ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ лаборатория высоких энергия Л-651

3303

М.Ф. Лихачев

ГАЗОВЫЕ ЧЕРЕНКОВСКИЕ СЧЕТЧИКИ И ИХ ПРИМЕНЕНИЕ В ЭКСПЕРИМЕНТАХ НА СИНХРОФАЗОТРОНЕ ОИЯИ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель кандидат физико-математических наук В.С. Ставинский

Дубна 1967

М.Ф. Лихачев

ГАЗОВЫЕ ЧЕРЕНКОВСКИЕ СЧЕТЧИКИ И ИХ ПРИМЕНЕНИЕ В ЭКСПЕРИМЕНТАХ НА СИНХРОФАЗОТРОНЕ ОИЯИ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель кандидат физико-математических наук В.С. Ставинский

WHEN ENCLENVE 120 പലി

В настоящее время газовые черенковские счетчики находят широкое применение в экспериментальной физике высоких энергий.

Разработка конструкций газовых черенковских счетчиков с целью их практического использования в экспериментальной физике высоких энергий, в частности, для выделения определенного сорта релятивистских заряженных частиц в несепарированных пучках синхрофазотрона ОИЯИ, мониторирования, измерения импульса частиц пучка и т.п. начались в ОИЯИ на заре развития газовых черенковских счетчиков /1/.

В черенковских счетчиках используются основные свойства излучения Вавилова-Черенкова. Угол излучения , θ , скорость заряженных частиц β и коэффициент преломления п для данной длины волны λ связаны соотношением:

$$\cos\theta = \frac{1}{n(\lambda)\beta}.$$
 (1)

Поскольку в газовых черенковских счетчиках угол излучения мал, $n \approx \beta \approx 1$ и $\theta \approx \sin \theta \approx tg \theta$, постольку соотношение (1) можно записать в виде:

$$\theta^2 = n^2 - 1 - \frac{m^2}{p^2},$$
 (2)

где m - и р -масса и импульс частицы.

(Здесь и в дальнейшем скорость света в вакууме С = 1).

Черенковские счетчики состоят из среды (радиатора), в которой образуется свет, оптической системы, собирающей его, фотоумножителей (ФЭУ), преобразующих свет в электрические импульсы, и электронной аппаратуры, регистрирующей эти импульсы. Пороговые счетчики имеют оптические системы, чувствительные к свету, испушенному в довольно широком интервале, и регистрируют частицы, скорость которых больше некоторой пороговой величины β_t , определяемой из соотношения (1) при условии, что $\cos \theta = 1$:

$$\beta_{t} = \frac{1}{n_{t}}$$

Δ

Δβ

Дифференциальные счетчики регистрируют частицы, скорость которых β_c удовлетворяет условию $\beta_c > \beta_t$ и заключена в узком интервале от $\beta_c - \frac{1}{2} \Delta \beta$ до $\beta_c + \frac{1}{2} \Delta \beta$.

Связь $\Delta \theta$ с $\Delta \beta$ или разрешающую способность такого счетчика по скорости получим, продифференцировав соотношение (1):

$$\beta = \theta_{\Delta} \Delta \theta_{\Delta} \,. \tag{1}$$

Разрешающая способность дифференциального счетчика будет тем лучше, чем меньше угол, на который настроена оптическая система и чем уже ее область чувствительности.

Если известно, что частицы имеют определенный импульс, то разрешение по скорости легко перевести в разрешение по массе

$$= -\frac{m^2}{p^2} \frac{\Delta m}{m} . \tag{4}$$

Селективные свойства черенковских счетчиков с газовыми радиаторами сохраняются вплоть до сверхвысоких энергий. Действительно, коэффициент преломления газа в принципе можно сделать сколь угодно близким к единице и, следовательно, при любой энергии использовать пороговые свойства излучения Вавилова-Черенкова.

С другой стороны, из соотношения (3) следует, что $\Delta \theta \gg \Delta \beta$, т.е. изменение угла значительно больше изменения скорости. Поэтому даже при малой разнице в скоростях можно настроить оптическую систему на определенный угол и регистрировать частицы с определенной массой, если только образуется достаточное количество света. Газовые среды в черенковских счетчиках обладают важным преимуществом по сравнению с твердыми и жидкими. Коэффициент преломления в газе зависит от плотности, которая изменяется в зависимости от давления и температуры. Это позволяет настраивать газовые счетчики в некотором интервале скоростей изменением газа или давления газа в счетчике. Свизь коэффициента преломления с плотностью выражается известным законом Лоренти-Лоренца:

$$\frac{n^2 - 1}{n^2 + 2} = \frac{R\rho}{M} , \qquad (5)$$

который в случае газов можно приближенно записать в виде:

$$n^{2} - 1 = \frac{3 R \rho}{M} = D \rho,$$
 (6)

где ρ – и M – плотность и молекулярный вес газа, R – константа для данного газа, называемая молекулярной рефракцией.

Поскольку в газовых черенковских счетчиках непосредственно используются специфические свойства излучения Вавилова-Черенкова, можно выделить наиболее важные общие функции, которые могут выполнять такие счетчики в различных экспериментах на современных ускорителях:

1) быстрый счет заряженных частиц (10⁶-10⁸) част/сек;

2) выделение релятивистских частиц с определенной массой или определенными массами на фоне (в том числе и интенсивном фоне) частиц с разными массами, обладающими одинаковыми импульсами;

 селекцию скоростей, т.е. регистрацию таких частиц, скорость которых заключена в некотором интервале;

4) селекцию направления, т.е. регистрацию таких частии, которые проходят через счетчик в определенном направлении в пределах определенного телесного угла;

5) выделение определенных взаимодействий релятивистских частиц с веществом (или свойств этих частиц) на фоне других взаимодействий, часто с последующим управлением, подачей команды на другие физические приборы, например, искровые камеры и т.п. и подачей информации со счетчиков на счетные, амплитудные, временные анализирующие устройства и вычислительные машины. В диссертации описаны конструкции дифференциальных и пороговых газовых черенковских счетчиков, разработанных в Лаборатории высоких энергий ОИЯИ, их характеристики, а также обобщен многолетний опыт их использования в различных физических экспериментах, выполненных на синхрофазотроне на 10 Гэв^{/2-10/} группой сотрудников в составе А.С. Вовенко, А.С. Грачева, Б.Н. Гуськова, Т. Добровольского, Б.А. Кулакова, А.Л. Любимова, Ю.А. Матуленко, И.А. Савина, Е.В. Смирнова, В.С. Ставинского, Сюй Юйн-чана, Хэ Юань-фу, Чжан Най-сеня и автора. Основные результаты диссертации опубликованы в работах^{/4,11,12/}.

Диссертация состоит из трех глав и приложения.

В первой главе рассмотрены основные положения теории газовых дифференциальных и пороговых черенковских счетчиков. Проанализированы следующие физические причины, влияющие на форму кривой эффективности и, следовательно, на разрешающую способность счетчиков:

размытие изображения частиц вследствие аберраций оптической системы; дисперсия показателя преломления газа-радиатора;

дифракция и многократное рассеяние;

разброс первичного пучка частиц по импульсу;

флуктуации в ионизационных потерях;

замедление частиц в радиаторе;

многократное рассеяние частиц в передней стенке счетчика; непараллельность пучка частиц, падающих на счетчик;

кольдевая диафрагма и светособирающая система.

Проанализированы следующие причины, определяющие фон в газовых черенковских счетчиках: дельта электроны; ядерное взаимодействие частиц; многократное рассеяние частиц на большие углы; рассеяние света из-за флуктуаций плотности газа-радиатора; потери энергии частиц при столкновении с атомными электронами; тормозное излучение; сцинтилляции газа; шумы ФЭУ и регистрация импульсов от непучковых частиц.

Обсуждаются общие требования к радиаторам газовых черенковских счетчиков.

Перечислены газы, наиболее подходящие для использования в счетчиках, и даны их характеристики. Рассмотрена возможность определения среднего импульса частиц пучка по порогу излучения Вавилова-Черенкова.

Описывается также метод и установка для отбора ФЭУ для пороговых черенковских счетчиков.

Во второй главе описаны конструкции и приведены характеристики газовых дифференциальных и пороговых счетчиков, разработанных в Лаборатории высоких энергий ОИЯИ.

Схемы конструкций газовых черенковских счетчиков показаны на рис. 1, 2 и 3.

Характеристики дифференциальных черенковских счетчиков, в которых излучение Вавилова-Черенкова распределяется на несколько ФЭУ, приведены в таблице 1.

Рассмотрены конструктивные особенности дифференциального счетчика ДС2. Приведены результаты исследования характеристик счетчиков ДС1 на пучке положительных частиц синхрофазотрона ОИЯИ с импульсом 4,75 Гэв/с, характеристики счетчиков ДС2, 1С1 и 2С1 на пучке положительных частиц с импульсом 3,19Гэв с и характеристики счетчиков 1С1 и 3С1 на пучке положительных частиц с импульсом около 4 Гэв/с.

На рис. 4 приведены кривые эффективности счетчика 1С1 в зависимости от давления в нем азота при температуре 25^оС. Импульс положительных частиц пучка равен 4,12 Гэв/с ±1%. По оси абсцисс отложено давление азота в счетчике. По оси ординат – отношения скорости счетов

1-- ξ

$$= \frac{S_1 + S_2 + S_3 + S_4 + 1DC2 + 1C1 - SK}{S_1 + S_2 + S_3 + S_4 + 1DC2 - SK}$$

$$\frac{S_1 + S_2 + S_3 + 1DC2 + 1C1}{S_1 + S_2 + S_3 + 1DC2},$$

а также

TAEJULAI

	Ι	5	5	4		2		5		2
ч	. Тип счетчика	702	IДС2	2ДС2	2ДС3	2ДС4	3ДC3	3ДC4 :	4 IIC 3	4 IIC4
2	. 4исло ФЭУ (7)	5	2	2	Μ	4	δ	4	n M	4
ň	. Максимальная длина счетчика (см.)	I62	144	I65	I65	I65	210	210	360	360
4.	. Вес счетчика без подставки- фермы (кг)	65	60	100	105	0II	0II	I25	160	165
۰ ۵	• Фокусное расстояние об ^и ек- тива (см)	105,6	105 , 6	100	001	001	I50	: I50	300	300
9	, Диаметр апертурной диафраг- мы (см)	16	16	19 , 8	19 . 8	8 • 6I	26	: 56	26	26
· ·	. Фокусное расстояние парабо- лических зеркал (см)	4,5	4,5	9	4 , 5	4 , 5	4,5	4 °5	4 0	4 1
œ	. Расстояние от фокуса пара- болических зеркал до оси счетчика (см)	21	12	IS	IS .	IS .	12	: I2	15	1 1
° 0	Максимальная ширина цели коль- цевой диафрагмы (см) Утол на которий можно на-	Ţ	N	m	Μ	M	3,5	3,5	Н	н
	стройть счетчик вс. IO ³ максимальный минимальный	66 , 5 66,5	75 58	75 45	75 45	75 52	65 40	65 49	38	38
								!		}

	2	E I		4	5		9		L	
II. Максимальный оптимальный диаметр пучка частиц (см)	9	9		8	9	4	ΙO	Ø	2	,
I2. Разрещавщая способность счетчика по скорости	- - -	•••								
максимальная (радиатор азот)	I,3.I0 ⁻³	6.10	ر ا ب	,10 ⁻⁵	(4+2) . I	0-2	§3+ 4,5)•I0_5	2,2	~1
13. Максимальное рабочее давление (кг/см2)	0†	04		50	20	20	15	i5	15	

......

Расположение аппаратуры на пучке положительных частии показано на рис.5. При давлениях азота в счетчике 1С1 $\leq 2 \ \kappa\Gamma/cm^2$, т.е. при давлениях ниже порога излучения π^+ -мезонов с импульсом 4,12 Гэв/с, счет обусловлен, в основном, примесью мюонов и электронов в мониторе и случайными совпадениями шумовых импульсов ФЭУ счетчика 1С1 с мониторными.

Из рис. 4 видно, что $\xi_1(P)$ в районе давлений >4,5 кГ/см² постоянна и равна ~ 0,08. Это обусловлено, в основном, регистрацией монитором слишком медленных частиц и случайными отсчетами в мониторе.

В случае кривой $\xi(P)$ из монитора выброшены слишком медленные частицы при помощи магнитного спектрометра и случайные совпадения при помощи большого сцинтилляционного счетчика SK с "дыркой" по пучку, включенного на антисовпадения.

Из рис. 4 видно, что $-\ln \{1 - \xi(P)\}$ есть линейная функция давления в интервале $\xi \approx 10^{-2}$ -0,999.

Эти экспериментальные данные, а также другие контрольные эксперименты, которые описаны в третьей главе диссертации, позволили использовать счетчик 1С1 для измерения среднего импульса пучков π^+ -мезонов непосредственно при проведении опытов по измерению дифференциальных сечений упругого $\pi^+ p$ -рассеяния назад ^{/8,10/}.

В третьей главе описаны примеры использования газовых черенковских счетчиков в экспериментах по изучению структуры в упругом $\pi^+ p$ -рассеянии назад^{/10/}, выделение и мониторирование π^+ -мезонов в интервале импульсов 2,05-4,72 Гэв/с и измерение средних импульсов частиц пучка черенковскими счетчиками.

На рис. 6 показана эффективность регистрации положительных частиц с импульсом 4,12 Гэв/с ±1% счетчиком 1ДС2 в зависимости от давления в нем этилена при температуре 25°С для различных мониторов.

Разброс частиц в пучке по углу равен <u>+</u>5 мрад. Доля протонов в пучке равна ~60%. Расположение счетчиков на пучке показано на рис. 5.

В таблице 2 приведены результаты измерений средних импульсов π^+ -мезонов, полученные при помощи счетчика 1С1 (рис. 7 и 8).

В окончательные результаты внесена поправка плюс (10+1) Мэв/с. Эта поправка учитывает потери импульса на ионизацию в жидком водороде (l =25см),

10

н						H	Ц	мишени	/10/	Lab/	0			1			
	•••••	Π	••••	ุณ	·••••	2	•••••	4	•••••	i S	9	•••••	7	• • •• ••	8	6	
ноти		2,056	1 A.	2,256		2,554		2,794	. ~	-6 † 6	3,20	5	3,453		3,666	3,828	
UDTOUT	+1	610 ° 0	+1	0 '0 I5	+1	010 , 0	+1	0,018	ۍ +۱	020	± 0,02		: 0,025	+1	0,026	± 0,034	
		Я		H		R		n								6	
		Ĺ				i		C D 1	•							2 8/12	

0,027

0.05

+1

0.04

+1

0,04

+1

.03

ō

+1

бли

-дододовондиж

средине

Mesohob

H

частиц

Средний импульс

счетчике

laa B

в воздухе между мишенью и счетчиком 1C1, в передней стенке счетчика и в стенке мишени.

В третьей главе также приведены результаты измерения полных сечений π⁺p -взаимодействия в интервале импульсов 2,69-4,75 Гэв/с^{/4/}.

Эксперимент проведен на пучках положительных частип. На рис. 9 показано расположение аппаратуры на пучке. Выделение и мониторирование падающих на жидководородную мишень (H_2) π^+ -мезонов осуществлялось газовым пороговым черенковским счетчиком (П-1С1) и сцинтилляционными счетчиками S_1 (6 9 см), S_2 (% 6 9 см) и S_3 (6 6 см), включенными на совпадения. Спинтилляционный счетчик S_7 , расположенный за свинцовым поглотителем (60 см), включался на антисовпадения с мониторными, чтобы исключить μ -мезоны из пучка. Сцинтилляционные счетчики S_4 и S_5 (6 14,5 см) и $S_6 \cdot$ (6 18 см) вместе с мониторными регистрировали π^+ -мезоны, прошедшие водородную мишень (11,7 ± 0,06) г/см² без взаимодействия. Счетчики S_5 , S_6 и S_4 вырезали из центра мишени телесные углы 1,89; 2,28 и 3,95 мстерад, соответственно.

Средний импульс падающих на жидководородную мишень π^+ -мезонов определялся при помощи магнита (М), предварительно проградуированного методом токонесущей нити и газовыми черенковскими счетчиками ДС и 1С1. Средние эначения импульсов, найденные этими двумя методами, совпадают друг с другом в пределах погрешностей измерения, Результаты приведены в таблице 3.

		Таблиц	а 3			
Средний импульс Гэв/с в центре Н2	2,69	3 , I4	3 , 46	3,70	4,36	4.75
Опиока в определе- ний сред- него им- пульса	± 1,8% =	± 1,2 % ±	I,5 % ±	I , 1%	± 0,8 %	± 0,9%

Разброс пучка по импульсу не превышал <u>+</u>2%. Он складывался из разброса частии по импульсу, определявшегося:

12

1) конечным временем сброса протонов на медные мишени Т₁ и Т₂, которое колебалось от 50 до 100 мсек, при обновременном росте магнитного поля в ускорителе;

 конечной апертурой магнитной анализирующей системы, состоящей из магнита (М) и двух квадрупольных линз (Q);

ионизационными потерями в жидководородной мишени (+25 Мэв/с).

Пучок положительных частиц магнитным полем ускорителя и квадрупольными линзами фокусировался в центр жидководородной мишени. Размеры пучка определялись сцинтилляционным телескопом (S₁, S₂, S₃). Угловая расходимость пучка была не выше 15 мрад.

В таблице 4 приведены результаты измерений полных сечений π^+ р взаимодействия, полученные линейной экстраполяцией в нулевой телесный угол.

Таблица 4

Murry HLO		Гэв/с	•				
пионов	2,69	3,14	3,46	3,70	4,35	4,75	
в лас. Системе	± 0,06 ±	0,06	± 0,07 ±	0,08	± 0,09	± 0,10	
~	29 ,3	29,6	29,3	28,4	26 , I	27,4	
Otot. MO	±0,5 ±	0,4	± 0,4	± 0,4	± 0,9	± 0,5	•

Для каждого импульса измерения производились последовательными сериями "водород-макет". Ошибки в величинах $\sigma_{tot}(\pi^+p)$, приведенные в таблице 4, включают: а) статистические, которые не превосходили <u>+0,25</u> мб, в) ошибки, обусловленные экстраполяцией сечений в нулевой телесный угол, с) ошибки в поправке на кулоновское рассеяние. Ошибки, обусловленные загрязнением π^+ – мезонов пучка другими частицами и случайными совпадениями, пренебрежимо малы. Поправка на кулоновское рассеяние была измерена для импульсов 4,75; 4,35; 3,70 и 3,14 Гэв/с (водородная мяшень заменялась эквивалентной по толщине в радиационных единицах свинцовой пластинкой). Эта поправка практически не зависит от импульса π^+ -мезонов и приблизительно равна нулю для

телесных углов 3,95 и 2,28 мстерад и равна (0,43+0,10) мб для 1,89 мстерад.

Из сравнения результатов, приведенных в таблице 4, с данными Лонго и /13/ и Дардела др. /14/ следует:

 экспериментальные данные находятся в удовлетворительном согласии друг с другом;

 данные указывают на нерегулярное поведение полного сечения "р взаимодействия в интервале импульсов 2-4 Гэв/с;

В связи с этим отмечено, что исследование характера асимптотического поведения $\sigma_{\rm transform}(\pi^+p)$ справедливо для импульсов >4 Гэв/с.

В последующих тщательных измерениях σ_{tot} ($\pi^+ p$), проведенных Дидденсом и др. (1963 г.) и Цитроном и др. (1964 г.), был обнаружен резонанс в этой области.

Для иллюстрании на рис. 10 приведены суммарные экспериментальные данные по поведению полных сечений взаимодействия $\sigma_{tot}(\pi^+p)$ в зависимости от кинетической энергии π^+ -мезонов в интервале от 0,5 до 7 Гэв. (Рис. 10 взят из работы /17/).

В приложении приведен справочный материал, фотографии черенковских счетчиков и светособирающих систем для дифференциальных газовых черенковских счетчиков.

Краткие выводы

Из рассмотренных общих принципов, на которых основана работа черенковских счетчиков, следует, что в области высоких энергий перспективным направлением является разработка черенковских счетчиков с газовым радиатором.

Описанные в диссертации газовые дифференциальные черенковские счетчики характеризуются разрешающей способностью по скорости (полная ширина на полувысоте)

 $\Delta\beta = 2.2 \cdot 10^{-5} - 2.10^{-8} .$

Это обеспечивает (в пучках частиц с определенным импульсом) выделение *п* -мезонов или К -мезонов или протонов (антипротонов) в интервале импульсов (1-50) Гэв/с, (3-50) Гэв/с и (5-50) Гэв/с, соответственно.

14

Описанные в диссертации газовые пороговые черенковские счетчики обладают разрешающей способностью по скорости до $\Delta \beta = 10^{-4}$ и максимальной эффективностью регистрации ~0,9998, что позволяет при использовании их в режиме антисовпадений подавить регистрацию легких (π , μ , e) частиц в ~ 5000 раз.

Предложенные конструкции газовых черенковских счетчиков несложны в изготовлении и удобны в эксплуатации.

Таким образом, газовые черенковские счетчики полностью обеспечили решение ряда физических задач, выполненных на синхрофазотроне ОИЯИ.

2. При помощи описанных в диссертации газовых черенковских счетчиков на синхрофазотроне ОИЯИ были получены экспериментальные данные в том числе:

 а) о дифференциальных сечениях упругого рассеяния π⁺ -мезонов на протонах на угол 180⁰ при импульсах π⁺-мезонов 3,15; 4,10 и 4,85 Гэв/с;

б) о структуре в упругом рассеяния π^+ -мезонов на протонах на угол 180[°] в интервале импульсов π -мезонов (2,05-4,70) Гэв/с;

в) о полных сечениях взаимодействия К⁺ и п⁺ -мезонов на протонах в интервале импульсов 2,69-4,75 Гэв/с.

Литература

- А.С. Вовенко, Б.А. Кулаков, М.Ф. Лихачев, Ю.А. Матуленко, И.А. Савин, В.С. Ставинский. УФН, <u>81</u>, 454-506 (1963).
- Chzan Nai-sen, Sul Yuin-chan, M.F.Likhachev, V.S.Stavinsky, Proc. of the 1950 Ann. Intern. Conf. on High Energy Physics at Rochester, p. 444 (1960).

М.Ф. Лихачев, В.С. Ставинский, Сюй Юйнь-чань, Чжан Най-сень. ЖЭТФ, 41, 38 (1961).

- А.С. Вовенко, Б.А. Кулаков, М.Ф. Лихачев, А.Л. Любимов, Ю.А. Матуленко, И.А. Савин, Е.В. Смирнов, В.С. Ставинский, Сюй Юйнь-чан, Чжан Най-сень, Препринт ОИЯИ Д-721 (1961).
- A.S.Vovenko, B.A.Kulakov, M.F.Likhachev, Yu.A.Matulenko, I.A.Savin, E.V. Smirnov and V.S.Stavinsky, 1962 Intern.Conf. on High-Energy Physics at CERN, p. 385, Geneva, 1962.
- B.A.Kulakov, M.F.Likhachev, A.L.Lyubimov, Yu.A.Matulenko, I.A.Savin and V.S.Stavinsky, 1962 Intern.Conf. on High-Energy Physics at CERN, p. 584, Geneva, 1962.

- 6. М.Ф. Лихачев, В.С. Ставанскай, Препринт ОИЯИ Р-2423, Дубна 1965.
- 7. И.А. Савин, А.С. Вовенко, Б.Н. Гуськов, М.Ф. Лихачев, А.Л. Любимов, Ю.А. Матуленко, В.С. Ставинский, Сюй Юй-чан. Препринт ОИЯИ Р-2127, Дубна 1965. Phys.Lett., 17, 68, (1965).
- А.С. Вовенко, Б.Н. Гуськов, М.Ф. Лихачев, А.Л. Любимов, Ю.А. Матуленко, В.С. Ставинский. Препринт ОИЯИ Р-2327, Дубна 1965; ЖЭТФ, Письма в редакцию, т. II, вып. 9, 409 (1965).
- А.С. Вовенко, А.Г. Грачев, М.Ф. Лихачев, Ю.А. Матуленко, И.А. Савин, Сюй Юйн-чан, Хэ Юань-фу. ЯФ, <u>1</u>, 681 (1965).
- А.С. Вовенко, Б.Н. Гуськов, Т. Добровольский, М.Ф. Лихачев, А.Л. Любимов, Ю.А. Матуленко, В.С. Ставинский. Препринт ОИЯИ Р1-3008, Дубна 1966. Phys.Lett., 24B, 203, (1967)
- 11. M.F.Likhatchev, V.S.Stavinsky Nucl.Instr. and Meth. 20, 261 (1963).
 - 12. М.Ф. Лихачев, И.А. Савин, В.С. Ставинский. Препринт ОИЯИ Р-2528, Дубна 1965.
 - 13. H.J.Longo and B.J.Moyer, Phys. Rev., <u>125</u>, 701 (1962).

16

- 14. G.von Dardel et al. Phys. Rev.Lett., 7, 127 (1961).
- 15. A.N.Diddens et al., Phys.Rev.Lett., 10, 262 1963.
- 16. A.Citron et al. Phys.Rev.Lett., <u>13</u>, 205, (1964).
- 17. M.N.Focacci and G.Giacomelli, 66-18, Nucl.Phys.Divis,CERN, (1966).

Рукопись поступила в издательский отдел 25 апреля 1967 г.

Рис. 1. Схемы конструкций дифференциальных газовых черенковских счетчиков:

ДС1: 1 - стальная труба; 2 - корпус счетчика; 3, 4 - фланцы; 5 - ФЭУ-24; 6 - плексиглассовое окно; 7 - полусферические крышки из нержавеющей стали 1 мм; 8 - сферическое зеркало (1 = 40 см).

ДС2: 1 - дюралюминиевый корпус; 2 - сферическое алюминированное зеркало; 3 - параболические зеркала; 4 - кварцевые окна; 5 - фотоумножители ФЭУ-33; 6 - магнитный экран; 7, 8 - дюралюминиевые фланцы толщиной 5 мм.

ŝ parma G Pa30B cdel n n Cxe 3 Рис.

Рис. 3. Схемы конструкций пороговых газовых черенковских счетчиков. 1, 10 - фланцы и крышки счетчика; 2 - приспособление для крепления сферического зеркала; 3 - сферическое зеркало; 4 - корпус; 6 - приспособление для крепления кожуха ФЭУ; 7 - окно; 8 - апкоминированный отражатель; 9 - отверстие для наполнения счетчика газом. М - образцовый манометр. 1С1 и 2С1 - изготовлены из дюралюминия, внутренияя новерхность отполярована под зеркало, 3С1 - стальной.

18

Рис. 4. Эффективность счетчика 1С1 в зависимости от давления в нем азота.

Рис. 5. Расположение аппаратуры на пучке положительных частии.

20

Рис. 6. Эффективность регистрации положительных частии с импульсом 4,12 Гэв/с счетчиком 1ДС2 в зависимости от давления в нем этилена. а, , b, - первым, а₂, b₂ - вторым и а₁₂, b₁₂ и с₁₂ - двумя ФЭУ счетчика 1ДС2, включенными на совпадения с монитором. Монитор а -

 $(S_1 + S_2 + S_3 + S_4 + 1C1), b - (S_1 + S_2 = + S_3 + S_4) c_2 - (S_1 + S_2 + S_3 + S_4 - 1C1)$ B cyetyuke 1C1 - asor P = 6 kF/cM.

Рис. 7. К измерению средних импульсов п⁺ -мезонов при помощи счетчика 1С1. По оси ординат отложена неэффективность, по оси абсписс - давление этилена при температуре 20°С.

Рис. 8. К измерению средних импульсов π^+ -мезонов при помощи счетчика 1С1. По оси ординат отложена неэффективность, по оси абсцисс давление азота при температуре 20°С.

Рис. 9. Расположение аппаратуры на пучке при измерении полных сечений взаимодействия "-мезонов на протонах.

22

Рис. 10. Зависимость полных сечений взаимодействий π^+ -мезонов на протонах от кинетической энергии π^+ -мезонов /17/.