объединенный институт ядерных исследований

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

4. - 6567

П.П.Райчев

ОБ АЛГЕБРАИЧЕСКИХ МЕТОДАХ ИЗУЧЕНИЯ ДЕФОРМИРОВАННЫХ ЧЕТНО-ЧЕТНЫХ ЯДЕР

Специальность 055 - физика атомного ядра и космических лучей

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

(Диссертация написана на русском языке)

Работа выполнена в Лаборатории теоретической физики Объединенного института ядерных исследований.

Научный руководитель:

кандидат физико-математических наук Официальные оппоненты: доктор физико-математических наук кандидат физико-математических наук Н.И. Пятов

Ведущее научно-исследовательское учреждение: ИТФ, Киев.

Автореферат разослан " 1972 г. Защита диссертации состоится " 1972 г. на заседании Ученого совета Лаборатории теоретической физики Объединенного института ядерных исследований, г. Дубна, Московской области.

С диссертацией можно ознакомиться в библиотеке ОИЯИ.

Ученый секретарь Совета

Р.А. Асанов

П.П.Райчев

ОБ АЛГЕБРАИЧЕСКИХ МЕТОДАХ ИЗУЧЕНИЯ ДЕФОРМИРОВАННЫХ ЧЕТНО-ЧЕТНЫХ ЯДЕР

Специальность 055 - физика атомного ядра и космических лучей

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

(Диссертация написана на русском языке)

Научно-техническая библиотека ОИЯИ

Обобщенная модель Бора-Моттельсона /1-3/ стала исходным пунктом для целого ряда феноменологических теорий /4-9/. Так, в работе Марти ^{/4/} и Давыдова и Филиппова ^{/5/} коллективные возбуждения исследовались в адиабатическом приближении, в котором принималось, что коллективные переменные β и у не меняются при вращении ядра. На самом деле при вращении ядро испытывает растяжение, которое приводит к изменению значения β_0 , характеризующего равновесную деформацию неподвижного ядра. Этот последний эффект учитывается в работах Давыдова с сотрудниками ^{/6,7/}. В отличие от них, Феслер, Грайнер и Шелайн ^{/8,9/} предполагают аксиальную симметричность ядра и расширяют теорию Бора-Моттельсона, вводя в рассмотрение ротационно-вибрационное взаимодействие.

Несмотря на то, что в настоящее время известно большое количество феноменологических теорий, способных описать коллективные возбужденные состояния атомных ядер, есть смысл искать и другие подходы к объяснению этих состояний. Особенно плодотворными нам кажутся подходы, основанные на соображениях симметрии. Так, например, в работе /10/ делалась попытка объяснить ротационные коллективные состояния и вероятности *E2* – переходов между ними на основе предположения, что ротационные

состояния в деформированных четно-четных ядрах образуют расшепленный мультиплет группы *SL* (*3*, *R*). Подобные подходы, основанные на соображениях симметрии, вероятно, являются только грубым приближением к действительности, но они, на наш взгляд, интересны тем, что позволяют выделить некоторые основные черты коллективных возбужденных состояний и глубже понять их природу.

Настоящая диссертация посвящена вопросам применения некоторых алгебраических методов для изучения коллективных возбужденных состояний деформированных четно-четных ядер. Следующие соображения позволяют считать, что методы, основанные на принципах симметрии, могут найти применение при описании коллективных возбужденных состояний в ядрах. Хорошо известно, что все состояния некоторых простых квантово-механических систем (осциллятор, ротатор и т.д.) образуют мультиплет некоторой группы С , содержащей группу инвариантностей гамильтониана С, в качестве подгруппы. Так, например, группой симметрии гармонического осциллятора является SU(3). а все его состояния могут быть объединены в одном мультиплете SU (3, 1). Группой симметрии ротатора является 0(3) а его состояния могут быть объединены в одном мультиплете O(4) или O(3,1) (для конечной или бесконечной ротационной полосы соответственно). Гамильтониан системы, нарушая симметрию относительно группы С, расщепляет исходный мультиплет и тем самым порождает спектр системы. Поскольку коллективные возбужденные состояния ядра имеют в основном ротационный или вибрационный характер, кажется естественной идея применить подобный подход для описания коллективных состояний ядра.

Мы предполагаем, что часть коллективных состояний (например, состояния положительной четности четно-четных ядер) может быть объединена в одном мультиплете некоторой группы G (например, SU(3) или SL(3, R) и т.д.). Мы считаем, что эти расщепленные мультиплеты могут быть объединены в один супермультиплет некоторой более широкой группы, которую обычно называют группой динамической симметрии. Отметим, что операторы этой группы в общем случае не коммутируют с гамильтонианом. Те преобразования $g \in G$, которые не принадлежат к группе инвариантностей С, , "смешивают" состояния, принадлежащие разным энергетическим уровням Е, и, следовательно, желательно (хотя и не всегда возможно), чтобы их генераторы были отождествлены с операторами, вызывающими переходы между состояниями. Если добиться этого, вероятности переходов между состояниями в принципе могут быть подсчитаны чисто алгебраическим путем.

В диссертации упомянутый подход применяется для описания приведенных вероятностей E_2 -переходов в деформированных четно-четных ядрах. Материал диссертации основывается на работах /11-16/ и разделяется на три главы.

В первой главе рассматривается вопрос о том, какие операторные алгебры могут быть построены при помощи операторов рождения и уничтожения фермионов. При этом исключаются из рассмотрения алгебры, определяемые геометрическими размерами оболочки, или же число частиц в ядре и построенные алгебры оказываются одинаковыми для всех ядер. Показано, что при помощи операторов, не меняющих число частиц, можно построить алгебру векторных фононов, алгебру группы вращения.

4

5

а также алгебры SU(3), SL(3,R), Sp(3,3). Указано также, как можно построить алгебры групп, которые не являются полупростыми, таких как неоднородная группа вращения IO(3), группа $O(3) \times T_5$, являющаяся прямым произведением группы вращения и абелевой группы пятимерных трансляций, порождаемых компонентами Q_m электрического квадрупольного оператора и т.д. В приложении к этой главе приведена в явном виде фермионная реализация рассматриваемых алгебр в базисе гармонического осциллятора.

Далее обсуждается вопрос о том, какие алгебры могут быть построены при помощи операторов, меняющих число частиц. Показано, что таким образом возникают группа Вигнера *SU(4)* и группа *O(8)*.

В конце главы обсуждается вопрос, имеют ли построенные операторные алгебры отношение к динамике ядерных процессов. Показано, что группой динамической симметрии, способной описать переход выбрационных мультиплетов SU(3) в бесконечные ротационные полосы, является некомпактная симплектическая группа Sp (3,3). Наконец, показано, что операторы электрических квадрупольных переходов входят как в полупростую алгебру Sp (3,3), так и в неоднородные неполупростые алгебры типа $O(3) \times T_{s}$.

Во второй главе строятся представления группы SU(3), в которых угловой момент L^2 диагонален. Базисные векторы представления находятся в виде полиномов, построенных из операторов рождения "бозонных частиц":

 $|(n, T)l, m, a > \sim P_n (b_{\mu}^{(i)+})|0>, \quad b_{\mu}^{(i)}|0> = 0.$

Оказывается, что для построения самого общего представления SU (3) достаточно располагать двумя сортами бозонов, которые несут "изоспин" 1/2 и проекции изоспина + 1/2 и -1/2 соответственно. Мультиплеты SU(3) задаются полным числом частиц n, участвующих в состояниях, и изоспином T. Состояния же внутри данного (n, T) - мультиплета различаются угловыми моментами l (третья проекция которого равна m) и дополнительным квантовым числом a, маркирующим состояния с одинаковыми l и m. К сожалению, состояния | (n, T), l m a > c одинаковыми n, T, l и m и разными a оказываются неортогональными. Для ортогонализации базиса можно использовать эрмитовский оператор Ω_1 , введенный Баргманом и Мошинским. Показано, что можно ввести также эрмитовский оператор Ω_2 , который достаточно четко различает вращательные полосы.

После ортогонализации базиса дается рецепт нахождения приведенных матричных элементов генераторов *SU(3)*. Для самого симметричного представления *SU(3)* найдены замкнутые аналитические выражения приведенных матричных элементов. В более сложных случаях, однако, таких выражений найти не удалось. Поэтому приведенные матричные элементы квадрупольного оператора *SU(3)* были рассчитаны на ЭВМ.

В приложении ко второй главе даны численные значения приведенных матричных элементов квадрупольного оператора для мультиплета (*n* , *T*) = (16,6), который использовался в модельных расчетах следующей главы.

В третьей главе рассматривается вопрос о приведенных вероятностях *E* 2 - переходов. Если *Sp*(3,3) действительно является динамической группой для коллективных состояний ядерных систем, то все эти состояния должны объединяться в одном муль-

7

4

типлете Sp(3,3). Нарушение симметрии относительно Sp(3,3)может привести к расшеплению неприводимого представления Sp(3,3) на мультиплеты SU(3), которые, в свою очередь, распадаются на конечные ротационные полоски. Есть и другие возможности разложения Sp(3,3) по подгруппам, такие, как, например, $Sp(3,3) \supset SL(3,R) \supset O(3)$. Ответ на вопросы о том, какая из редукций имеет физический смысл, может быть дан из анализа вероятности E2 -переходов и энергетических уровней ядер.

Во втором разделе этой главы приводится краткий обзор эксперимента, где предполагается, что все состояния положительной четности деформированных четно-четных ядер могут быть объединены в один или несколько мультиплетов *SU(3)*. Разумеется, такое объединение имеет смысл, только если окажется возможным удовлетворительно описать энергетический спектр и вероятности *E2* -переходов рассматриваемого ядра.

Вопрос о приведенных вероятностях электрических квадрупольных переходов как внутри данного SU(3) мультиплета, так и между разными мультиплетами (в случае симметричного представления) обсуждается в следующем разделе третьей главы. Поскольку Ω_1 -и Ω_2 - операторы не имеют непосредственного физического смысла и ортонормированная система состояний определена с точностью до унимодулярного преобразования, то параметры этого преобразования можно использовать для получения согласия с экспериментальными данными.

Далее для конкретности рассматривается мультиплет (λ , 2), (λ четное), который часто встречается в спектрах. В этом случае состояния с четным l встречаются не более чем два раза, а состояния с нечетным l – один раз. Тогда для четных l мы можем ввести новые состояния

$$|nTl_k0\rangle = \cos\theta_k |nTl_k\omega_1\rangle + \sin\theta_k |nTl_k\omega_2\rangle$$

$$|n T l_k 2 \rangle = -\sin \theta_k |n T l_k \omega_1 \rangle + \cos \theta_k |n T l_k \omega_2 \rangle$$

здесь $|n T l_k O > u | n T l_k 2 >$ соответственно волновые функции основной полосы и полосы с $K^{\pi} = 2^+, a | n T l_k \omega_1 > u$ $|n T l_k \omega_2 >$ -собственные функции оператора Ω .

Таким образом, в мультиплете (λ , 2) для объяснения переходов между первыми уровнями с моментом до $2l_0$ включительно мы располагаем l_0 -параметрами θ_2 , θ_n , ... θ_l , которые можно использовать для получения согласия с экспериментом.

Теперь мы можем рассчитать отношение приведенных вероятностей *Е* 2 - переходов

$$\frac{B(E_2; l_1k_1 \rightarrow l_2k_2)}{B(E_2; l_1'k_1 \rightarrow l_2'k_2)} = \frac{2l_1'+1}{2l_1+1} \frac{|\langle n T l_1k_1||Q||nT l_2k_2 > |^2}{|\langle n T l_1'k_1'||Q||nT l_2'k_2' > |^2}$$
(1)

как функции параметров θ_k . Функции (1) были протабулированы нами для мультиплета (λ , μ) = (12,2), который мы и сравнивали с экспериментом. Надо отметить, что для нижайших lфункции слабо меняются при переходе к соседним мультиплетам. Так, например, результаты незначительно различаются при переходе от мультиплета (λ , μ) = (10,2) к (λ , μ) = (14,2). По этой причине полученные результаты об отношениях приведенных вероятностей слабо чувствительны к выбору квантового числа λ , которое как раз нечетко определяется из эксперимента.

Из всех функций (1) только одна, а именно, $\frac{2_2 \rightarrow 0}{2_2 \rightarrow 2_0}$

1

 $= \frac{B(E2; 22 \to 00)}{B(E2; 22 \to 20)},$ зависит от одного угла θ_2 . Вид этой функции

показан на рис. 1. Взяв из эксперимента значение отношения

 $\frac{2_2 \to 0}{2_2 \to 2_0}$ для данного ядра, можно зафиксировать значение параметра θ_2 . Тогда все остальные отношения $\frac{3_2 \to 2_0}{3_2 \to 4_0}$, $\frac{4_2 \to 2_0}{4_2 \to 4_0}$, $\frac{2_2 \to 4_0}{2_2 \to 2_0}$, $\frac{2_0 \to 0}{4_0 + 2_0}$ и т.д. будут зависеть только от параметра θ_4 . Далее мы можем подобрать параметр θ_4 так, чтобы получить наилучшее совпадение с экспериментом. Тем самым фиксируется значение θ_4 , и отношения приведенных вероятностей между состояниями с l = 6 и $l' \leq 6$ становятся функциями параметра θ_6 . Очевидно, эту процедуру можно продлить, и, таким образом, зафиксировать значения всех параметров.

Надо отметить, что параметр θ_2 не определяется однозначно из эксперимента. Как видно из рис. 1, правильное значение для $\frac{2_2 \rightarrow 0}{2_2 \rightarrow 2_0}$ можно получить при двух значениях θ_2 -одно в интервале 115° - 125°, другое - в интервале 177° - 179°. Анализ различных случаев, однако, показывает, что когда отношение $\frac{2_0 \rightarrow 0}{4_0 \rightarrow 2_0}$ меньше, чем 0,7, как предсказывает ротационная

модель, применимо решение из первого интервала, и наоборот.

Зависимость отношений приведенных вероятностей $\frac{3_2 + 2_0}{3_2 + 4_0}$, $\frac{2_2 + 4_0}{2_2 + 2_0}$, $\frac{4_2 + 2_0}{4_2 + 4_0}$ и $\frac{2_0 + 0}{4_0 + 2_0}$ от параметра θ_4 показана на рис. 2-3. На рис. 2 показаны упомянутые вероятности для двух разных значений θ_2 в интервале 115⁰-125⁰, что соответст-

вует двум различным значениям $\frac{2_2 \rightarrow 0}{2_2 \rightarrow 2_0}$, которые соответственно, равны 0,676 для сплошной кривой, и 0,423 – для пунктирной. Видно, что везде $\frac{2_0 \rightarrow 0}{4_0 \rightarrow 2_0}$ меньше 0,7.

На рис. З показано поведение соответствующих вероятностей для случая, когда $\frac{2_2 \rightarrow 0}{2_2 \rightarrow 2_0} = 0.5$, а θ_2 выбрано в интервале 177⁰-179⁰. Видно, что в этом случае $\frac{2_0 \rightarrow 0}{4_0 \rightarrow 0} > 0.7$; увеличивается также значение отношения $\frac{3_2 \rightarrow 2_0}{3_2 \rightarrow 4_0}$.

На наш вэгляд, Q_k нельэя рассматривать как обычные подгоночные параметры. Зависимость отношения приведенных вероятностей от углов мы понимаем как параметрические урагнения, выражающие функциональную зависимость вероятностей $B(E_2)$ -переходов в схеме SU(3). Эти зависимости можно получить, исключая параметры из уравнения для отношений приведенных вероятностей.

При помощи этих зависимостей мы проанализировали отношения $B(E_2)$ вероятности для нижайших состояний некоторых ядер. Результаты анализа показаны в таблице 1. Сопоставление с экспериментом показывает, что схема SU(3) в состоянии достаточно правильно предсказать вероятности приведенных E_2 – переходов в деформированных четно-четных ядрах. Конечно, остается открытым вопрос, насколько она способна включить в себя также и наблюдаемые энергетические соотношения между уровнями ядра.

Содержание работы докладывалось на семинарах Лаборатории теоретической физики и опубликовано в работах /11-16/.

12

							Таблиц	. I el		
			152 Sm			151 Gd			58 0 4	
Ileped	ход	экспер.	CCHI.	Teop.	экспер.	CCMJ.	reop.	экспер. с	CHJ.	reop.
3	0	0,50 <u>+</u> 0, I0 0,54 <u>+</u> 0, I8	(II) (II)	0,49	0, 464 <u>+</u> 0, 011 0, 41	(2I) (10)	0,409	0,43±0,0I	(54)	0,423
22	20 20	0,43 <u>+</u> 0,3	(IB)		0,530 <u>+</u> 0,014	(22)				
2 ₂	4 ⁰	0, 132	(IB)	0 , I34	0, 145±0, 005	(2I)	0 , 157	-		
22	°2				0, 26 <u>+</u> 0, 19	(23)		0,1	(24)	0, 137
32	20	I,07 0.00.00	(IB) (17)	0, 756	1,032 <u>+</u> 0,31 0 50.0 40	(2I)	0,732	ד ממים ווק		0 710
2° 15	4 ⁰	u, su <u>r</u> u, tu I, 6 <u>+</u> 0, 6	(6I)			152)		(+ 101-2) ft	, ct	2T/ 60
4 4	20.	0, I6 0, 25 0 TE	(IB)	0 , I75	0, 136 <u>+</u> 0, 007	(21)	0, II6	0,2I	(177)	226
4s	4 ⁰				50.60	(01)				
<i>с</i> о	0	0,675	(20)	0,534	0,56	(ສ)	0,554		(62)	0,553
40	2 ₀				,					

толжение теблиц

Про

		166 Dy			166 Er			468 Er	
Переход	эксп.	CCHIKA	reop.	эксп.	CCMJKA	Teop.	эксп.	CCHJ.	Teop.
22 0 22 22	0,52	(II)	0,520	0,56 0,55	(2)	0,56	0,56	(21)	0,551
22 40 22 20	0, 137	(0I)	0, 056	0,087	(26)	0,087	0 , 148	(12)	0, 208
³ 2 ² 0 ³ 2 ⁴ 0	I, 75	(01)	I, 605	1, 34 1,43 1,31	(S) (S) (S)	I, 35	I , 56	(21)	0,785
⁴ 2 ² 0 ⁴ 2 ⁴ 0	0 , 21	(0I)	0,257	0, 16 0, 171 <u>+</u> 0, 011	(23) (27)	0, 158	0 , I8	(21)	0, 235
20 0 40 20	0,715	(ຄ	0, 732	0,734	(<u>ଲ</u>)	0, 735	0,62	(23)	0,51
42 22 42 42		4	10 , 8	9,11	(0)	9,72			

Литература

1. A.Bohr. Kong. Danske Vidensk. Selsk. MatFys.
2. A.Borh, B.Mottelson. Kong. Danske Vidensk. Selsk. Mat - Evs. Medd. 27, (1953), 16.
3. A.Borh, B.Mottelson, "Beta- and Gamma-Ray Spec-
troscopy", Amsterdam, 1955. 4 C Marty, Nucl. Phys., <u>1</u> ,(1956) 85; <u>3</u> ,(1957),193.
5. А.С. Давыдов, Г.Ф. Филиппов. ЖЭТФ, 35, 40 (1958).
6. A.S.Davydov, A.A.Chaban. Nucl. Phys., 20, (1960), 449.
7. А.С. Давыдов, В.И. Овчаренко. ЯФ, <u>3</u> , 1011 (1966).
8. A.Faessler, W.Greiner. Z. fur Phys., <u>168</u> , (1962), 425; 170, (1962), 105; 177 (1964), 190.
9. A.Faessler, W.Greiner, R.K.Sheline. Nucl. Phys., 70, (1965), 33.
10. L.Weawer, L.C.Biedenharn. Phys. Lett., <u>32B</u> , (1970) 326.
11. Г.Н. Афанасьев, П.П. Райчев. ЭЧАЯ т.3, вып. 2, 436.
12. П.П. Райчев. Сообщение ОИЯИ, Р4-6452, 1972.
13. П.П. Райчев, Препринт ОИЯИ, Р4-6462, Дубна, 1972.
14. Г.Н. Афанасьев, И.Н. Михайлов, П.П. Райчев. ЯФ, <u>14</u> , 734 (1971).
 Г.Н. Афанасьев, С.Р. Аврамов, П.П. Райчев. Препринт ОИЯИ, Р4-6113, Дубна, 1971.
 Г.Н. Афанасьев, С.Р. Аврамов, П.П. Райчев. Сообщение ОИЯИ, Р4-6458, Дубна, 1972.
17. I.S.Greenberg, G.C.Seaman, E.V.Bishop. Phys.Rev,
Lett., <u>11</u> ,(1963) 211. 18. A.Aguilli, R.Cesaro, N.Giovanini. Nuov. Cim., ~52,(1969) 20.
19. O.Nathan. Nucl. Phys., <u>19</u> , (1960) 148.

- 20. R.M.Diamond, F.S.Stephens, K.Nakai, R.Noedhagen. Phys.Rev., C3, (1970), 334.
- 21. R.A.Meyer. Phys. Rev., 170 (1968) 1089.
- 22. T.H.Hamilton, T.Katoh, W.H.Brantley, E.E.Zganjar. Phys. Rev. Lett., 13, (1964) 43.
- 23. H.Abon Leila a.o. Nucl. Phys., A175, (1971) 675.
- 24. А.А. Абдуразаков, Ж.Т. Желев, В.Г. Калинников, Я. Липтак, Ф. Молнар, Я. Урбанец. Изв. АН СССР, сер. физ., <u>32</u>, 749 (1968).
- 25. B.Hormitz, T.H.Handley, J.W.Michelich.Phys.Rev., 123, (1961) 1758.
- 26. C.J.Gallagher, O.B.Nielsen, W.A.Sunyar. Phys. Lett., 16, (1965) 298.
- 27. C.Gunther, P.R.Rarsignault. Phys. Rev., <u>153</u>, (1967) 1297.

Рукопись поступила в издательский отдел 5 июля 1972 года.