

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

3-84-484

Н.П.Балабанов, Т.С.Зварова, Н.А.Лебедев, С.Г.Маринова, М.П.Митриков, Р.С.Митрикова, Ю.П.Попов, В.И.Салацкий

ПОИСКИ РЕАКЦИИ (n,a) НА РАДИОАКТИВНЫХ ЯДРАХ ПРИ РЕЗОНАНСНЫХ ЭНЕРГИЯХ НЕЙТРОНОВ

В последнее время в нейтронной спектроскопии наблюдается интерес к исследованиям с радиоактивными ядрами-мишенями $^{/1-3}$ (Особенно перспективным представляется использование радиоактивных нейтронно-дефицитных ядер-мишеней при изучении реакций (n,p) и (n,a), поскольку возрастание в этом случае энергии связи нейтрона приводит к увеличению энергии вылетающих частиц, а следовательно, и проницаемости кулоновского барьера. По этому пути уже пошла коллаборация ИЗОЛЬДА /ЦЕРН/-ИЛЛ /Гренобль/, измеряя спектры α -частиц или протонов, вылетающих после захвата тепловых нейтронов. Реакция (n, α) пока обнаружена для двух радиоактивных ядер-мишеней - $\frac{87}{4}$ и $\frac{65}{2n}$

Нами была предпринята попытка обнаружения реакции (n, α) на радиоактивных изотопах при резонансных энергиях нейтронов. Эти исследования представляют интерес в связи с тем, что заметно расширяют круг ядер, на которых возможна регистрация реакции (n, α) ,а также свозможностью нейтронно-спектроскопических исследований ядер, удаленных от полосы бета-стабильности.

В настоящей работе приводятся результаты первых измерений реакции (n,α)на радиоактивных изотопах при резонансной энергии нейтронов.

МЕТОДИКА ЭКСПЕРИМЕНТА

E

Выбор конкретных ядер в значительной мере определяется требованием относительно большого значения проницаемости кулоновского барьера для «-частиц. С этой точки зрения благоприятными оказались изотопы ⁶⁵Zn и ¹⁴⁵8m.

Радиоактивный изотоп ⁶⁵Zn предоставлен Всесоюзным обществом "Изотоп". Мишень, активностью около 1 милликюри и площадью 1 см², приготовлена методом осаждения на лавсан толщиной 50 мкм хлористого цинка.

Изотоп 145 Sm получали по реакции 143 Nd (a, 2n) 145 Sm путем облучения мишени из окиси неодима /с содержанием 143 Nd 82,3%/ a -частицами с энергией 35 МэВ на циклотроне У-120М Института ядерных исследований ЧСАН в Ржеже. Время облучения составило 150 ч при токе 6 мкА. Выделение элементов производилось в две стадии методом ионообменной хроматографии. Химический выход 145 Sm в процессе его выделения из мишени составил 90+2%. Для изготовления мишени из 145 Sm раствор препарата мелкими каплями переносили на алюминиевую фольгу толщиной 15 мкм и равномерно распределяли по поверхности. Суммарная площадь с нанесенным

объединеница институт пасрыма исслед варин БИЕЛИК ЛЕНА

1

препаратом составляла около 6 см². Пока удалось получить только количество ¹⁴⁵Sm, соответствующее всего 10¹⁴ ядрам, что на порядок меньше, чем необходимо по оценке для регистрации α -частиц из реакции ¹⁴⁵Sm(n, α). Поэтому измерения на мишени ¹⁴⁵Sm следует принимать как предварительные.

Поиски реакции (n, a) проводились на пучке нейтронов импульсного реактора ИБР-30, работавшего в качестве бустера ускорителя ЛУЗ-40. Определение энергии нейтронов как функции времени пролета проводилось по известным энергиям резонансов ⁵⁵Mn и ¹¹⁵In, использованных в качестве нейтронных фильтров при снятии кривых пропускания. Все эксперименты были проведены на пролетной базе 30 м.

В качестве детекторов *а*-частиц использовались полупроводниковый детектор и ионизационная камера, характеристики которых приведены в следующем разделе. Во всех экспериментах также проводились измерения на мишенях из ⁶LiF и ²⁸⁵U, которые использовались для энергетической калибровки детекторов, а реакция ⁶Li(n,t) ⁴He - и в качестве опорной.

Характеристики мишеней и некоторые другие методические данные приведены в табл.1,

Таблица 1

Характеристики мишеней и условия измерений

Ядро- мишень	Е_а, МэВ	Вид образца	Число ядер в мишени	Тип детек- тора	Время изме- рения, ч.
⁶⁵ Zn	$a_0 - 6,09$ $a_1 - 4,92$	Zn Cl ₂	9,9·10 ¹⁴	ппд ик	189 153
¹⁴⁵ Sm	10,66	Sm ₂ O ₃	2,2.1014	ИК	123
⁶ Li - калиб.	$E_{t} = 2,73$		$1,9\cdot10^{17}$ 2,7 \cdot10^{19}	ик ппд	-

ДЕТЕКТОРЫ

Такие особенности исследуемых нами реакций (n, a), как малые сечения, большой фон от конкурирующей реакции (n, γ) , малый пробег *а*-частиц в веществе мишени, приводят к ряду методических трудностей. Это вызвало необходимость в разработке высокоэф-фективных детекторов и спектрометров для регистрации *a*-частиц /6/.

Переход к исследованиям реакции (п.а) на радиоактивных мишенях потребовал создания нового спектрометра с малым собственным фоном и стабильными характеристиками в течение нескольких суток измерений. К этим требованиям добавляется и необходимость соблюдения дозиметрических правил, что ставит ограничение на активность мишени и, соответственно, на число исследуемых ядер. Оказалось выгоднее использовать мишени с минимально возможной площадью. Это улучшает фоновые условия на нейтронном пучке, которые в нашем случае почти полностью определяют порог обнаружения реакции (п.а).

АЛЬФА-СПЕКТРОМЕТР НА ОСНОВЕ КРЕМНИЕВОГО ПОВЕРХНОСТНО-БАРЬЕРНОГО ДЕТЕКТОРА

Схема эксперимента представлена на рис.1. Конструктивно вакуумная камера /5/ выполнена в виде цилиндра диаметром 196 мм и длиной 200 мм. Внутри корпуса находятся два полупроводниковых детектора /1/, позволяющие делать одновременно независимые измерения на разных мищенях. Расстояние детектор - мишень может меняться от 6 до 40 мм, что дает возможность использовать мишени различных размеров. Применение дополнительного сходящегося коллиматора /4/, позволяющего сузить пучок нейтронов от 3 см на входе до 1 см в конце, разрешает более оптимально использовать нейтронный пучок, оставляя в "поле зрения" мишени большую часть замедлителя ИБР-30 - источника нейтронов и уменьшая при этом поверхность спектрометра, находящуюся в пучке. Последнее существенно для уменьшения фона. Сам коллиматор находится вне нейтроновода, на общем столе вместе с камерой.

Конструкция держателя мишеней /2/ позволяет иметь одновременно 4 мишени в камере. Для крепления мишеней сделан специаль-

Рис.1. Схема эксперимента. 1 – полупроводниковые детекторы, 2 – вращающийся держатель мишеней, 3 – свинцовая защита, 4 – сходящийся коллиматор, 5 – корпус камеры, 6 – устройство передвижения детектора, 7 – юстировочный стол, ный шток, позволяющий не только поворачивать мишени, но и смещать их по горизонтали. Это дает возможность ставить их под различными углами к пучку нейтронов, изменяя эффективную толщину мишеней для нейтронов, Давление в камере составляло 10^{-2} мм рт.ст.

Детекторы, которые мы использовали, имели площадь 9 см² с чувствительным слоем 200 мкм и собственное разрешение^{*} 50-60 кэВ. Разрешение по энергии α -частиц в рабочих условиях на пучке нейтронов, при расстоянии между мишенью и детектором 10 мм, составляло 140 кэВ, против 90 кэВ без радиоактивного изотопа. Эффективность детекторов при указанном расстоянии $\epsilon \approx 0,25$.

ДВУХСЕКЦИОННАЯ ИОНИЗАЦИОННАЯ КАМЕРА

Двухсекционная ионизационная камера изготовлена нами для получения возможности работать с большой эффективностью и с большими размерами радиоактивных мишеней. Схема камеры и ее установка на пучке нейтронов показаны на рис.2. Конструктивно камера выполнена в виде полого цилиндра из дюралюминия /4/, внутренним диаметром 250 мм и длиной 500 мм, закрытого с двух сторон крышками. Каждая секция представляет собой систему плоскопараллель-

Рис.2. Схема двухсекционной камеры и ее установки на пучке нейтронов. 1 – нейтроновод, 2 – внутренние коллиматоры, 3 – внешний коллиматор, 4 – корпус ионизационной камеры, 5 – собирающий электрод, 6 – сетка, 7 – держатель мишеней. Характеристики использованных детекторов

Вид де- тек- тора	Разрешен /для эни тиц 4,8 собст- венное	ние детектора, ергин а-час- МэВ/, кэВ на пучке нейтронов	Эффективность к а-частицам из реакции (п,а), %	Фон на пучке /интервал энергии а- частиц 4 +6,3 МэВ/ имп/мин	* Пло- щадь под- лож- ки, см ²
шд	50-60	90	25	0,18	3
ИК	95	105	50	0,48	100

*Фоновые измерения проведены в одинаковом интервале по энергии нейтронов на пролетной базе L = 50 м при мощности реактора W = 5 кВт.

ных электродов: собирающий электрод /5/, сетка /6/ и высоковольтный электрод /7/. В качестве собирающего электрода использована фольга диаметром 80 мм на изоляционном держателе из стеклотекстолита. Сетка изготовлена из позолоченной вольфрамовой проволочки /диаметром 0,1 мм/, намотанной на кольцо из фольгированного стеклотекстолита /внутренним диаметром 100 м/ с шагом 2 мм. Высоковольтный электрод общий для обеих секций, к нему с одной стороны прикреплена мишень из исследуемого изотопа, с другой - мишень из LiF,используемая для калибровки потока нейтронов. Объем ионизационной камеры заполнен рабочим газом Ar + 3% СО_Ф при давлении 1,5 атм.

Сравнение характеристик камеры с полупроводниковыми детекторами и ионизационной камеры дано в табл.2,

Для усиления импульсов с полупроводникового детектора и ионизационной камеры использовались зарядочувствительные предусилители. Параметры RC-формировки подбирались для получения наилучшего энергетического разрешения детекторов в рабочих условиях на пучке нейтронов и в присутствии радиоактивной мишени.

Двухмерная информация об энергии регистрируемых частиц и о времени пролета захваченных нейтронов анализировалась с помощью измерительного модуля на базе ЭВМ "Электроника 100/16И" и записывалась на магнитную ленту. Сортировка и окончательная обработка экспериментальных данных проводились на ЭВМ CDC-6500.

5

^{*} Разрешение детектора измерено с помощью образцовых спектрометрических а-источников /ОСАИ/.

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

В результате измерений получены спектры по времени пролета выходов заряженных частиц в определенных амплитудных окнах, соответствующих α -переходам в основное и первое возбужденное состояния / α_0 - и α_1 -переходы/.

На рис.3 сплошной гистограммой представлен времяпролетный спектр выхода заряженных частиц из реакции 65 Zn(n,a) в амплитудном окне a_0 -перехода, просуммированный по 10 каналам при ширине канала 2 мкс; пунктиром обозначен спектр фона, который был вычислен путем нелинейной интерполяции числа отсчетов в соседних амплитудных окнах /при $E_a < E_{a_0}$ и $E_a > E_{a_0}$ / в исследованный интервал энергии a-частиц.

На экспериментальных спектрах резонансы не видны. Следовательно, можно дать лишь верхнюю оценку сечений реакции (n,a) на исследованном ядре. Точность полученных оценок практически определяется уровнем фона,

Рис.3. Временной спектр в амплитудном окне a_0 перехода для реакции ${}^{65}Zn(n,a){}^{62}Ni \sim сплошная гистограмма;$ $пунктиром обозначен спектр фона; <math>E_n$ - энергия нейтронов в эВ.

Таблица З

Оценки верхних границ параметра В и сечения о

Энергия нейтронов, эВ	35 ÷ 40	115 ÷ 130	650 ÷750
$\mathbf{B} = 2\mathbf{g}\Gamma_{\mathbf{n}} \Gamma_{\alpha} / \Gamma, \mathbf{B}$	4 • 10 ⁸	4,6·10 ⁻²	2,1
о^Т ла, б	1,5	1,7	2,1

Так как положения резонансов (Е) и их нейтронные параметры /нейтронная и полная ширины - Γ_n и Γ / для исследованных ядер неизвестны, мы используем следующую процедуру обработки:

- выбираем несколько энергетических интервалов на времяпролетном спектре /где эффект плюс фон наиболее отличается от фона/, отмеченных на рис.3 стрелками;

- предполагая, что в каждом из выбранных интервалов есть только один резонанс, можем дать верхнюю оценку величины $B = 2g\Gamma_{D} \Gamma_{C} / \Gamma$ по формуле

$$B = C \frac{(n.t.S)_{Li}}{(n.t.S)_{Zn}} \frac{N_{\alpha}}{N_{t}} E_{0}^{1,9} .$$
 (1/

где С- константа, п - число ядер на 1 см², t - время измерений, S - площадь мишени, N_t - выход тритонов из реакции ⁶Li(n,t)⁴He. За величину N_{α} взята разность эффекта плюс фон и фона плюс двойная статистическая ошибка разности.

Оценки параметра В для ядра-мишени ⁶⁵Zn, полученные по формуле /1/, приведены в табл.3, Верхняя оценка дается с вероятностью 95%.

Используя формулу Брейта-Вигнера, для сечения реакции мы получили верхние оценки вклада "предполагаемых" резонансов в сечение в тепловой точке, $\sigma_{n\alpha}^{T}$ /см. табл.3/. Сечение реакции $^{65}Zn(n,\alpha)$ на тепловых нейтронах было недавно измерено Эмсаллемом и др. $^{/5'}$. Авторы дают сечение $\sigma_{3 K C \Pi}^{T}(n,\alpha)/2,00+0,15/$ б. Можно отметить, что этот экспериментальный результат и наши верхние оценки, с одной стороны, не противоречат друг другу, а с другой наши оценки, видимо, недалеки от реальных сечений, правда, в случае, если тепловое сечение не определяется "отрицательным" резонансом.

Результаты предварительных измерений, проведенных на мишени 145 $g_{\rm m}$ дают возможность оценить только верхнюю границу величин сечений реакции (n.a). В частности, для тепловых нейтронов получается $\sigma_{\rm na}^{\rm T} \leq 1,2$ б.

ЗАКЛЮЧЕНИЕ

Измерения, результаты которых были приведены, являются лишь начальным этапом в поиске реакции (n, a) на радиоактивных ядрах при резонансных энергиях нейтронов. Имеющиеся данные и анализ экспериментов показывают, что задача исследования реакции (n, a)на радиоактивных изотопах в ближайшее время может быть решена.

У нас уже подобрано несколько нейтронно-дефицитных изотопов мишеней для ближайших измерений на резонансных нейтронах. Основными критериями при выборе ядер-кандидатов являются:

а/ большая проницаемость кулоновского барьера для α -частиц, $P_{a} \geq 10^{-5}$,

б/ относительно большой период полураспада, Т., >10 дней.

Перспективные ядра и некоторые их характеристиќи перечислены в табл.4. В последнем столбце таблицы приводятся экспериментальные результаты, полученные на тепловых нейтронах /4,5,7,8/ а в предпоследнем – значения сечений реакции (n, α), рассчитанные на основании подхода Ю.В.Петрова и А.И.Шляхтера /9/. По существу, это статистический подход, который позволяет делать оценки сечения ядерных реакций для тепловых нейтронов с помощью средних параметров ядра-мишени. Ожидаемая величина сечения $\sigma^*(n, \alpha)$

$$\sigma^{*}(n,a) = \frac{\pi^{3}}{k} \sqrt{\frac{E}{E}} \left[\frac{g(J_{1}) \overline{\Gamma}_{n}^{0}(J_{1}) \overline{\Gamma}_{a}(J_{1})}{\overline{D}^{2}(J_{1})} + \frac{g(J_{2}) \overline{\Gamma}_{n}^{0}(J_{2}) \overline{\Gamma}_{a}(J_{2})}{\overline{D}^{2}(J_{2})} \right], \qquad /2/$$

где k - волновое число нейтрона, g - статистический фактор, $\vec{\Gamma}_{a}$, $\vec{\Gamma}_{n}^{0}$ - средние альфа- и нейтронная приведенная ширины, \vec{D} - среднее расстояние между уровнями с данным спином J.

Среднее расстояние между s -резонансами рассчитывается на базе модели независимых частиц $^{/10/}$. Значения силовой функции $S_0 = g \overline{\Gamma}_n^{0} / \overline{D}_{3KCII}$ где $\overline{D}_{3KCII} = g \overline{D}(J)$, получены при интерполяции по соседним ядрам данных из атласа $^{/8/}$. Средние α -ширины рассчитываются по статистической теории

$$\Gamma_a = \frac{D(J)}{2\pi} \Sigma P_{\ell} \quad . \tag{3}$$

 $/\ell$ - орбитальное число α -частиц/, а проницаемость P - в квазиклассическом приближении. В табл.4 приведены расчетные значения P_a и $\vec{\Gamma}_{\alpha}$ для более благоприятного спина составного ядра,

Удовлетворительное согласие данных, приведенных в последних двух колонках табл.4 для первых четырех ядер, показывают, что вероятностный подход $^{/9/}$ к оценке тепловых сечений σ^* может быть использован для выбора благоприятных для исследования реакции (n, α) ядер.

LTDO-	T1/2	А, мистори (при n =IO ^{I5})	۲. عر	مة	Γ _α , aB	б°(п, а) барн	ອັ ₃ kcn(n, α) ອັຊຊາສ
n _{Ar}	Зб н	6,2	ţ.	3,6.10 ⁻²	I24,8	14	1970±330 /4/
¥ q	1,28.10 ⁹	4,6.I0 ^{-I0}	9/2+	5,1.10 ⁻⁴	I,I4	0,4I	0,39±0,08 /7/
⁹ Ni	8. I0 ⁴ r	7,3.10 ⁻⁶	Ц	2,1.10 ⁻³	397	I,4	12, 3±0,6 ^{/8/}
5 Z n	245 д	6'0	٣	I,6.10 ⁻³	0,27	I,5	2,00±0,15 /5/
2 Ng	2,6r	0,23	5/2+	1,3.10 ⁻³	1,1	0,24	ı
L Ca	I.IO ⁵ r	6.10 ⁻⁴	٣	I,7.I0 ⁻²	27,6	п,2	
⁵⁶ Co	78,8 д	2,7	9/2+	I,7.10 ⁻⁵	0,26	0,06	1
'I _{Ge}	II,2 д	19,2	ч	I,5.I0 ⁻⁴	4,7.I0 ⁻³	0,14	ı
75 Se	II8,5 д	I,8	ta	7,1.10 ⁻⁵	I,9.I0 ⁻³	0,03	ı
³³ Mo	3.I0 ³ 5	1,9.I0 ⁻⁴	t.,	7,5.I0 ⁻⁵	4,2.I0 ⁻³	0,03	. 1
144 Pm	349,2 д	0,62	-2/6	I,5•10 ⁻⁵	I.7.10 ⁻⁵	0,04	1
I45 Sm	340 д	0,63	ĥ	1,7.10 ⁻⁵	7,4.10-5	0,02	ı
148 _{Eu}	54 д	4	-2/6	2,1.10 ⁻⁵	I,4.I0 ⁻⁵	0,03	t

Таблица 4

исследования реакции

впд

перспективных

радиоак тивных

Характеристики

8

9

Дальнейший прогресс в экспериментальном изучении реакции (n,a) на радиоактивных ядрах будет связан с запуском светосильного нейтронного спектрометра на базе ускорителя ЛИУ-30 и в комплексе ИБР-2 - ЯСНАПП,

ЛИТЕРАТУРА

- 1. Вертебный В.П. и др. ЯФ, 1977, 26, с. 1137.
- 2. Ануфриев В.А. и др. АЭ, 1977, 43, с. 201; 1978, 45, с. 453; 1979, 46, 54, с. 158.
- Вертебный В.П. и др. В кн.: Физика атомного ядра и элем. частиц. /материалы конф. по ядерно-физ. исследованиям, Харьков, 4-6 октября 1982/. ЦНИИатоминформ. М., 1983.
- 4. Asghar M. et al. Z.Physik, 1978, A288, p. 45.
- 5. Emsallem A. et al. Z.Physik, 1984, A315, p. 201,
- 6. Попов Ю.П. ЭЧАЯ, 1972, т. 2, с. 925.
- 7. Emsallem A. et al. Nucl. Phys., 1981, A368, p. 108.
- 8. Mughabghab S.F. et al. Neutron Cross Sections, Academic Press N.Y., 1981.
- 9. Петров Ю.В., Шляхтер А.И. Препринт ЛИЯФ, Л., 1979, с. 456.
- Малышев А.В. Плотность уровней и структура атомных ядер, Атомиздат, М., 1969.

Рукопись поступила в издательский отдел 5 июля 1984 года, Балабанов Н.П. и др. 3-84-484 Поиски реакции (п.а)на радиоактивных ядрах при резонансных энергиях нейтронов

Приводятся описание и результаты первых попыток обнаружения реакции (n, a) на радиоактивных изотопах ⁶⁵Zn и ¹⁴⁵Sm. Измерения проведены на нейтронных пучках реактора ИБР-30 с помощью полупроводниковых детекторов и ионизационной камеры. Для ядра ⁶⁵Zn получены верхние оценки параметра **B** = 2g $\frac{\Gamma_n \Gamma_a}{\Gamma}$

вкладов возможных резонансов в сечение для тепловой точки (σ). При энергии нейтронов $E_n = 35-40$ эВ параметр $B \le 4 \cdot 10^{-8}$ и $\sigma \le 1,5$ б, при $E_n = 115-130$ эВ $B \le 4,6 \cdot 10^{-2}$ и $\sigma \le 1,7$, при $E_n = 650-750$ эВ $B \le 2,1$ и $\sigma \le 2,1$. Рассмотрены перспективы дальнейших исследований реакции (n,a) на радиоактивных ядрах.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследования. Дубиа 1984

Перевод О.С.Виноградовой

Balabanov N.P. et al. 3-84-484Search for (n, a) Reaction on Radioactive Nuclei at Neutron Resonance Energies

The description and first attempts of the detection of (n, α) reaction at radioactive isotopes ⁶⁵Zn and ¹⁴⁵Sm are given. The measurements have been performed at neutron beams of the IBR-30 reactor by means of semiconductor detectors and ionization chamber. The estimations of the upper limits of the parameter $B = 2g \frac{\Gamma_n \Gamma_\alpha}{\Gamma_n \Gamma_\alpha}$ and the upper estimations of the

increments of possible resonances in the cross-section for thermal point are obtained. For ⁶⁵Zn at $E_n = 35-40$ eV neutron energy the parameter $B \le 4 \cdot 10^{-3}$ and $\sigma \le 1.5$ barn, at $E_n = 115$ -130 eV $B \le 4.6 \cdot 10^{-2}$ and $\sigma \le 1.7$, at E = 650-750 eV $B \le 2.1$ and $\sigma \le 2.1$. The prospect of further investigations of (n, α) reaction at radioactive nuclei is discussed.

The investigation has been performed at the Laboratory of Neutron Physics, JINR, Communication of the Joint Institute for Nuclear Research. Dubna 1984