_{\tau}$ если в $d\mathcal{G}_{\tau}$ отбросить члены, пропорциональные второй и третьей степеням аномального магнитного момента, оказывается < 1% /исключая точки максимума/. Таким образом, величина $d\mathcal{G}_{\tau}+d\mathcal{G}_{\tau}+d\mathcal{G}_{\Lambda}$ рассчитана для углов $\mathcal{L}90^\circ$ и энергий электронов ~ 500 Мэв с ощибкой $\mathcal{L}3\%$.

В § 13 дана приближенная оценка однопионного вклада. Если условие унитарности S^+S^-1 записать в одномезонном приближении, то ангиэрмитову часть амплитуды виртуального комптон-эффекта можно выразить через амплитуды реального и виртуального фоторождения \mathcal{T} -мезонов. В пределе малых значений \mathcal{X}^+ виртуальный комптои-эффект можно рассматривать близким к реальному. Сравнивая затем величину сечения однонуклонного вклада при $\theta = \Theta_0$ ($\Psi = 0$) со значениями сечения комптоновского рассеяния k^+ -квантов на нуклонах, вычисленного в однопионном приближении для тех же углов θ , можно получить требуемую оценку.

- 12

Для угла $\theta_{0} = \theta = 30^{\circ}$ вклад однопионного состояния меньше вклада однонуклонного члена. Для угла $\theta_{0} = \theta = 60^{\circ}$ вклад однопионного состояния приблизительно в 5-6 раз больше вклада однонуклонного состояния.

Для угла $\theta = \theta = 90^{\circ}$ вклад однопионного состояния приблизительно в 15 раз больше вклада однонуклонного члена.

Предполагается, что полученные оценки, относящиеся к реальному комптон-эффекту, справедливы и для виртуального комптон-эффекта, когда $|\theta - \theta_0| \leq 5^\circ$ /тогда \varkappa^2 достаточно мало/.

В § 14 приведены оценки радиационных поправок к тормозному излучению и поправки на двойное тормозное излучение, взятые из работ Фомина^{15/}. Суммарный вклад этих поправок для рассматриваемых в диссертации энергий не превышает нескольких процентов.

В "Заключении" рассматривается вопрос о проверке квантовой электродинамики на малых расстояниях в духе идей Дрелла^{16/} в рассматриваемых процессах^{12,13/}. Метод дисперсионных соотношений позволил рассчитать поправки $d6_{n'}$, $d6_{j}$ и оценить вклад однопионного состояния в $d6_{7.}$. В результате теоретическое выражение для сечения подсчитано с достаточной степенью точности для решения вопроса о проверке квантовой электродинамики. Расчет показывает, что для случая $f_{0} = 0.54$, $k_{0} = 0.25$, $\theta = 36^{\circ}$ и $\theta_{0} = 26^{\circ}$ и в предположении, что общая погрешность /погрешность в расчете теоретических формул и экспериментальные ошибки/ равна 20% квантовая электродинамика проверяется до расстояний $\ge 0.3 \cdot 10^{-13}$ см.

С ростом энергии падающего электрона до 1 Бэв и энергии тормозного у -кванта до 500 Мэв под теми же углами и с той же ошибкой, что и в приведенном выше примере, квантовую электродинамику можно проверить до расстояний $\geq 0.7 \cdot 10^{-14}$ см. Однако, в этом случае требуется более точный расчет однопионного состояния и поправок высшего по ℓ порядка.

Основные результаты, содержащиеся в диссертации, опубликованы в работах 6,7,8,10,12,13 и частично доложены на Всесоюзной межвузовской конференции по квантовой теории полей и теории элементарных частиц /2-6 октября 1958 г., Ужгород/ и Международной Киевской конференции по физике высоких энергий, июль 1959 г. 1. А.А.Логунов. Докторская диссертация, 1959.

 В.С. Владимиров и А.А. Логунов. Известия АН СССР /серия математическая/, 23, 661 /1959/.

3. Н.Н. Боголюбов и Д.В.Ширков. ДАН, 113, 529 /1957/.

4. R. Hofstadter, Rev. Mod. Phys., 28, 214, (1956).

5. В.И. Ритус. ЖЭТФ, 35, 1985 /1958/.

И.С. Златев, П.С. Исаев. ЖЭТФ, 37, 728 /1959/.

7. И.С. Златев, П.С. Исаев. ЖЭТФ, 35, 309 /1958/.

8. P.S. Isaev, I.S. Zlate. Nuovo Cim., XIII, 1, (1959);

см.так же "Проблемы современной теории элементарных частиц", 2

/Труды Всесоюзной межвузовской конференции по квантовой теории полей и теории элементарных частиц, 2-6 октября 1958г./. Ужгород, издание университета 1959 г., стр.165.

9. И.Т.Дятлов. ЖЭТФ, 35, 155 /1958/.

10. И.С. Златев, П.С. Исаев. Препринт ОИЯИ, Р-264 /1959/.

11. P.V.C. Hough. Phys. Rev., 74, 80, (1948).

12. И.С. Златев, П.С. Исаев. ЖЭТФ, 37, 1161 /1959/.

13. P.S. Isaev, I.S. Zlatev. Nuclear Physics,

14. R.A. Berg, S.N. Lindner. Phys. Rev. 112, 2072, (1958).

15. П.И. Фомин. ЖЭТФ, 35, 707 /1958/.

16. S.D. Drell. Annals of Physics, 4, 75, (1958).

Рукопись поступила в издательский отдел 8 февраля 1960 года.