

C344.1+C342r1

Объединенный институт ядерных исследований дубна

3-83-599

1983

6299 Ю.А.Александров, М.Врана, Т.А.Мачехина, 83 П.Микула*, Р.Михалец, Л.Н.Седлакова, Б.Халупа*

> ВЛИЯНИЕ ВЕРТИКАЛЬНОЙ РАСХОДИМОСТИ НЕЙТРОННОГО ПУЧКА НА ХАРАКТЕРИСТИКИ ДВУХКРИСТАЛЬНОГО СПЕКТРОМЕТРА

Направлено в журнал "Кристаллография"

* Институт ядерной физики ЧСАН, Ржеж, ЧССР.

1. ВВЕДЕНИЕ

Двухкристальный спектрометр с совершенными кристаллами в параллельном положении для отражения по Брэггу от одинаковых систем плоскостей/схема (п,-п)/широко используется в исследованиях по динамическому рассеянию нейтронов и рентгеновских лучей, так как в этом случае форма кривых качания определяется лишь параметрами рассеяния и не зависит от угловой расходимости и немонохроматичности пучка/1/. Использование импульсного источника тепловых нейтронов в сочетании с методом времени пролета позволяет проводить на таком приборе исследования одновременно на нескольких порядках отражений при постоянной геометрии эксперимента. Поскольку с ростом порядка отражения динамическая ширина кривых качания быстро уменьшается, то возрастают требования к совершенству кристаллов и их взаимной юстировке. В частности, взаимная разориентация векторов рассеяния в вертикальной плоскости приводит к уширению кривых отражения, зависящему от вертикальной расходимости пучка. Несмотря на хорошо развитую теорию двухкристального спектрометра с идеально съюстированными кристаллами, оценки этого уширения, приводимые в ряде работ / 2-7/, не согласуются друг с другом.

В настоящей работе более подробно рассмотрено влияние разориентации кристаллов на форму кривых качания в схеме (n, -n) и полученные результаты применены к интерпретации экспериментов с двухкристальным спектрометром, проведенных на импульсном пучке нейтронов на реакторе ИБР-30.

2. ТЕОРИЯ

Согласно теории двухкристального спектрометра^{/1,2/}, коэффициент отражения для параллельного расположения идеально съюстированных в вертикальной плоскости монокристаллов дан известным соотношением:

$$R(\beta) = \frac{\int_{-\infty}^{+\infty} C(a) C(a - \beta) da}{\int_{-\infty}^{+\infty} C(a) da} , \qquad /1/$$

где C(α) - коэффициент отражения плоской монохроматической волны одним кристаллом в зависимости от углового отклонения α от точного

BARRAD BURNESS RAPALE TOTAL PROVIDE CHORSE OF EN

1

Рис.1. Схема двухкристального спектрометра. S – канал реактора, D – детектор.

положения угла Брэгга, β - угол разориентации кристаллов в плоскости рассеяния. Для симметричного отражения по Брэггу от совершенного кристалла конечной толщины коэффициент отражения $C(\alpha)$ имеет вид:

$$C(\alpha) = 1, \quad |\alpha| \le s,$$

$$C(\alpha) = 1 - \sqrt{1 - \left(\frac{s}{\alpha}\right)^2}, \quad |\alpha| > s,$$

$$S = \frac{\lambda^2 F_n e^{-w_n} N_0}{\pi \sin 2\theta}$$

тде λ длипа волны нейтронов, F_n структурный фактор, е "и — фактор Дебая-Валера, N₀ - число ячеек в 1 см³ и θ - угол Брэгга.

Из /1/ и /2/ следует, что форма кривой качания не зависит от расходимости и немонохроматичности пучка нейтронов, ее полуширина w = 3,32 в и коэффициент отражения в максимуме кривой качания достигает величины R(0) = 0,73. Зависимость R от безразмерной координаты $y = -\frac{\beta}{2}$ приведена на рис.4а.

Выражение /1/ справедливо лишь в том случае, если в положении $\beta = 0$ отражающие плоскости обоих кристаллов строго параллельны. Однако в эксперименте с двумя независимыми кристаллами можно добиться этого только с ограниченной точностью. Остающийся в этом случае угол ϕ_0 между плоскостями рассеяния кристаллов необ-ходимо учесть при выводе выражения для R в теории двухкристаль-ного спетрометра, хорошо разработанной для случая $\phi_0 = 0$.

Из простых геометрических соображений следует, что угловое отклонение произвольного падающего на первый кристалл луча с параметрами $(\theta, \lambda, a, \phi)$ от центрального луча с параметрами $(\theta_0, \lambda_0, a=0, \phi=0)$ составит

$$a - \frac{1}{2} \phi^2 \operatorname{tg} \theta - (\lambda - \lambda_0) (\frac{\partial \theta}{\partial \lambda})_{\lambda = \lambda_0} = X.$$

Если отражающие плоскости второго кристалла повернуты помимо вертикального отклонения ϕ_0 также в плоскости рассеяния на

угол β , то угол отражения луча от второго кристалла будет отличаться от угла отражения центрального луча на величину

$$\alpha - \beta - \frac{1}{2} \phi^2 \operatorname{tg} \theta - \frac{1}{2} \phi_0^2 \operatorname{tg} \theta + \frac{1}{\cos \theta_0} \phi_0 - (\lambda - \lambda_0) (\frac{\partial \theta}{\partial \lambda}) = Y.$$

Коэффициент отражения дается тогда выражением:

$$R(\beta,\phi_0) = \frac{ \begin{array}{c} & \Lambda\phi/2 \quad \lambda_{\max} \quad a_{\max} \quad f_{\max} \quad f_{\max} \quad G(a,\phi,\lambda) C(X) C(Y) da \, d\lambda \, d\phi \\ & -\Delta\phi/2 \quad \lambda_{\min} - a_{\max} \quad f_{\max} \quad f_{\max} \quad G(a,\phi,\lambda) C(X) da \, d\lambda \, d\phi \\ & -\Delta\phi/2 \quad \lambda_{\min} - a_{\max} \quad G(a,\phi,\lambda) C(X) da \, d\lambda \, d\phi \end{array}},$$

где Δ_{ϕ} - вертикальная расходимость, a_m - горизональная расходимость падающего пучка, G - функция, характеризующая распределение интенсивности в падающем пучке.

Учитывая, что C дает существенный вклад в интеграл лишь в очень малой области значений аргумента — s /угловые секунды/, что на несколько порядков меньше угловой расходимости падающего пучка /десятки минут/ и предполагая, что G является константой в пределах интегрирования, для R получим

$$\mathbf{R}(\beta,\phi_0) = \frac{\mathbf{s} \cos\theta}{\pi \phi_0 \Lambda \phi} \frac{\frac{\phi_0 \Lambda \phi}{2s \cos\theta}}{\int \mathbf{R}_0(\mathbf{x}) d\mathbf{x}}, \qquad (4/2)$$

где

$$\mathbf{R} (\mathbf{x}) = \int_{-\infty}^{+\infty} \mathbf{C}(\mathbf{y}) \mathbf{C}(\mathbf{y}-\mathbf{x}) d\mathbf{y} ,$$

$$\mathbf{y} = \alpha/\mathbf{s} , \qquad \beta' = \beta + \frac{1}{2} \phi_0^2 \operatorname{tg} \theta .$$

Из /4/ видно, что коэффициент отражения зависит от вертикальной расходимости падающего пучка. Максимум кривой качания ($\beta'=0$) уменьшается с увеличением ϕ_0 и при $\frac{\phi_0 \Lambda \phi}{2s \cos \theta} > 1$, $R(0, \phi_0) = \frac{s \cos \theta}{\phi_0 \Lambda \phi}$. Зависимость R(0) от вертикальной разориентации кристаллов ϕ_0 для отражений (220), (440) и (660) при $\frac{\Lambda \phi}{2\cos \theta} = 10^{-2}$ приведена на рис.2. Видно, что с ростом порядка отражения /с уменьшением s/ уже небольшие значения ϕ_0 приводят к резкому падению коэффициента в максимуме. При этом в соответствии с /4/ ширина кривых отражения увеличивается, и в области, где максимум кривой падает обратно пропорционально ϕ_0 , определяется лишь геометрическими факторами и практически не зависит от s:

$$w = \frac{\phi_0 \Lambda \phi}{\cos \theta} \,.$$

Рис.2. Зависимость максимума кривой отражения R(0) от вертикальной разориентации кристаллов кремния ϕ_0 /угл.мин/ для трех порядков отражений при $\theta = 40^\circ$.

Это выражение соответствует "геометрической" ширине кривой качания, полученной для идеальных брэгговских отражателей уже в одной из первых работ по теории двухкристального спектрометра⁷⁷.

Следует отметить, что при $\Delta \phi \to 0$ вертикальная разориентация кристаллов ϕ_0 приводит только к смещению максимума кривых на величину $\frac{1}{2}\phi_0^2$ tg θ , а уширение появится лишь в третьем порядке по малым параметрам ϕ_0 и a_m - горизонтальной расходимости пучка:

$$W \simeq \frac{\phi_0 a_m}{\cos^2 \theta}$$

Именно это уширение рассматривалось в работах^{/4,5/}, хотя в большинстве экспериментов его вклад пренебрежимо мал по сравнению с рассмотренным выше уширением, связанным с вертикальной расходимостью падающего пучка.

3. ЭКСПЕРИМЕНТ

На спектрометре^{/8/}, установленном на пятнадцатиметровой базе импульсного реактора ИБР-30, измерялись кривые качания при последовательном отражении нейтронов от двух совершенных кристаллов Si, установленных в параллельном положении для симметрического отражения по Брэггу от плоскостей (220). Использование метода времени пролета позволило одновременно исследовать отражения (220), (440) и (660) при фиксированной геометрии эксперимента. Поворотное устройство позволяло поворачивать второй кристалл в горизонтальной плоскости с точностью ~ 0,05″ и юстировать его в вертикальной плоскости с шагом 2′.

Юстировка второго кристалла по отношению к первому в вертикальной плоскости проводилась путем предварительного измерения максимума интенсивности кривой отражения (220) и ее полуширины в зависимости от наклона ϕ_0 от вертикали /рис.3/. Затем кристалл устанавливался в положение, соответствующее максимуму интенсивности и минимальной полуширине, и проводились измерения временных спектров нейтронов, отраженных от обоих кристаллов в зависимости от поворота второго кристалла в горизонтальной плоскости. Рис.3. Зависимость интегральной интенсивности I /н/30 мин./ - О и полуширины кривой отражения w w /угл.сек/ - ● от вертикальной разориентации кристаллов ϕ_0 /угл.мин./.

Таблица

	220	440	660
s	0,787"	0,179"	0,068"
IΣ	14800+150	6150+80	700+50
I_T^{Σ}	13000	6150	850
I ^M _e	2750 <u>+</u> 60	2100+50	280+30
I M	2900	5450	2160
I' _T	2660	2100	330
w _e	3,1	1,85 "	1,8 "
w _T	2,6″	0,6 "	0,226"
w ,	2,9 "	1,8 ″	1,8″

Полученные кривые качания для отражений (220), (440) и (660) приведены на рисунках 4а-в.На этих рисунках приведены также теоретические кривые для идеально съюстированных кристаллов

$$I_{T}(\beta) = K I_{0} R_{p}(\beta), \qquad (5)$$

5

Рис.4. Кривые отражения нейтронов от плоскостей (220) /a/, (440) /б/ и (660) /в/ при θ =40°. I /н/ЗОмин./ β /угл.с/ • – эксперимент, – – – расчетная кривая идеального спектрометра – формула /2/. — – расчет по формуле /4/ при ϕ_0^* = 1,45°.

где $R_n(\beta)$ для данного отражения n дано формулой /1/, I_0 - интенсивность, отраженная первым кристаллом, а нормировочный коэффициент подобран таким образом, чтобы для отражения (440) экспериментальная интегральная интенсивность I $\sum\limits_c$ совпадала с теоретической I $\sum\limits_T$.

В таблице приведены теоретические и экспериментальные интенсивности для всех трех отражений. Видно, что и для (220) и (660) они близки /в пределах 10%/. При этом форма кривых отражения, особенно для (440) и (660), резко расходится с формулой /1/.

Соответствующие экспериментальные и теоретические значения полуширин кривых w_e , w_T и максимумов интенсивностей I^M_c , I^M_T приведены в таблице. Расхождения, увеличивающиеся с порядком отражения, могут быть связаны с небольшой разъюстировкой кристаллов по вертикали.

Разориентацию ϕ_0 можно определить из отношения теоретических и экспериментальных максимумов интенсивности с помощью графиков на рис.2. Так, для отражения /440/ это отношение равно 0,38, что на кривой 2 рис.2 соответствует отклонению $\phi_0^* = 1,45$. С использованием этого значения и $\frac{\Delta\phi}{2\cos\theta} = 10^{-2}$ были рассчитаны кривые качания в соответствии с формулой /4/. Результаты приведены на рис.4а-в, а значения вычисленных максимумов I'_T и полуширин w'_T в таблице. Видно, что согласие с экспериментом вполне удовлетворительно.

ЛИТЕРАТУРА

- Compton A.N., Allison S.K. X-Ray in Theory and Experiment. Van Nostrand, Princeton, 1935.
- James R.W. The Optical Principles of the Diffraction of X-Rays. G. Bell and Sons Lid, London, 1965.
- 3. Rauch H., Petrascheck D. In: Neutron Diffraction, edited by H.Dachs, Springer Verlag, Heidelberg 1978.
- 4. Schneider C.S., Shull C.G. Phys. Rev. B., 1971, vol.3, p.830.
- 5. Treimer W. Dissertation, Atominstitut der Osterreichischen Universitaten Wien, 1975.
- Bonse U., Graeff W., Rauch H. Phys. Lett., 1979, vol. 69A, No. 6, p. 420.
- 7. Schwarzschild M.N. Phys. Rev., 1982, vol 32, p. 162.
- Alexandrov Yu.A. et al. The Sixth Conference of Czechoslovak Physicists. Ostrava, CSSR, August, 27-31, 1979.

Рукопись поступила в издательсткий отдел 22 августа 1983 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	к.
A1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	p.	50	к,
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
A 2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	p.	50	к.
q 10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	p.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких знергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.		p.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	p.	75	к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	p.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	р.	00	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ATAKCANTDOB	Ю.А. и пр.	3-83-599
Влияние вер	тикальной расходимост	ги нейтронного пучка
на характер	истики двухкристально	ого спектрометра
Рассмо на форму кр трометра с вают форму плоскостей ренных мето реактора ИБ	трено влияние вертика ивых качания в схеме совершенными кристали кривых качания для о (220), (440) и (660) дом времени пролета и SP-30.	альной разориентации кристаллов (n,-n) двужкристального спек- пами. Результаты хорошо описы- гражений тепловых нейтронов от двух кристаллов кремния, изме- на импульсном пучке нейтронов
Работа	выполнена в Лаборат	ории нейтронной физики ОИЯИ.
		либиа 1983
Препринт	Объединенного института	ядерных исследования. дубла эзээ
Aleksandrov The Effect on Characte	y Yu.A. et al. of Vertical Diverge eristics of A Double	3-83-599 nce of Neutron Beam Crystal Spectrometer
Aleksandrov The Effect on Characte	7 Yu.A. et al. of Vertical Diverge eristics of A Double ffect of vertical mis	3-83-599 nce of Neutron Beam Crystal Spectrometer orientation of the crystals on
Aleksandrov The Effect on Characto The e the form of with perfect siderated. curves for (220), (440 red with t beam of th	y Yu.A. et al. of Vertical Diverge eristics of A Double ffect of vertical mis f rocking curves of a ct crystals setting i The results describe the reflections of t 0) and (660) of two p he time-of-flight met e IBR-30 reactor.	3-83-599 nce of Neutron Beam Crystal Spectrometer orientation of the crystals on double crystal spectrometer n the position (n, -n) is con- very well the form of rocking hermal neutrons by the planes erfect silicon crystals, meas hod using the pulse neutron
Aleksandrov The Effect on Characto The e the form or with perfect siderated. curves for (220), (440 red with t beam of th The i of Neutron	y Yu.A. et al. of Vertical Diverge eristics of A Double ffect of vertical miss f rocking curves of a ct crystals setting i The results describe the reflections of t 0) and (660) of two p he time-of-flight met e IBR-30 reactor. nvestigation has been Physics, JINR.	3-83-599 nce of Neutron Beam Crystal Spectrometer orientation of the crystals on double crystal spectrometer n the position (n, -n) is con- very well the form of rocking hermal neutrons by the planes erfect silicon crystals, meas hod using the pulse neutron