A-853

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

4-5758

Д.А. Арсеньев

РАВНОВЕСНЫЕ ДЕФОРМАЦИИ ЯДЕР И ИЗОМЕРЫ ФОРМЫ

С пециальность 055 - физика атомного ядра и космических лучей

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 1971

Работа выполнена в Лаборатории теоретической физики Объединенного института ядерных исследований.

Научный руководитель доктор физико-математических наук профессор В.Т.СОЛОВЬЕВ

Официальные оппоненты: доктор физико-математических наук В.М.СТРУТИНСКИЙ кандидат физико-математических наук И.Н.МИХАЙЛОВ

Ведущее научно-исследовательское учреждение: Объединенный институт ядерных исследований, Ласоратория ядерных проблем.

Автореферат разослан " 1971 г. Защита диссертации состоится " 1971 г. на заседании Ученого совета Лаборатории теоретической бизики Объединенного института ядерных исследований, г. Дубна.

С диссертацией можно ознакомиться в библиотеке ОИЯИ

Ученый секретарь Совета

P.A.ACAHOB

Д.А. Арсеньев

РАВНОВЕСНЫЕ ДЕФОРМАЦИИ ЯДЕР И ИЗОМЕРЫ ФОРМЫ

С пециальность 055 - физика атомного ядра и космических лучей

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

WALLAND BREESHERICK COPPEX INCLOSUL

4-5758

Хорошо известно, что описание ядер с помощью сверхтекучей модели / I/ дало возможность развить не только качественные, но и количественные методы решения задач ядерной физики. Согласно этой модели действие нуклон-нуклонных сил в ядре проявляется в образовании среднего поля, общего для всех нуклонов, и остаточного двухнуклонного взаимодействия сверхтекучего типа.

Одним из основных вопросов, возникающих при исследовании свойств ядер, является определение равновесной формы ядер. Форма ядерной поверхности может быть описана разложением по угловым гармоникам:

$$R = R_o \left[1 + \sum_{e,m} \mathcal{L}_{e,m} \mathcal{Y}_{e,m}^* \left(\theta, \varphi \right) \right], \qquad (1)$$

где R. - средний радиус ядра,

dem - параметри деформации,

0,9 - угловые координаты точки на ядерной поверхности.

Определение равновесной формы связано с исследованием зависимости потенциальной энергии ядер от параметров деформации $\checkmark e,m$. Как было отмечено ${}^{2/}$, эта зависимость, вообще говоря, может бить разной для основных и возбужденных состояний ядер. Переходы между состояниями с различными равновесными деформациями будут задержанными, так как они связаны с перестройкой среднего поля. Такое замедление получило название изомерии форми/3/.

В диссертации проводится исследование зависимости энергии основных и квазичастичных возбужденных состояний ядер от деформащий, описываемых второй гармоникой в разложении (I). Для та-

ких деформаций удобно перейти к параметрам β и γ , связанным с внутренней системой координат ядра^{/4/}.

Расчети проведени для широкой области ядер. На основе расчетов предлагается модель описания свойств ядер, лежащих в переходных областях, т.е. таких, в которых происходит переход от деформированных ядер к сферическим.

Расчет зависимости энергии основных состояний ядер от параметров деформации проводился двумя методами: методом Беса-Шиманского^{/5/} и Струтинского^{/6/}. Изучение зависимости энергии возбужденных состояний ядер от деформации проводилось в рамках сверхтекучей модели^{/I/}.

Диссертация состоит из введения и четырёх глав.

Во введении дается обзор методов расчета равновесной формы ядер в основном и возбужденных состояниях и приводится сравнение результатов расчетов, полученных этими методами.

В первой главе диссертации исследованы свойства одночастичных уровней нильссоновского потенциала среднего поля^{/2/}, который используется в расчетах, и приводятся результаты расчетов зависимости потенциальной энергии основных и возбужденных состояний сильнодеформированных ядер в областях 150 < A < 190 и $A > 220^{/8/}$.

На рис. І дана зависимость энергии изотопов Gd и Hfот γ – деформации. Из рисунка видно, что для сильнодеформированных ядер устойчивой является форма вытянутого эллипсоида вращения ($\gamma = 0^{\circ}$), причем разность энергий, соответствующая сплюснутой и вытянутой форме, достаточно велика и составляет 2-4 Мэв.

Рис. I. Зависимость энергии основных состояний изотопов Gd и *Н*f от *Y*- деформации. Кривые I,2,3,4 соответствуют I74, I76, I78, I80 *H*f, a 5,6,7 - I56, I54, I52 Gd.

5

Для изучения зависимости, возбужденных состояний от γ деформации необходимо установить соответствие между квантовыми числами уровней при $\gamma = 0^{\circ}$ и 60° .

При малых значениях β , когда уровни, принадлежащие разным подоболочкам, не пересекаются в плоскости $\gamma = 0^{\circ}$ или 60° , одночастичные энергетические поверхности $\mathcal{C}\lambda(\beta,\gamma)$ также не пересекаются друг с другом. Таким образом, каждому уровню при $\gamma = 0^{\circ}$ можно поставить в соответствие тот уровень при $\gamma = 60^{\circ}$, который лежит на той же энергетической поверхности. Для больших β поверхности, принадлежащие одной и той же оболочке, но разным подоболочкам, могут пересечься друг с другом только при $\gamma = 0^{\circ}$ или 60° . При других γ происходит "квазипересечение" и волновые функции уровней изменяются так, как будто произошло пересечение. По этой причине правило, установленное для малых β - деформаций, распространяется на все деформации. Соответствие, установленное таким образом, не зависит от деформации.

Существование одноквазичастичных возбужденных состояний с равновесной деформацией β_e, γ_e , не равной деформации β_o, γ_o , возможно в том случае, если уменьшение энергии квазичастичного состояния с изменением β и γ превалирует над ростом энергии четно-четного остова. Для одноквазичастичных состояний можно сформулировать следующие правила, когда возможны отклонения β_e, γ_e от β_o, γ_o :

I) λe , $\beta e \rangle \beta_{\circ}, \lambda_{\circ}$ - если квазичастица находится на дирочном уровне среднего поля, энергия которого быстро растет с ростом β и λ или на частичном уровне, энергия которого сильно уменьшается с ростом β, λ .

6

2) βе, уе < βо, уо – если квазичастица находится на дирочном уровне, энергия которого быстро уменьшается с ростом β, у, или на частичном уровне, энергия которого сильно растет с β и γ.

Для двухквазичастичных состояний эффектн, связанные с одночастичными состояниями складываются.

Из рис. I видно, что энергии основных состояний четночетных сильнодеформированных ядер резко возрастают при увеличении \mathcal{S} от 0[°] до 60[°] и выше. Изменение же энергий одночастичных уровней с ростом \mathcal{S} является существенно меньшим по сравнению с изменением энергий основных состояний.

Это обстоятельство позволяет понять результаты расчетов равновесных деформаций возбужденных состояний сильнодеформированных ядер/8/, согласно которым не существует возбужденных состояний с $\aleph e \neq 0^{\circ}$.

Изменение энергий одночастичных уровней при изменении β является более резким, чем при изменении γ , а зависимость энергий основных состояний четно-четных ядер от β - деформации в точке минимума близка к параболической. Результаты расчетов подтвердили выводы, сделанные ${\rm g}^{2/}$ о возможности существования возбужденных состояний в сильнодеформированных ядрах, равновесные деформации которых отличаются от равновесных деформаций основных состояний. Однако это отличие не превышает, повидимому, 0,05.

Значения величин равновесных деформаций находятся в согласии с экспериментальными.

. 7

Результаты расчетов зависимости энергий основных и возбужденных состояний сильнодеформированных ядер позволили сделать следующие выводы:

I. Полные энергии основных состояний четно-четных ядер имеют минимумы при $\mathcal{F} = 0^{\circ}$ и значениях β_{\circ} , согласующихся с экспериментальными. Зависимость энергии от β и \mathcal{F} - деформации волизи минимума близка к параболической, что свидетельствует о малой ангармоничности β и \mathcal{F} колебаний.

2. Отдельные квазичастичные возбужденные состояния могут иметь равновесную деформацию β_e , отличную от β_o .

3. Не имеется возбужденных состояний с $\chi_e \neq 0^{\circ}$.

<u>Во второй главе диссертации</u> приводятся результаты расчетов энергий основных и возбужденных состояний ядер области 50 ≤ Z, N ≤ 82^{/9,10/}.

Пример зависимости энергии основного и двух двухквазичастичных возбужденных состояний ядра ^{I26} В α от β - деформации приведен на рис. 2.Из рисунка видно, что основной особенностью поведения энергии как функции β является близость по энергии двух минимумов при $\beta < 0$ и $\beta > 0$.

Результаты расчетов зависимости энергий основных состояний четно-четных ядер этой области от у – деформации показали^{/9/}, что не существует энергетического барьера при переходе из одного минимума по в другой при изменении у .

Расчеты показали, что существует область ядер, равновесной формой которых является сплюснутый эллипсоид вращения.

В таблице I приведени результати расчетов зависимости энергий основных состояний четно-четных ядер. Из таблици I вид-

Рис. 2. Зависимость энергий основного и двух двухквазичастичных возбужденных состояний ядра ^{I26} Всс от ε деформации. (β ≈ 0,95ε)

q

Таблица I

Отрицательные	Е., положительные Е. д	еформации;
квадрупольные момент	н Q. (Е.) и Q. (Е.)	в барнах;
энергия деформации	$\mathcal{E}_{def}^{\dagger} = \mathcal{E}(0) - \mathcal{E}(\mathcal{E}_{0}^{\dagger})$	и разность
энергий деформации	$\Delta \hat{\mathcal{E}} de_f = \hat{\mathcal{E}} (\mathcal{E}_o^-) - \hat{\mathcal{E}} (\mathcal{E}_o^+)$	в Мэв основ-
ных состояний ядер.		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nucli	lde .	εō	0 (52)	E	0 (E)	Caeț	<u><u><u>u</u></u><u>a</u><u>e</u><u>i</u></u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 11+v			-3.1	0.21	3.2	1.1	+0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116 _v		.25	-3.1	0.25	3.9	1.4	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118,		25	-3.1	0.25	4.0	1.6	-0.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120 _v	- •.	.24	-3.0	0.25	4.0	1.5	-0.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	122 _y		1.22	-2.8	0.21	3.2	1.3	-0.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	124 _y	e -	0.21	-2.7	0.18	2.7	1.0	-0.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	126 _x	(e –	0.17	-2.2	0.15	2.3	0.7	-0.2	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116,		0.31	-4.0	0.31	5.5	2.8	+0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118,		0.30	-3.9	0.30	5.3	3.2	+0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120,		0.29	-3.8	0.29	5.1	3.3	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	122	Ba -	0.27	-3.6	0.28	4.9	3.2	-0.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	124	Da -	0.26	-3.5	0.26	4.6	2.8	-0.5	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	126	Ba la	0.25	-3.4	0.22	3.8	2,2	-0.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	128	Ra !-	0.23	-3.2	0.19	3.2	1.6	-0.4	1"
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130	Ba	-0.17	-2.5	0.15	2.6	0.9	-0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122		-0.30	-4.2	0.31	5.9	5.1	+0.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	124		_0.30	-4.2	0.30	5.7	5.0	+0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	126		-0.28	-4.0	0.29	5.6	4.5	-0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128	3	-0.28	-4.0	0.26	5.0	3.6	-0.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	130		-0.26	-3.8	0.22	4.2	2,6	-0.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	2	0.22	-3.4	0.18	3.4	1.7	-0.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	4ce	-0.16	-2.6	0.15	2.9	0.7	-0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2	<u> </u>					6.0	+0.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	Na	-0.30	-4.5	0,30	0.1		0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1	Nd	-0.29	4.4	0.28	5.7	9.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	² Nd	-0.28	-4.3	0.25	5.1	3.7	-0.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	4 _{Na}	-0.25	-4.0	0.21	4.3	2.5	-0.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	⁶ na	-0.19	-3.2	0.16	3.3	1.2	-0.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	2 _{Sm}	-0.30	-4.8	0.29	6.2	6.0	+0.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	4 _{Sm}	-0.29	-4.7	0.27	5.9	4.7	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	6 _{Sm}	-0.27	-4.5	0.23	5.0	3.2	0	
140 - 0.15 -2.8 0.12 2.7 0.4 -0.2	13	8 _{Sm}	-0.20	-3.6	0.19	4.2	1.7	-0.1	
	14	0 _{Sm}	-0.15	-2.8	0.12	2.7	0.4	-0.2	

но, что, вероятнее всего, сплюснутую форму имеют ядра в районе 126 Ва, для которого разность энергий деформаций достигает наибольшей отрицательной величины. В таблице II приведены результаты расчетов энергий основных состояний нечетных и нечетно-нечетных ядер. Сравнение результатов, приведенных в этих таблицах, показывает, что в некоторых случаях добавление одной частицы к четно-четному остову может изменить величину равновесной деформации основного состояния. Например, если для 126 Хе $\beta_{\circ} = -0,17$, то для 127 Хе, $\beta_{\bullet} = -0,16$ и аналогично у 116 Ва $\beta_{\circ} = -0,31$, а у 117 Ва $\beta_{\circ} = -0,33$.

Из таблиц видно, что величина разности энергий деформаций, соответствующих сплюснутой и вытянутой форме у ядер этой области, мала $|\Delta \mathcal{E}_{def}| < 0.7$ Мэв и расчеты зависимости энергий возбужденных состояний, нечетных ядер (приведенные в таблице Ш) показали, что существует много возбужденных состояний, названных изомерами формы, равновесная деформация которых отличается знаком от равновесной деформации основного состояния. Расчеты, проведенные в /10/показали, что такие состояния можно найти и в четно-четных и нечетно-нечетных ядрах этой области. Недавно такие состояния экспериментально были обнаружены в ядре 127Cs /11/.

Величины рассчитанных равновесных деформаций находятся в согласии с экспериментальными, полученными недавно из измерения времен жизни первых 2⁺ состояний.

Экспериментальное изучение ¹²⁹ La показало/12/, что это ядро, по-видимому, имеет форму сплюснутого эллипсоида.

10

II

Таблица II

Деформации Е. и Е. ; энергия деформации и разность энергий деформаций соответственно для основных состояний ядер.

Энергии и	равновесные	деформации	одноквазичастичных	±03б уж−

денных состояний нечетных ядер.

	oddZ			L	doubly odd		<u>_</u>
115 _{Ca}	-0.30 0.25	2.1	0	116 _{C8}	-0.32 0.30	2.8	0
117 _{Cs}	-0.30 0.28	2.5	ò	118 _{Cs}	-0.30 0.29	3.2	0
119 _{Cs}	-0.26 0.27	2.7	-0.1	120 CB	-0.25 0.26	3.2	-0.1
121 _{Cs}	-0.25 0.26	2.6	-0.4	122C8	-0.25 0.26	3.2	-0.4
123 _{Cs}	-0.25 0.25	2.3	-0.6	124 _{Cs}	-0.25 0.22	2.5	-0.9
125 _{Cs}	-0.24 0.20	1.8	-0.6	126 _{Cs}	-0.24 0.20	2.0	-0.5
127 _{Cs}	-0.21 0.17	1.3	-0.4	128 _{Cs}	-0.19 0.16	1.4	-0.2
129 _{Cs}	-0.17 0.15	0.8	-0.1	130 _{Ca}	-0.15 0.15	0.7	-0.1
1197		4 5	+0 4	1207	_0 32 0 31	5.2	+0.5
121	-0.30 0.30	1 6	+0.3	122	-0.30 0.30	5.3	+0.4
123	-0.29 0.30	4.5	+0.2	124	-0.29 0.29	5.0	+0.1
125	-0.28 0.28	4.0	-0.2	126 T.a	-0.27 0.27	4-1	-0.5
127	-0.27 0.25	3.2	-0.5	128	-0.28 0.23	3.2	-0.5
129 _{La}	-0.26 0.21	2.4	-0.3	130La	-0.25 0.20	2.3	-0.1
131 _{La}	-0.21 0.19	1.4	-0.1	132La	-0.17 0.16	1.3	0
133 _{La}	-0.15 0.13	0.5	-0.1	134 _{La}	-0.13 0.11	0.5	-0.1
123-				124_			
125_	-0.32 0.32	.6.4	+0.7	126_	-0.31 0.32	7.1	+0.8
127.	-0.30 0.31	6.3	+0.6	128	-0.00 0.00	6.8	+0.0
129	-0.30 0.29	2.7	+0.2	130	-0.29 0.28	2.8	
131	-0.29 0.27	4.0	-0.1	132	-0.29 0.20	4.1	-0.5
133	-0.28 0.24	2.1	-0.2	134p	-0.20 0.25	2.4	-0.1
135 _p	-0.22 0.20	1 2	0,	136	-0.20 0.13	1.0	-0.1
F1	-0.19 0.10				-0.17 0.17		-0.1
			0d	d - N			· · · · · · · · ·
11 ⁵ Xe	-0.30 0.26	1,7	0	125 _{Ba}	-0.25 0.25	3.0	-0.8
TTAXe	-0.26 0.27	2.1	0	127 _{Ba}	-0.25 0.21	2.3	-0.6
119Xe	-0.25 0.26	2.2	0.2	129 Ba	-0.15 0.17	1.6	-0.3
121Xe	-0.24 0.25	2.1	-0.4	Ba	-0.15 0.15	0.9	-0.4
Xe	-0.23 0.21	1.5	-0.8	123 _{Ce}	-0.30 0.30	5.8	+0.5
125 _{X0}	-0.21 0.18	1.1	-0.4	125 _{Ce}	-0.29 0.30	5.6	+0.3
127 _{Xe}	-0.16 0.15	.7	-0.1	127 _{Ce}	-0.28 0.28	4.6	-0.4
117_{Ba}	-0.33 0.30	3.6	+0.1	129 _{Ce}	-0.28 0.24	3.5	-0.7
119 _{Ba}	-0.31 0.30	3.9	+0.2	131 _{Ce}	-0.25 0.20	2.5	-0.2
121 _{Ba}	-0.29 0.29 4	.1	+0.1	133 _{Ce}	-0.19 0.16	1.5	0
123 _{Ba}	-0.27 0.28	8.8	-0.2	135 _{Ce}	-0.14 0.12	0.6	-0.1

state	Berc	٤.	State	Berc	<u>E</u> o	state	Eexc	<u> </u>	state	Eexc_	٤٠
	123 54 ^{Xe} 69			12 5	5 _{6Ba} 69		127 56 ^{Ba} 71		•	129 58 ^{Ce} 71	
503 t	0	-0.23	5034	0	-0.25	503♦	0	-0,25	503+	0	-0.28
505 ¥	430	-0.20	420+	350	-0.28	503 t	200	-0:24	503 🕈	210	-0.25
420 4	440	-0.24	503+	440	-0.27	501 †	·33o	-0.25	501 t	300	-0.28
503 ŧ	480	-0.20	505+	630	-0.25	431 +	410	-0.22	431 †	520	-0.25
431 +	580	-0.19	422 +	740	-0.28	431 1	450	-0.22	501 🕹	610	-0.27
431 +	610	-0.19	5234	770	0.25*	501 ł	570	-0.25	431 🖡	620	-0.22
402 †	770	0.21	402 4	800	0.25	404 1	600	0.21	402 1	680	0.24
501 ¥	790	-0.22	.501 ŧ	840	-0.26	523 A	600	0.21*	400 +	690	-0.28
422 🛊	850	-0.24	411+	890	0.25	402 †	700	0.22	523 t	700	0.24 [#]
523 ¥	850	.0.22	431+	930	-0.23	420 f	770 .	-0.26×	404 🕯	730	0.23*
404 🕈	900	0.20*	431+	1030	_0,22 [#]	505↓	810	-0.15	505 🖌	1050	-0.24
					: .	•			1		
	123 55 ^{Cs} 68		1	25 55 ^{C3} 70			127 57 ^{La} 70)		129 57 ^{La} 72	
4134	0	-0.25	413+	0	-0.24	411 †	0	-0.27	411 +	0	-0,26
505 	50	-0.25	505 +	50	-0.23	413+	130	-0.26	413+	130	-0.25
411 #	370	-0.25	411 4	420	-0.25	505 ¥	170	-0.28	411 +	160	-0.25
413 🛉	490	-0.24	4134	500	-0.22	411 🕯	210	-0.28	505 🕈	170	-0.22
330 i	610	-0.30	420 4	650	0.20	505 t	260	-0.21	505+	180	-0,26
420 4	640	0.25	422 🕯	670	0.20*	422 1	350	-0.25	422 🕈	250	-0,23
422	650	0.25	330 +	770	-0.30	1.550 A	490	0.25	550 +	290	0.21*
5504	660	0.25	422 4	770	-0.20	541 4	510	0.25*	420 +	360	0.20*
404 1	780	0.26	550 A	790	0.21*	420+	530	0.25	541 +	430	0.21*
411.	810	-0.24	505 +	830	-0.23	422 +	650	0.25*	422 +	490	0.20**
5054	820	-0.25	411 \$	830	-0.23	330+	700	-0.32	413+	650	0.20*
						L		· .		·	
	123 59 ^{Pr} 64			27 61 ^{Pm} 66				5		129 62 Sm 63	
404 † '	0	0.32	532 🛊	0	0.30	413↓	0	0:32	411 🖸	0	0.30
541 ł	30	0.31	413 1	200	0.31	532 †	100	0.32	523 🕈	430	0.31
532 🕴 🕚	110	0.33	404 🕯	450	0.33	411 +	310	0.32	413+	430	0.31
420 🖡	290	0.32	411 \$	530	0.30	411 *	540	0.32	532 🕈	600	0.30
422 🕈	450	0.32	541 1	590	0.29	541 +	780	0.35	541 🕯	610	0.33
413 🕈	520	0.31	420 †	920	0.30	523 t	800	0.32	411 🛉	830	0.32
550 i	540	.0.29	523 t	1080	0.30	422 🛊	1000	-0.32	402 +	890	0.28
411 f 🗆	730	-0.32 [#]	422 🛊	1120	0.30	505 +	1100	-0.31	420 🕈	1070	-0.31
505 †	770	-0.32	550 A	1200	0.29	420 t	1110	- 0.31	503 1	1120	-0,31*
411 🕴	800	-0.32	411 🖸	1200	-0.32	422 🖡	1110	-0.32*	422 🖌	1220	-0.32*
411 #	810	0.32	505 🛊	1260	-0.32*	503 ŧ	1160	-0,72*	404 🖡	1440	0.28

На основании расчетов сделаны следующие выводы:

 Внутри области 50 ≤ 2, № ≤ 82 ядра деформированы, и энергия деформации достигает 6 Мэв.

2. Энергии ядер принимают минимальные значения, когда ядра имеют аксиально-симметричную форму.

3. Равновесная форма ядер может быть либо сплюснутой, либо вытянутой, причем разность энергий деформаций, соответствующих сплюснутой и вытянутой форме ядра, мала по абсолютной величине.

4. При изменении параметра деформации » от 0° до 60° соответствующего переходу от вытянутой формы к сплюснутой не обнаружено существенного энергетического барьера, поэтому эти ядра будут "мягкими" по отношению к » -деформациям.

5. Существуют квазичастичные возбужденные состояния, равновесная деформация которых отличается от равновесной деформации основного состояния.

Такие возбужденные состояния являются изомерами формы. В этой области ядер изомеры формы должны встречаться среди низколежащих возбужденных состояний, в том числе и в сильнодеформированных ядрах (с энергией деформации > 3 Мэв).

6. Основные результаты не изменяются как при расчетах с разными схемами одночастичных уровней, так и при расчетах разными методами.

<u>В третьей главе диссертации</u> приведены результаты расчетов зависимости энергии ядер, лежащих в области 28 $\leq z \leq$ 50 $\leq N$ \leq 82 от деформации /13/. Оказалось, что ядра, лежащие в середине этой области, деформированы. Результаты расчетов приведены в таблице IУ.

Из таблицы видно, что для большинства деформированных ядер равновесной является форма сплюснутого эллипсоида вращения. Энергии деформации этих ядер не превышают 4 Иэв, что свидетсльствует об их мягкости по отношению к *В* -деформациям.

Проведенное недавно экспериментальное изучение этих ядер^{14/} показало, что они действительно деформированы, так как вероятности B(E2)-переходов с первых 2⁺-состояний достигают большой величины. Для некоторых ядер они больше одночастичных в 200--500 раз, а такое усиление вероятностей характерно для сильнодеформированных ядер.

Надо отметить, однако, что экспериментальное изучение нейтроноизбыточных ядер представляет собой очень сложную задачу и ошибки пока велики.

Результаты расчетов позволили сделать следующие выводы:

I. Несферические ядра области 28 < Z < 50 < N < 82 оказались мягкими по отношению как к β, так и γ - деформациям. Наибольшая величина энергии деформации достигает 4 Мэв.

2. Минимум энергии ядер достигается либо при $\gamma = 0^{\circ}$, либо при $\gamma = 60^{\circ}$.

3. Для большинства ядер равновесной формой является сплюснутый эллипсоид вращения.

<u>В четвертой главе диссертации</u> изучается изомерный переход 8⁻→ 6⁺ в ядре ^{I30} Ва.

На основании расчетов зависимости энергии основного и возбужденных состояний ядра ¹³⁰ Ва была предложена следующая ин-

15

Таблица ЦУ

Равновесные деформации, квадрупольные моменты, энергия деформации и разность энергий деформации основных состояний ядер.

Ядро	٤,	Q_(E_)	Edet	DEdet	Ядро	٤,	Q_(E_)	Edef	DE Lef
-	-	баря	Мэв	Мэв -	- 5	_	барн	Изв	Мэв
108 Ru	-0,25	-2,3	2,0	-0,6	96 _{Kr}	-0,32	-2,3	2.7	-1.0
Ru	-0,24	-2,2	2,1	-0,7	98Xr	-0.32	-2.3	3.2	-1.2
"Ru	-0,24	-2,3	2,0	-0,8	100Kr	-0, 31	-2.2	3.4	-1.2
04					102Kr	-0,30	-2.2	3.4	-1.3
20	-0,27	-2,3	2, 3	-0,8	104 _{Kr}	-0,29	-2.2	3.2	-1.4
ollo	-0,26	-2,3	2,6	-0,9	106Kr	-0,28	-2.2	2.6	-1.4
10 10	-0,25	-2,2	2,7	-1,1					,-
1°µ0	-0,24	-2,2	2,6	-1,3	94 _{Se}	-0,29	-2,0	2,3	-0,6
12 _{No}	-0,23	-2,1	2,2	-1,3	96 _{Se}	-0,29	-2,0	2,8	-0.8
00,					98Se	-0,29	-2,0	3,0	-0,8
02_	-0,28	-2,3	2,2	0 , 9	Se	-0,28	-2,0	3,1	-1,0
ZF	0,28	-2,3	2,6	-0,9	102Se	_0,27	-1,9	2,9	-1.0
2r	-0,28	-2,3	2,9	-1,0	¹⁰⁴ Se	-0,26	-1,9	2.4	-1.0
Zr	-0,27	-2, 3	3,0	-1,2					
08 _{2r}	-0,26	-2,2	2,8	-1.4	94 _{Ge}	-0.27	-1.7	2.2	-0.4
10 _{2r}	-0,24	-2,1	2,3	-1.5	96 _{Ge}	-0.27	-1.8	24	
			·		98 _{Ge}	-0.26	-1 7	2.5	-0,5
Sr	-0,30	-2,3	2.4	-0.9	100 Ge	-0.24		2,2	-0,0
Sr	-0,30	-2.3	2.9	-1.0	102 _{Ge}	-0.21	-1.6	2.0	-0,0
² sr	-0,30	-2.4	3.1	-1.0			-1,0	2,0	-0,0
4 _{Sr}	-0,29	-2,3	3.2	-1.2				`	
⁵ Sr	-0,28	-2.2	3.0	-1.4					
⁸ Sr	-0.26	-2.1	2.4	-1.6					

терпретация этого изомерного перехода /15/: состояние 8⁻ является двухквазичастичным нейтронным состоянием n 7/2⁺ [404], n 9/2⁻ [514], и разряжается М2-переходом на состояние 6⁺ квазиротационной полосы.

Для описания этого перехода была предложена следующая модель/16/:

I. Основное состояние и уровни квазиротационных полос в ядрах переходных областей можно описывать в рамках модели Бора-Моттельсона с коллективным потенциалом, не зависящим от $\chi^{/7/}$ (рис. 3).

2. Связь коллективного движения ядра с квазичастичными возбуждениями приводит к дополнительной зависимости энергии возбужденных состояний от \mathcal{Y} такой, что некоторые возбужденные состояния (и, в частности, состояние 8⁻ в ядре ¹³⁰ Ва) можно рассматривать в рамках коллективной модели с эффективным потенциалом, имеющим глубокий минимум при $\mathcal{Y} = 0^{\circ}$ (или 60°) (рис.4). (Т.е. "жесткости" относительно \mathcal{Y} -колебаний/¹⁸/ основного и возбужденных состояний могут сильно отличаться).

Тогда волновые функции состояний 6⁺ и 8⁻ могут быть записаны в виде:

$$\mathcal{H}(6^{+}) = \frac{1}{\sqrt{16\pi^{2} 3! 19! !}} \mathcal{F}(\beta) \left[\left[\mathcal{L}_{2}^{*} \mathcal{L}_{2}^{*} \right] \mathcal{L}_{1}^{*} \right]_{6} \mathcal{H}$$
(2)

И

Рис. 4. Зависимость энергии низколежащего двухквазичастичного нейтронного состояния n 7/2⁺/4047, n 9/2⁻/5147 от В - деформации. 18

$$\int \beta^{4} \mathcal{F}(\beta) d\beta = 1, \qquad (5)$$

а \mathcal{A}_{S}^{+} - оператор рождения квазичастицы с квантовыми числами S; 10> вакуумное состояние.

При учете взаимодействия квазичастиц с γ - колебаниями, гамильтониан которого имеет вид /19/

$$H_{int} = -\hbar \omega_0 \beta_0 \gamma_0 \left(\frac{\gamma}{\gamma_0}\right) \sum_{s,s'} q_{s,s'}^{22} \alpha_s^* \alpha_{s'}^* v_{s,s'}, \quad (6)$$

и вклада в волновую функцию 6⁺ состояния компоненты с $\mathbf{K} = 6$, расчет по теории возмущений фактора задержки M2 перехода дает величину $F \ge 10^{-6}$, что хорошо согласуется с экспериментально измеренным/15/.

Надо отметить, что модель с не зависящим от коллективным потенциалом хорошо описывает отношение энергий уровней в квазиротационных полосах переходных ядер, что может служить хорошим подтверждением вывода о мягкости этих ядер по отношению к -деформациям.

Основние результаты диссертации опубликованы в работах /8-10, 13,16/ и обсуждались на всесоюзных и международных конференциях по ядерной физике.

I9

ЛИТЕРАТУРА

- I. В.Г.Соловьев. "Теория сложных ядер". Издательство "Наука". Москва, 1971 г.
- 2. В.Г.СОЛОВЬЕВ Phys. Lett. <u>21</u>, 311 (1966) Progress in Nucl. Phys. <u>10</u>, 239 (1967)
- Малов Л.А., Поликанов С.М., Соловьев В.Г. Ядерная физика, <u>4</u>, 528 (1966).
- 4. O.Bop. HCD 9, I (1955).
- 5. D.R.Bes and Z.Szymanski Nucl. Phys. 28, 63 (1961)
- 6. В.М.Струтинский. Ядерная физика, 3, 614 (1966)

Nucl. Phys. A95, 420 (1967):

Nucl. Phys. AI22, I (1968).

- 7. С.Г.Нильссон. Статья в сборнике "Деформация атомных ядер". Издательство ИЛ Москва 1958 г.
- Арсеньев Д.А., Малов Л.А., Пашкевич В.В., Соловьев В.Г., Известия АН СССР, сер. физ. XXXII (1968);
 Препринт ОМИИ Е4-3703 Дубна (1968).
- Арсеньев Д.А., Малов Л.А., Пашкевич В.В., Собичевски А., Соловьев В.Г. Ядерная физика <u>8</u>, 883 (1968).
 Contr. to Int. Symp. Nucl. Str. Dubna p. 92 (1968)
- IO. Арсеньев Д.А., Собичевски А., Соловьев В.Г., Nucl. Phys. <u>A126</u>, 15 (1969); Препринт ОМЛИ Р4-4054. Дубна (1968).
- II. T.V.Conlon Nucl. Phys. <u>AI61</u>, 289 (1971).
- I2. K.F.Alexander and W.Neubert Contr. to Int. Symp. Nucl. Str. Dubna p. 18 (1968)
- I3. Арсеньев Д.А., Собичевски А., Соловьев В.Г.
 Nucl. Phys. <u>AI39</u>, 269 (1969); Proc. of the Int. Conf. on Properties of Nuclear States, Montreal, 25-30 August Препринт ОМИИ Р4-4660. (1969)

I4.B.Cheifetz at all Phys. Rev. Letters 25, 38 (1970)

- I5. H.Rotter, K.F.Alexander, C.H.Droste, S.Morek, W.Neubert and S.Chojnacki Nucl. Phys. <u>AI33</u>, 648 (1969)
- 16. Арсеньев Д.А., Джолос Р.В. Программа XXI Всесоюзного совещания по ядерной спектроскопии и структуре ядра.
 Москва 27 января 4 февраля 1971 г.
 Препринт ОИЯИ Е4-5607. Дубна (1971).
- 17. L.Willets, M.Jean Phys. Rev. 102, 788 (1958)
- 18. А.С. Давидов. Возбужденные состояния атомных ядер. Москва 1967.

Давыдов А.С., Овчаренко В.И. Препринт ІТР -67-I4 (1967). 19. V.G.Soloviev Atom. Energy Rev. <u>2</u>, II7 (1965)

> Рукопись поступила в издательский отдел 15 апреля 1971 года.