ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

B-61

3-83-5

во ван тхуан

ДЛИНЫ РАССЕЯНИЯ НЕЙТРОНОВ ЛЕГЧАЙШИМИ ЯДРАМИ ³He, ⁶Li и ⁷Li

Специальность: 01.04.16 - физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Лаборатории нейтронной физики Объединенного института ядерных исследовений, г. Дубна.

Научный руководитель -

Старший научный сотрудник кандидат физико-математических наук Э.И.ШАРАПОВ

Официальные оппоненты:

Старший научный сотрудник доктор физико-математических наук Ю.П.ГАНГРСКИЙ, Старший научный сотрудник доктор физико-математических наук В.Ф.ХАРЧЕНКО

Ведущее предприятие:

Институт теоретической и экопериментальной физики, Москва

Защита диссертации состоится "_____ 1983 года в "час. на заседании Специализированного совета Д 047.01.05 при Лаборатории нейтронной физики и Лаборатории ядерных реакций ОИЯИ (г. Дубна).

С диссертацией можно ознакомиться в библиотеке ОИЯИ.

Автореферат разослан "_____ 1983 г.

Ученый секретарь Специализированного совета

D.B.TAPAH

ОБЩАЯ ХАРАКТВРИСТИКА РАБОТЫ

<u>Актуальность теми</u>. Настоящая диссертация посвящена экспериментальному исследованию спиновых компонент длин рассеяния нейтронов на легчайших ядрах ³He, ⁶Li и ⁷Li и структуры образующихся при этом малонуклонных систем. Длины рассеяния являются важнейшими характеристиками взаимодействия медленных нейтронов с ядрами, они определяют энергетический ход сечений в упругих и неупругих канадах.

Последние годи отмечены рядом успехов в теории малонуклонных оистем. Длины рассеяния трехнуклонных ядер-мишеней рассчитаны Харченко,Левашевым^Ж/и Тионом^{ЖК/}с помощью решения интегральных уравнений Фаддеева-Якубовского для некоторых модельных нуклон-нуклонных потенциалов. Экспериментальные величины спиновых компонент длин (n T)-и

 $(n^{5}\text{He})$ – рассеяния могли бы служить критерием проверки теоретических расчетов. Однако значения длин (n T) – рассеяния до последнего времени не были известны. В то же время первая экспериментальная оценка длин $(n^{3}\text{He})$ – рассеяния, установленная недавно традиционным методом из измерений теплового сечения рассеяния и когерентного сечения страдала большой неопределенностью. Задача получения длин $(n^{3}\text{He})$ – рассеяния с точностью, достаточной для сравнения с теорией, являлась актуальной и была поставлена как основная для денной диссертационной работы. Для ее решения в диссертации реализован новый мегод определения длин $(n^{3}\text{He})$ – рассеяния из энергетической зависимооти нейтронных сечений в широком диапазоне энергий.

Данные о спиновых компонентах длин (n^{6} Li)- и (n^{4} Li) -рассеяния имеют прямое отношение к структуре возбужденных уровней ядер ⁷Li и ⁸Li, среди которых согласно некоторым теоретическим предсказанаям возможны и уровни аномальной (по оболочечной классификации) четности, противоположной четности основных состояний этих ядер. Определенных экспериментальных заключений по этому вопросу не было. Проблема исследуется в диссертации посредством изучения длин рассеяния и спиновой зависимости сечений (n^{6} Li)- и (n^{4} Li) - рассеяния в широком, до сотен кев, диапазоне энергий с применением поляризационной методики.

Цель работы заключалась в следущем:

I. Измерение сечения рассеяния нейтронов гелием-З до энергий 200 квВ и полного сечения для извлечения информации о спиновых компонентах длин (n³He)-рассеяния.

*/Nucl.Phys., 1980, v. A343, N2, pp. 249-294. HM/Phys.Lett., 1976, v. 63B, N4, pp. 391-394.

2. Измерение сечения рассеяния нейтронов литием-7 и поляризационного сечения рассеяния до энергий ~ 100 кэВ для исследования спиновой зависимости взаимодействия нейтронов с 7 Li и структуры уровней 8 Li.

3. Измерение сечения рассеяния нейтронов литием-6 до энергий $\sim 100~{\rm ksB}$ для получения информации об уровнях аномальной четности в составном ядре $^7{\rm Li}$.

<u>Новизна работн</u>. Все перечисленные выше измерения были осуществлены впервые. Указанные задачи были решены благодаря вводу в эксплуатацию нового сцинтилляционного детектора для регистрации рассеянных нейтронов в геометрии, близкой к 4 π , а также благодаря применению существующих на канале № 3 реактора ИБР-30 установок для поляризации нейтронов и ядер.

В диссертации получены экспериментальные значения длин (n^{3} He)рассеяния новым методом анализа энергетической зависимости сечений и проведено сравнение с теорией. Впервые измерены поляризационное сечение рассеяния нейтронов на ⁷Li и энергетическая зависимость сечения (n^{6} Li)-рассеяния в диапазоне до 80 кэВ. Получена экспериментальная информация об уровнях аномальной четности в ядрах ⁷Li и ⁸Li.

<u>Практическое значение работи</u>. В термоядерной энергетике будущего важнейшим топливным компонентом явится тритий. Природные ресурсы этого изотопа очень бедны, но его можно получить в большом количестве в реакциях ${}^{6}Li(n,\alpha)T$ и ${}^{4}Li(n,n'\alpha)T$. Эффективный расчет термоядерных реакторов-размножителей возможен только при всестороннем знании всех нейтронных сечений ${}^{6}Li$ и ${}^{7}Li$, в том числе и сечения рассеяния. Последнее оставалось неизученным в диапазоне энергий I-IO⁴ЭВ, где для ${}^{6}Li$ данных практически не было. Результаты измерения сечений упругого рассеяния нейтронов на ${}^{6}Li$ и 3 Не при энергиях до IOO кэВ имеют практическое значение так же, как стандарты нейтронных эффективных сечений.

Апробация работи. Диссертационная работа выполнена в Лаборатории нейтронной физики Объединенного института ядерных исследований. Основные материали опубликованы в работах/1-5/. Работы по ³ Не и ⁶Li были доложены, соответственно, на 5-й Всесоюзной конференции по нейтронной физике (Киев, 1980) и на Международной конференции по ядерным данным для науки и технологии (Антверпен, Бельгия, 1982).

Объем и структура диссертации. Диссертация состоит из введения, пяти глав и заключения. В ней содержится 109 страниц машинописного текста, включая 10 таблиц, 24 рисунка и список литературы из 87 наименований.

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении определени цель и актуальность работи, кратко представлена структура диссертации.

Первая глава посвящена обзору теории длины рассеяния нейтронов на легчайших ядрах. Центральное внимание уделяется новейшим теоретическим расчетам длин (n^{3} He) - рассеяния, выполненным Харченко и Левашевым посредством решения интегральных уравнений Фаддеева-Якубовского.

Обсуждена проблема спиновой зависимости сечений (n⁶Li)_{- и} (n⁷Li) - рассеяния в связи с вопросом о структуре уровней в составных ядрах ⁷Li и ⁸Li . Указана возможность применения R -матричного анализа для получения экспериментальной информации об уровнях аномальной четности.

Вторая глава посвящена описанию экспериментальных установок, применявшихся в данном исследовании. Приведены общие сведения о нейтронном спектрометре Лаборатории нейтронной физики ОИЯИ с импульсным реактором ИБР-30 и ускорителем электронов ЛУЭ-40 в качестве источника нейтронов. Кратко изложен метод нейтронной спектроскопии по времени пролета, применявшийся во всех измерениях настоящей диссертационной работы.

Даны краткие сведения об использованной поляризационной установке и детекторах, применявшихся в измерениях. Более подробно описан сцинтилляционный детектор рассеянных нейтронов с большим телесным углом, который был введен в эксплуатацию в ходе описываемых измерений. Фотография этого детектора дана на рис. I.

Рис. I. Многосекционный нейтронный детектор с открытым KOXYXOM

В качестве сцинтиллятора использован светосостав Т-2, содержащий ZnS(Aq) с обогащенным бором. Время жизни нейтронов енутри

детектора составило 6 мкс, что обеспечило достаточное разрешение по времени пролета для энергий до IOO кэВ.

<u>Третья глава</u> посвящена экспериментальному исследованию взаимодействия нейтронов с ядром гелия-3.

Измерение сечения рассеяния нейтронов на гелии-З проводилось путем сравнения с рассеянием на образцах-стандартах, в качестве которых были выбраны H_2 , CO_2 . Сцинтилляционный детектор рассеяния располагался на пролетных базах II8 м и 500 м. Газовые образцы с гелием, CO_2 и H_2 содержались в металлических контейнерах при давлении (T=20°C): I,203±0,003, 0,3068±0,0007 и 0,1067±0,0007 кГс/см², соответственно. В измерении фоновым образцом служил контейнер, откачанный на вакуум. Контейнеры с гелием, образцом-стандартом и без образца чередовались в измерении. Экспериментальные спектры, полученные на трех образцах, показаны на рис. 2.

Рис. 2. Участки экспериментальных спектров, полученных в измерениях рассеяния нейтронов газовыми мишенями гелия-3. Никняя кривая - фон; пунктир - постоянная компонента фона; точки: открытые - СО₂; сплошные - ³ Не; крестики -- вакуум

Сечение рассеяния вычислено по формуле:

б (3не)-	n(X)	N (3He)	6 (X)	N	 (T)
on (, _	n (3He)	N(X)	n		(I) (I)

4

Здесь X обозначает эталонный образец CO_2 или H_2 , n - толщина образца в яд/см², N - сумма отсчетов по конечному числу каналов временного анализатора после вычитания фона. При обработке была сделана поправка на поглощение нейтронов в гелии-3, составлявшая 7% при E = I кэВ и меньше 2% при E > I6 кэВ. Различие фонов в измерении с гелием-3 и стандартным образцом, обусловленное ослаблением потока на задней стенке контейнера, давало поправку $\leq 3\%$. Систематическая ошибка за счет дрейфа аппаратуры составляла в среднем 3%. Эти поправки вместе со статистической погрешностью (меньше 3%) учтены в конечных результатах и представлены в таблице I.

Таблица І

	Сечение	рассеяния	6 _n (³ He)		
Е,КэВ	б , оарн	Δ б _n , барн	Е, КэВ	б , ,барн	Δ6 _{n,} daps
1,2	3,23	0,12	24	2,95	0,11
2	3,07	0,11	30	2,58	0,11
3	2,95	0,11	40	2,48	0,10
4	2,95	0,14	50	2,48	0,10
5	2,97	0,20	60	2,46	0,09
6	2,75	0,13	70	2,50	0,II
7	2,78	0,14	. 80	2,38	0,10
8	2,89	0,13	100	2,25	0,08
10	2,77	0,11	I30	2,33	0,08
I5	2,79	0,11	I55	2,24	0,10
20	2,80	0,10	205	2,20	0,09

Полнов сечение $\mathbf{6}_{t}$ (³He) измерялось методом пропускания. Газовая мишень имела давление $8,42^{\pm}0,05$ кГс/см² при температуре 20° С. Жидкостный сцинтилляционный детектор располагался на пролетной базе II5,5 м. Фон определялся методом резонансных фильтров, причем фильтры Мт и Ас находились постоянно на пучке. Величина пропускания образца в исследуемом интервале энергий менялась в диапазоне 0,5-0,9. Экспериментальная погрешность измеренного пропускания была (0,3-0,5)%. Значения полученного полного сечения $\mathbf{6}_{t}$ в зависимости от энергии нейтронов в области I-I50 кэВ представлены в соответствующей таблице в тексте диссертации.

Длины (n^{3} He) -рассеяния определялись из энергетической зависимости полученных сечений $\mathbf{6}_{n}$ и $\mathbf{6}_{t}$ по формулам, следующим из многоканальной теории эффективного радиуса:

$$\begin{aligned} \vec{6}_{n} &= \pi \cdot \left[\frac{A_{o}^{2} + B_{o}^{2}}{(1 + \kappa \cdot B_{o})^{2} + \kappa^{2} A_{o}^{2}} + \frac{3 \cdot A_{d}^{2}}{1 + \kappa^{2} A_{d}^{2}} \right] \\ \vec{6}_{p} &= \frac{\pi}{\kappa} \cdot \frac{B_{o}}{(1 + \kappa \cdot B_{o})^{2} + \kappa^{2} A_{o}^{2}} \end{aligned}$$

Здесь A_o, A_4 — действительные части длин рассеяния в синглетном и триплетном каналах. Формулы учитывают наличие синглетного канала (n,p)-реакции (параметр B_o). Подгонка параметров формул (2) по методу наименьших квадратов дела следующий набор длин $(n, ^3 He)$ рассеяния: $a_- = A_o - i \cdot B_o = (6,53 \pm 0,32) - i \cdot (4,450 \pm 0,003) \ \Phi M,$ $a_+ = A_4 = (3,62 \pm 0,15) \ \Phi M.$ (3)

Эти значения обладают точностью, достаточной для сравнения с теорией. Такое сравнение указало на правильность предсказания большой величины синглетной длины в расчетах Харченко и Левашева. Это обстоятельство связано с наличием в синглетном спиновом канале широкого возбужденного уровня ⁴He, расположенного ниже нейтронного порога.

<u>В четвертой главе</u> излагаются результати измерения сечения рассеяния нейтронов литием-6 в интервале энергий 0,6-80 кэВ.Сечение измерялось относительно сечения рассеяния на литии-7,измерение которого описано в главе 5. Образци лития-6 и лития-7 представляли собой металлические диски диаметром 180 мм. Их изотопное обогащение и толщины приведены в таблице 2.

Таблица 2

(2)

Образец	Обогащение	Вес, гр.	п ₆ ,•10 ²² яд∕см ²	n ₇ ,.10 ²² яд/см ²
Li_6	90,9	51,05	1,627	0,165
Li_7	96,3	45,95	0,047	1,353

Металлические диски были упакованы в одинаковые контейнеры с лавсановой стенкой толщиной 15 мкм.Пустой контейнер применялся для измерения фона. Эти три образца чередовались в ходе измерений. На рис. З показаны экспериментальные спектры нейтронов, рассеянных разными образцеми. Анализ различных компонент фона содержится в соответствующем разделе диссертации.

Обработка проводилась по формуле, аналогичной (I) и содержавшей ряд дополнительных факторов из-за примеси в образце изотопа Li.

Рис. 3. Экспериментальные спектры нейтронов, измеренные по времени пролета с образцами лития в геометрии рассеяния: открытые точки - образец ⁷Li; сплошные точки - ⁶Li; нижняя кривая фон пустого контейнера. По оси абсилсс - номер канала анализатора; по оси ординат - число отсчетов на канал. Цифрами указана энергия нейтронов в кэВ.

Результать обработки представлены в таблице 3. Статистическая ошибка была меньше 1%. В качестве ошибки сечения указана систематическая неопределенность, связанная, в основном, с погрешностью эталонного сечения лития-7. Полученное сечение рассеяния постоянно при энергиях (С7-IO) кэВ. Усреднение по этому интервалу дало значение:

$$G_n(^{6}Li) = 0,72^{\pm}0,02 \text{ dH},$$
 (4)

которое рекомендуется для приложений в качестве сечения рассеяния медленных и тепловых нейтронов на литии-6. Сечение (4) в комбинации с другими известными данными привело к следующему набору длин

(n ^eLi) -рассеяния:

$$a_{-}(^{6}Li) = (4,00^{\pm}0,06) - i \cdot (0,53^{\pm}0,02) \Phi_{M},$$

$$a_{+}(^{6}Li) = (0,65^{\pm}0,03) - i \cdot (0,07^{\pm}0,01) \Phi_{M}.$$
(5)

Дополнительный R -матричный анализ данных показал сохранение сильной спиновой зависимости рассеяния нейтронов литием-6 в широком ин-

Таблица 4

Таблица З

Сечение б. ("Li)

Е,КэВ	∆Е,КэВ	б,,барн	∆б,о́арн	Е,КэВ	∆Е,КэВ	б, барн	∆6′, барн
0,69	0,06	0,73	0,03	13,1	I,4	0,7I	0,02
0,79	0,05	0,74	0,03	16,0	I,5	0,70	0,02
0,93	0,08	0,73	0,03	19,0	I,5	0,73	0,02
I,0	0,I	0,72	0,03	22,3	I,5	0,72	0,02
I,3	0,2	0,70	0,02	26,5	2,0	0,74	0,02
I,8	0,3	0 , 7I	0,02	32,0	3,0	0,73	0,02
2,5	0,4	0,69	0,02	38,5	3,5	0,73	0,02
3,4	0,4	0,71	0,02	45,0	3,0	0,74	0,02
4,6	0,7	0,71	0,02	52,0	4,0	0,75	0,02
6,2	0,9	0,70	0,02	59,5	3,5	0,75	0,02
8,2	I,0	0,73	0,02	66,5	3,5	0,78	0,03
10,5	I,2	0,70	0,02	80,0	10,0	0,84	0,04

тервале энергий и указал на отсутствие уровня аномальной (отрицательной) четности, вводимой в ряде работ для объяснения большого сечения 6Li (n, d) -реакции. Такой результат может быть объяснен в рамках прямой реакции с обменом дейтона.

<u>В пятой главе</u> изложены результаты измерений поляризационного сечения и сечения рассеяния нейтронов литием-7 в области энергий до IOO кэВ. Сечение рассеяния нейтронов на литии-7 измерялось посредством сравнения с известным сечением рассеяния на графике. Толщина образца из металлического лития равнялась 7,81·IO²² яд/см². Толщина графитового диска соответствовала условию эквивалентности по рассеянию. При оптимальном выборе пролетной базы фон не превышал 7%. Полученное сечение рассеяния **б**. (^{*}Li) приведено в таблице 4.

Стандартная статистическая ошибка не превышала I,5%. В таблице приведена систематическая ошибка. Ниже 20 кэВ сечение практически постоянно и принимает значение:

 $G_n(^{\dagger}Li) = 1,06\pm0,03 \text{ 6H}.$ (6)

Поляризационное сечение измерялось на действующей в ЛНФ установке для поляризации резонансных нейтронов и ядер. Степень поляризации нейтронного пучка, прошедлего поляризованную протонную мишень, достигала 60%. Исследуемый образец был изготовлен из металлического лития, содержавшего 96,7% лития-7 ($n = 2,7 \cdot 10^{23}$ яд/см²) и имел поперечное сечение 4,75.6,0 см². Ядра лития-7 поляризовались ($f_{Li} \approx 3\%$) методом "грубой силы" в ³He⁻⁴He рефрижераторе, помещенном во

Е,КэВ	∆Е,КэВ	б _л ,барн	۵б _п ,барн	Е, КэВ	∆Е,КэВ	б, оарн	∆б, барн
2	0,9	1,07	0,03	20	3	I.04	0.03
3	I,0	I,07	0,03	23,5	4	I.04	0.03
4,2	I,8	I,06	0,03	26,6	4	I.05	0.04
6,	I,8	I,07	0,04	30,0	3	I.04	0.045
7,8	I.9	I,08	0,04	41	5	I.07	0.045
9,9	0,5	I,06	0,03	49,5	6	I,00	0.03
12	3	I,06	0,03	58	7	I.OI	0.03
14	3	I,05	0,03	66	5	I,04	0.03
16,5	4	I,05	0,03	74,5	6	I,06	0,045

Сечение 6 (⁷Li)

внешнем магнитном поле 15 кЭ. Непосредственно измеряемой величиной являлся поляризационный эффект пропускания $\mathcal{E}(E) = (N_+ - N_-)/(N_+ + N_-)$, где N_+ и N_- - отсчети детектора при параллельной и антипараллельной ориентациях спинов ядер мишени и нейтрона. Измерение интенсивности нейтронного пучка, пропедшего поляризованную мишень, осуществлялось с помощью жидкостного сцинтилляционного детектора и гелиевых счетчиков. Поляризационное сечение лития-7, определяемое как $\mathcal{G}_{s}^{*n} = \frac{3}{2} (\mathcal{G}^{+} - \mathcal{G}^{-})$, рассчитывается из измеренного эффекта $\mathcal{E}(E)$. Результат показан на рис. 4.

зависимости от энергии

9

Усреднение этого сечения по всем точкам дало величину G_s^{mon} (*Li) = 0,56±0,07 бн. Это сечение, сечение рассеяния (6) и

другие известные данные привели к следующему набору длин (n⁺Li)рассеяния:

> $a_{+}(^{+}Li) = (0,8\pm0,3) \Phi_{M},$ $a_{+}(^{+}Li) = -(3,6I\pm0,07) \Phi_{M},$

который хорошо согласуется с известным в литературе.

Сильная спиновая зависимость полученных длин (n^+Li) -рассеяния обсуждена в диссертации с точки зрения существования в ⁸Li возбужденных уровней со спином и четностью $J^{\pi} = I^-$, 2⁻. Для этой цели проведен \mathcal{R} -матричный анализ полученных данных. Результаты настоящей работы хорошо описываются, если допустить существование уровней с характеристиками, приведенными в таблице 5.

Таблица 5

Ju	Ε _λ , MəB	χ^{2}_{λ} , Məb
2 ⁻	1,20±0,06	2,2±0,1
I ⁻	1,5±0,6	2,4±1,0

Этот результат качественно согласуется с некоторыми теоретическими расчетами свойств уровней аномальной четности, выполненными в ремках оболочечной модели.

<u>В заключении</u> перечислены основные результаты настоящей диссертационной работы.

В ходе диссертационной работы измерены:

I. Эффективное сечение рассеяния нейтронов на ³Не до энергий 200 кэВ;

2. Полнов сечение (n³He)- взаимодействия до 200 кэВ;

3. Эффективное сечение (n⁶Li) - рассеяния до 80 кэВ;

4. Эффективное сечение (n⁺Li)-рассеяния до IOO кэВ;

5. Поляризационное сечение рассеяния нейтронов литием-7 до энергий ~ 100 кэВ.

В измерениях широко использовался новый сцинтилляционный детектор рассеянных нейтронов с удучшенной разрешающей способностью.

Основные физические результаты и выводы работы следующие:

- Впервые получены экспериментальные значения длин (n³He) рассеяния с точностью, достаточной для сравнения с предсказанием теории малонуклонных систем. Это сделано новым методом определения длин (n³He) - рассеяния из энергетической зависимости нейтронных сечений ³He. Проведенное сравнение с результатом расчета свойств четырехнуклонной системы показало, что метод решения уравнений Фаддеева-Якубовского, предложенный Харченко и Левашевым, ведет к правильным значениям длин _ (n^{3} He) - рассеяния. В частности, подтверждено теоретическое предсказание о существенном преобладании синглетной цлины ($\Im = 0$) над триплетной ($\Im = 4$).

_Изучена спиновая зависимость длин и сечений рассеяния нейтронов на ⁶Li и ⁷Li в широком, до IOO ков, интервале энергий. Прямым доказательством спиновой зависимости рассеяния нейтронов на ⁷Li при этих энергиях является постоянство измеренного поляризационного сечения рассеяния до энергий ~ IOO ков.

- Анализ энергетической зависимости измеренного сечения рассеяния нейтронов литием-6 совместно с другими данными указывает на то, что уровня с J^π = I/2⁺ ниже нейтронного порога в ядре ⁷Li не существует. что согласуется с механизмом прямого процесса для реакции

 ${}^{6}L_{i}(n,\alpha)T$, вытекающего из кластерной структуры ядер ${}^{6}L_{i}$ и ${}^{7}L_{i}$.

- Полученные данные указывают на существование в ядре ⁸Li широкого уровня при энергии ~ I,2 МэВ выше нейтронного порога с $\mathfrak{I}^{\mathfrak{R}} = 2^{-}$, параметры которого объясняют отрицательный знак длины рассеяния в этом канале и удовлетворяют качественным предсказаниям оболочечной модели.

- Измеренные в диссертационной работе эффективные сечения взаимодействия нейтронов с ³ Не, ⁶ Li и ⁷ Li имеют большое практическое значение как стандарты нейтронных сечений и ядерные данные для прикладных задач.

Работы, положенные в основу диссертации:

- І. Борзаков С.Б., Во Ван Тхуан, Пикельнер Л.Б., Шарапов Э.И. Нейтронный сцинтилляционный детектор для спектроскопии по времени пролета.- Дубна, 1982.- 4 с. (Сообщение/Объед. ин-т ядерн. исслед.: 13-82-243).
- Алфименков В.П., Борзаков С.Б., Во Ван Тхуан, Говоров А.М., Ласонь Л., Пикельнер Л.Б., Шарапов Э.И. Взаимодействие нейтронов промежуточных энергий с ³Не.- Ядерн. физ., 1981, т. 33, № 4, с. 891-899.
- Алфименков В.П., Борзаков С.Б., Во Ван Тхуан, Пикельнер Л.Б., Шарапов Э.И. Взаимодействие промежуточных и быстрых нейтронов с ядром ⁶Li. – Дубна, 1982. – II с. (Препринт/Объед. ин-т ядерн. исслед.: РЗ-82-III).

- Алфименков В.П., Борзаков С.Б., Во Ван Тхуан, Мареев Ю.Д., Пикельнер Л.Б., Рубин Д., Хрыкин А.С., Шарапов Э.И. Спиновая зависимость сечения рассеяния ядром ⁷Li З- волновых нейтронов. -Ядерн. физ., 1982, т. 35, № 3, с. 542-548.
- 5. Alfimenkov V.P., Borzakov S.B., Vo Van Thuan, Pikelner L.B., Sharapov E.I. ⁶Li(nn) cross section in the energy range from 600 eV to 80 keV.- In: The conference of Nuclear Data for Science and Technology. (Abstracts, Antwerp, 1982). Antwerp, 1982, p. 59.

Рукопись поступила в издательский отдел 5 января 1983 года.