ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

B-878

3-82-495

ВТЮРИН Владимир Александрович

исследование ү-переходов между компаунд-состояниями ядер при помощи реакции (n, ү, а)

Специальность: 01.04.16 - физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Лаборатории нейтронной физики Объединенного института ядерных исследований, г.Дубна.

Научный руководитель доктор физико-математических наук старший научный сотрудник

Ю.П.Попов.

Официальные оппоненты: доктор физико-математических наук

старший научный сотрудник

В.А.Карнаухов,

канпипат физико-математических наук старший научный сотрудник

А.И.Абрамов.

Ведущее предприятие: Институт атомной энергии им.И.В.Курчатова, г.Москва.

1982 года Защита писсертации состоится в "час. на заседании специализированного совета Д.047.01.05 при Лаборатории нейтронной физики и Лаборатории ядерных реакций Объединенного института ядерных исследований (г.Дубна, Московская область).

С писсертацией можно ознакомиться в библиотеке ОИЯИ

Автореферат разослан " " 1982 г.

Ученый секретарь специализированного совета

D.В.Таран

Актуальность

Систематических исследований первичных мягких Х-переходов между компаунд-состояниями (с + с'переходов) до сих пор не проводидось. Изучению их методами Х-спектроскопии пока препятствует сложность выделения вклада таких б-переходов из суммарного спектра *д***-лучей. Единственной возможностью экспериментального изучения** $c \rightarrow c'$ -переходов является исследование двухступенчатых реакция (n , ба) и (n, 8), где информацию о первичных 8-переходах получают опираясь на данные об с -распаде и делении высоковозбужденных состояний.

Реакция ($n, \delta \propto$) была обнаружена 12 лет назад на тепловых нейтронах, но первые сведения о с -с-переходах с ее помощью были получены только после начала исследований реакции 143 Nd(n. 8 x) 140 Ce на резонансных нейтронах в Дубне. В первой работе дубненской группы была получена теоретическая форма спектра реакции ($n, \delta \propto$) и из сравнения ее с экспериментом был сделан вывод о пропортиональностисредней вероятности первичных б-переходов кубу их энергии. Из соотношения ширины $\sqrt{\delta_a}^4$, измеренной в резонансе $\mathcal{E}_o = 55$ зВ со спином 4, и ширины / , полученной из данных по тепловому сечению, был сделан вывод о возможном преобладании мультипольности MI. Однако ввиду большой экспериментальной погрешности ширины / 3 4 (2/3 / / 2 -= 80%) этот вывод носил предварительный характер. Неожиданность этого результата с точки зрения существовавших в то время теоретических представлений потребовала существенного уточнения экспериментальных данных, а также расширения круга исследуемых ядер с целью установления степени общности полученных результатов.

Цель работы

Диссертация посвящена исследованиям б-переходов между компаунд-состояниями с целью получения новых сведений о структуре высоковозбужденных состояний ядра и механизме Д-распада. Основным методом является исследование реакции (л, б с) на резонансных нейтронах. Получение данных о У-распаде из этой реакции потребовало, с одной стороны, совершенствования методики измерений и анализа данных по реакции (n, Yol), а с другой стороны, дополнительных исследований реакции (n, a) с целью уточнения характеристик а -распада иссле-

> Объеринения виститут RECENTER RECERCIONALIS ENE MACYTERA

дуемых ядер, необходимых для получения данных о первом этапе реакции - этапе 8-распада.

Как дополнительные источники экспериментальной информации о с -с'переходах были проанализированы данные по реакции $(n, \chi f)$ и данные по полным радиационным ширинам. Весьма полезным для понимания механизма δ -распада компаунд-состояний является сопоставление результатов исследования с -с'переходов с известными данными по δ -распаду, поскольку описание такой совокупности данных предъявляет более жесткие требования к теоретической модели.

Научное и прикладное значение

В отличие от жестких δ -переходов на нижние уровни ядра, вероятность которых определяется простыми типами возбуждений, составляющих $10^{-3} - 10^{-6}$ от нормировки волновой функции компаунд-состояния, мягкие δ -переходы могут определяться значительно большим числом компонент, характерных для компаунд-состояний, и потому являются источником новой информации о структуре высоковозбужденных состояний. Кроме того, исследования с \rightarrow с' δ -переходов необходимы для понимания механизма δ -распада компаунд-состояний. Гамма-переходы между компаунд-состояниями являются начальной ступенью большого числа реакций типа (n, $\delta n'$), (n, $\delta \propto$), (n, δp), (n, $\delta \frac{1}{2}$) и т.д. иопределяют основную часть каскадов δ -лучей. Исследования последних лет показали, что учет, например, вклада реакции (n, $\delta \frac{1}{2}$) на быстрых нейтронах меняет величину $Q = \frac{\langle On H \rangle}{\langle On H \rangle}$ на 10 – 15%, а это имеет существенное значение при расчетах реакторов-размножителей на быстрых нейтронах.

Апробация работы

Материалы, положенные в основу диссертации, докладывались на 28 совещании по ядерной спектроскопии и структуре ядра (Алма-Ата, 1978), на Ш и IУ Всесовзных конференциях по нейтронной физике (Киев, 1975 и 1977), на Международной конференции по избранным вопросам структуры ядра (Дубна, 1976) и на Ш и IУ Международных симпозиумах по спектрам & -лучей радиационного захвата и связанным с этой проблемой вопросам (Брукхейвен, 1978 и Гренобль, 1981).

Объем работы

Диссертация состоит из введения, пяти глав и заключения. В ней содержится I24 страницы машинописного текста, включая I6 таблиц, 24 рисунка и список литературы из II5 наименований.

СОДЕРЖАНИЕ РАВОТЫ

Во введении обосновывается актуальность работы, обсуждается ее научное и прикладное значение, а также цель работы. Обосновывается выбор метода исследования.

В первой главе описаны некоторые закономерности протекания двухступенчатой реакции (*n*, X \propto), приводятся основные сведения о X-распаде, рассматриваются накопленные к настоящему времени данные об \propto -распаде компаунд-состояний.

В реакции (n, $\delta \propto$) компаунд-ядро, возникающее при захвате нейтрона, испускает сначала мягкий δ -квант, переходя в некоторое промежуточное состояние, которое затем претерпевает \propto -распад. При этом энергия вторичной \propto -частицы E_{α} однозначно связана с

энергией первичного б-кванта выражением $E_{\alpha} = E_{\alpha} - E_{\delta}$, где E_{α} - энергия прямого α -перехода (см. рис.I). Поскольку рас-

стояние между промежуточными уровнями; как правило, много меньше знергетического разрешения с -спектрометра, то измеряемый экспериментально спектр вторичных

о -частиц усреднен по большому числу

 $\delta - \alpha$ -каскадов. Согласно статистической теории ширины δ -и α -этапов каскада флуктуируют независимо и средняя вероятность такого процесса $W_{\delta\alpha}$ равна произведению средних вероятностей δ -и α распада. Поскольку зависимость средней вероятности α -распада от энергии извест-

на достаточно хорошо, то по форме спектра вторичных «-частиц можно восстановить зависимость средней вероятности & -распада от энергии. Понятно, что точность и надежность получаемых таким образом данных существенно зависят от точности данных об «-распаде высоковозбужденных состояний.

На основе данных об усредненных по резонансам сечениях реакции

 (h, α) на ядрах ^{I23}Te, ^{I43}Nd, ^{I47}Sm и ^{I49}Sm показано, что предположение статистической теории о независимости средней приведенной α -ширины от энергии возбуждения ядра не противоречит экспериментальным данным. Получены средние для всего исследованного диапазона α -ширины указанных ядер. Проводится сравнение относительного хода зависимостей проницаемости барьера ядра $f_{f,c}$ рассчитанных для разных вариантов потенциала, между собой и с экспериментальными данными по средним α -ширинам, исходя из чего дается оценка точности описания зависимости проницаемости $T_{f,c}(E_{\alpha})$ от энергии и углового момента α -частицы.

На основе статистической теории получено уточненное выражение для усредненной формы α -спектра реакции ($h, \delta \alpha$), которое имеет вид

$$\frac{N_{\delta\alpha}}{\Delta E_{\alpha}^{k}} \approx \frac{I_{\delta\alpha}(\Delta E_{\alpha}^{k})}{\Delta E_{\alpha}^{k}} = \sum_{\lambda} \frac{\mathcal{Q}_{i} S_{\delta}^{k}(M_{\lambda}^{\lambda}) E_{\delta}^{m} Z_{\delta}^{m} I_{\lambda}e(E_{\alpha})}{\sum_{\lambda} 2 \Im \Gamma_{\delta}(B_{n})(1 + E_{\delta}/(B_{n} - \delta))^{n}}$$

Здесь $m=2\lambda+1+\eta$, где λ -мультипольность δ -лучей, а η учитывает возможную зависимость силовой функции от энергии. Показатель степени I $\leq n \leq 3,5$ учитывает зависимость полной радиационной ширины промежуточных уровней от энергии возбуждения. Получено выражение для расчета относительной погрешности ширины δ_{∞} , обусловленной конечным числом промежуточных уровней. Приведен краткий обзор предшествовавших исследований реакции ($n, \delta \propto$) на тепловых и резонансных нейтронах. Рассматриваются известные методы получения сведений о с \rightarrow с'переходах из реакции ($n, \delta \propto$).

В диссертации получил дальнейшее развитие метод определения мультипольностей с -- с'-переходов по соотношению экспериментальных значений ширин / δ_{α} в резонансах с разным спином. Интегрируя выражение для формы спектра реакции ($n, \delta \alpha$) в интервале выделения вклада этой реакции и пренебрегая высшими мультипольностями, можно представить ширины / δ_{α} для двух резонансных состояний в виде системы

$$\begin{split} & \int_{\delta \alpha}^{I+\frac{f}{2}} = a_{11} \, S_{\delta}^{cc}(M1) + a_{12} \, S_{\delta}^{cc}(E1), \\ & \int_{\delta \alpha}^{I-\frac{f}{2}} = a_{21} \, S_{\delta}^{cc}(M1) + a_{22} \, S_{\delta}^{cc}(E1). \end{split}$$

В случае ядра ¹⁴³ Nd коэффициенты a_{ik} оказываются сильно зависящими от спина исходного состояния и мультипольности первичных \mathcal{J} -лучей, детерминант системы по величине близок к a_{ik} , и при достаточной точности экспериментальных значений $\int_{\delta d}^{J}$, решая систему, можно получить значения силовых функций $S_{\delta}^{*}(M1)$ и $S_{\delta}^{*}(E1)$, усредненных

в интервале выделения. Формулируются основные нерешенные проблемы исследования с \rightarrow с'переходов: во-первых, данные о мультипольности носят предварительный, неоднозначный характер, во-вторых, неоднозначны данные о зависимости $\langle f_{\delta}^{c} \rangle$ от \pounds_{δ} , и, в-третьих, данные о с \rightarrow с'переходах относятся только к одному ядру 143 Md.

Во второй главе рассматриваются особенности методики измерения спектров \propto -распада нейтронных резонансов.

Спектрометрия нейтронов проводится по методу времени пролета. В качестве нейтронного спектрометра применялся импульсный реактор ИБР-30. Для снижения фона пучка, обусловленного быстрыми нейтронами и δ -квантами, предложена и успешно применена дополнительная фильтрация пучка алюминием. Поскольку сечение алюминия при $E_n < 6$ кзВ постоянно и примерно вдвое меньше сечения в интервале I < $E_n < 5$ МэВ, то, применяя фильтр, ослабляющий поток нейтронов в рабочей области в κ раз, поток быстрых нейтронов ослабляется в κ^2 раз. На рисунке 2

показаны амплитудные спектры реакции $143 \text{ Nd}(h, \alpha)^{140}$ Се в окне резонансов $E_o = 127$ и 135 эВ, измеренные на базе 30 м в одинаковых условиях с фильтром (2) и без фильтра (1). Можно видеть, что помимо снижения фона алюминиевый фильтр позволяет улучшить и разрешение по энергии α -частиц.

Для спектрометрии в нейтронных резонансах с малыми «-ширинами был разработан светосильный «-спектрометр цилиндрическая ионизационная камера с сеткой (ЦИК). Использование мишени в виде боковой поверхности усеченного конуса с малым углом при вершине в сочетании с

Рис.2

коллимацией нейтронного пучка в виде кольца, засвечивающего поверхность мишени и лишь 15% рабочего объема камеры, позволило при площади мишени 3500 см² сохранить малур емкость камеры и получить приемлемое разрешение по энергии α -частиц и неплохие перегрузочные характеристики камеры.

На рис.З показана конструкция камеры и расположение ее на пучке реактора ИЕР-30.

на рис.4 приведена зависимость разрешения камеры по энергии α-частиц (Δ E_α [кэВ]) от времени с момента вспышки мощности реактора (Т в мксек) на пролетных базах 30 и 85 м (кривая I и 2 со-

ответственно). Ниже шкалы времени пролета даны шкалы знергий нейтронов в эВ для соответствующих кривых.

<u>В третьей главе</u> описываются измерения спектра реакции $(n, \zeta \alpha)$ на ядрах I43 / d, $I23_{Te}$ и I47 Sm.

E. (1)

E. (2)

Рис.4

При измерении ширин $\int_{S_{\infty}} \phi$ они нормируются по резонансам того же ядра с известными α -ширинами. Поэтому увеличение точности ширин $\int_{S_{\infty}}$, в свою очередь, потребовало существенного уточнения α -ширин опорных резонансов. Были проведены дополнительные измерения, позволившие увеличить точность полных α -ширин опорных резонансов более чем в два раза. Результаты приведены в таблице I.

2			Таблица I
Ядро-мишень	¹⁴⁷ Sm	^{I43} Nd	123 _{Te}
Е о [эВ] Гас [мкэВ]	3,42 I,8±0,2	135 35±6,5	24,I 0,I±0,02

Измерения реакции ¹⁴³Nd (n, $\delta \propto$)¹⁴⁰Се проводились на камере ЦИК с использованием алюминиевого фильтра. Амплитудный спектр во временном окне резонанса $E_o = 159$ эВ представлен на рис.5. Здесь наблюдается заметная примесь α -перехода в основное состояние (α_o -перехода) от расположенного рядом резонанса $E_o = 179$ зВ. Для выделения вклада реакции (n, $\delta \propto$) использовалась экспериментальная форма линии α_o -перехода, полученная из спектра суммы резонансов $E_o = 127$ и 135 зВ (крестики на рис.5). Эти резонансы имеют большие ширины α_o -перехода, и примесью реакции (n, $\delta \propto$) в их α -спектре можно пренебречь. Фон в области 8, $I < E_{\alpha} < 8,95$ МэВ вычитался экстраполяцией со стороны меньших знергий (пунктир на рис.5). В резонансе $E_{\rho} = 55$ эВ, далеко от-

Рис.5

Рис.6

ду нижними уровнями дочернего ядра ¹⁴⁴ Nd и необходимостью выделения вклада реакции (n, $\delta \alpha$) на фоне интенсивных прямых α -переходов. В то же время большая величина параметра $\langle \lceil \alpha / 2 \rangle_T$ у данного ядра позволяет пожертвовать светосилой и эффективностью α -спектрометра ради улучшения условий выделения вклада реакции (n, $\delta \alpha$). Основным источником погрешности ширины $\lceil \delta \alpha \rangle$ на этом ядре является ошибка разделения вкладов реакции (n, $\delta \alpha$) и прямых α -переходов. Счет α частиц в интервале выделения ΔE_{α} и ширины $\lceil \delta \alpha \rangle$, полученные для измеренных в настоящей работе ядер, приведены в таблице 2.

месь α_o -перехода значительно слабее и для выделения эффекта использовался фон, измеренный в межрезонансных промежутках. На рисунке 6 показан спектр во временном окне резонанса $\mathcal{E}_o = 55$ зВ, полученный после вычитания фона. Для разделения вкладов реакции ($h, \delta \alpha$) и прямых α переходов была взята теоретическая форма спектра реакции ($h, \delta \alpha$) с учетом и формы линии толстого α -источника, параметры которой определялись по экспериментальному спектру α -перехода в резонансах $\mathcal{E}_o = 127$ и 135 зВ.

стоящем от резонансов со спином 37, при-

Измерения реакции 123 Te($n, \delta \alpha$)120 Sn проводились на камере ЦИК. На рис.7 приведен амплитудный спектр во временном окне резонанса $E_o = 2,33$ зВ, полученный после вычитания фона. Для разделения вкладов реакции ($n, \delta \alpha$) и α_{4} -перехода использовалась экспериментальная форма линии α_{o} -перехода, измеренная в резонансе $E_o = 96$ зВ.

Измерения реакции (n, gd) на ¹⁴⁷Sm в отличие от измерений на остальных ядрах проводились на плоской ионизационной камере с сеткой и электронной угловой коллимацией. Применение этой методики связано со значительно меньшими расстояниями меж-

5

Значение ширины $/\mathcal{J}_{\alpha}$, помеченное эвездочкой, получено в первой работе дубненской группы. Данные по тепловому сечению реакции ¹⁴³/ \mathcal{N}_d ($\mathcal{N}, \mathcal{J}_{\alpha}$)¹⁴⁰Ce (их значения в мкб приведены в скобках)получены Л.Алдеа в Блихе и М.Асгаром в Гренобле.

Таблица 2

Ядро- мищень	Е,[эВ]	ፓ ^ም	ΔЕ _« [МэВ]	Nox (G _{nsa} [mko]	<i>Г_{б∢}(ΔЕ_∝)</i>) [мкэВ]	<i>Г_{д∝}</i> [мкэВ]
	55	4-		246±31		0,II±0,08 (*)
T40	55	4-	7,69±9,45	380±40	0,084±0,016	0,089±0,017
Nd	159	4	8,10-8,95	100±17	0,058±0,013	0,087±0,024
	-6	3-	7,8 - 9,3	(768±I4)	0,206±0,037	0,22±0,04
	-6	3-	6,7 - 9,5	(907±25)	0,24±0,04	0,25±0,04
I23 _m	2,33	I+	3,7 - 7,3	I06±3I	0,018±0,08	0,020±0,008
le	24,I	0+	6,4 - 6,6	5 15	0,01	0,04
¹⁴⁷ Sm	18,3	4-	8,8 - 8,9	5 45 ± 25	(9±5)•10 ⁻³	0,08±0,05

<u>В четвертой главе</u> проводится анализ данных реакций ($n, \delta \propto$) и (n, δ). На основе экспериментальных значений ширин $\int_{\delta \propto}$, измеренных в резонансах ¹⁴³Nd со спином 4⁻ и в тепловой точке, где сечение в основном обусловлено связанным состоянием Eo = -6 эВ со спином 3⁻, получены силовые функции с + с'переходов ¹⁴⁴Nd, усредненные в интервале 0,2 - I,6 МэВ мультипольности MI $S_{\delta}^{*}(M1) =$ = (8[±]3)·IO⁻⁹ МэВ ⁻³ и EI $S_{\delta}^{*}(E1) = (9^{\pm}3) \cdot IO^{-9}$ МэВ⁻³.

Проведен анализ формы спектра \propto -частиц из реакции ¹⁴³ Nd(n, $\delta \propto$)¹⁴⁰Ce, измеренного в тепловой точке. Сравнение уточненной теоретической формы спектра с экспериментом для разных видов зависимостей S_{δ}^{cc} и Γ_{δ}^{tot} от энергии \mathcal{E}_{δ} по критерию χ^2 показывает, что при

8

m = 3, n > 1 значения χ^2 не выходят за пределы одного стандартного отклонения χ^2 -распределения. Несколько хуже описывается спектр при m = 3, n = 0: $P(\chi^2) < 5\%$. Описание становится заметно хуже при изменении m, даже при [m - 3] = 0.5 $P(\chi^2) < 1\%$. Эти результаты могут служить более надежным подтверждением вывода, сделанного в первой работе дубненской группы об энергетической зависимости $\langle I_{\chi}^{cc} \rangle \approx E_{\chi}^{3}$.

Результаты проведенного анализа в основном относятся к ЕІ-переходам, поскольку в случае компаунд-состояния $^{I43}Nd'$ со спином 3⁻, образующегося при захвате теплового нейтрона, \propto -распад промежуточных уровней, заселяемых б-переходами мультипольности ЕІ, разрешен с угловым моментом $\ell_{\alpha} = 2$ и проницаемость барьера при этом вдвое больше, чем для \propto -распада уровней, заселяемых МІ-переходами, где $\ell_{\alpha} = 3$. Поэтому при условии $S_{\delta}^{*}(EI) \approx S_{\delta}^{*}(MI)$ форма \propto -спектра реакции ($n, \delta \propto$) в тепловой точке на 2/3 определяется ЕІ δ -переходами.

В резонансах ^{I43}Nd со спином 4⁻ наблюдается обратная картина: α -спектр обусловлен в основном МІ-переходами. Вид зависимости $\langle \gamma_{\delta}^{ee} \rangle (E_{\delta})$, полученной из спектра резонанса $E_o = 55$ эВ, в пределах погрешностей совпадает с данными в тепловой точке. Полученная в настоящей работе величина $S_{\delta}^{ee} (MI)$ в 4 раза меньше $S_{\delta}^{ee} (MI)$, измеренной в реакции ^{I44}Nd(δ, δ) при $E_{\delta} = 7,8$ МэВ, что указывает на возможный вклад МІ гигантского резонанса при этой энергии.

Для других ядер ширины /З измерены только в одном захватном состоянии и мультипольность с → с'переходов неизвестна, поэтому силовые функции были найдены для двух крайних случаев чистых ЕІ-и МІпереходов при помощи упрощенного выражения

$$S_{\delta}^{cc} = \frac{2 \operatorname{fr} f_{\delta \alpha} f_{\delta}(B_n)}{\mathcal{D}_i \Delta E_{\alpha} \sum_{k=1, K \text{ man}} E_{\delta}^{k^3} \overline{f_{0, \ell}(E_{\alpha}^k)}}$$

Эти значения S_{δ}^{cc} , полученные на основе наших данных, а также на основе данных по тепловым сечениям реакции ($n, \delta \propto$), показаны на рисунках 8 и 9 треугольниками.

Реакция (n, δ) в значительной степени похожа на реакцию ($n, \delta \alpha$) с тем отличием, что проницаемость барьера деления уменьшается быстрее, чем при α -распаде и потому расчетный спектр первичных δ -лучей в случае подбарьерной реакции (n, δ) мягче: максимум-в районе 400 кзВ. Для надбарьерной реакции (n, δ), мягче: максимум-в районе 400 кзВ. Для надбарьерной реакции (n, δ), например, в случае $^{235}\mathcal{U}$ и $^{239}\mathcal{P}_{u}$, он сдвигается на 300-400 кзВ. Сравнительная ограниченность данных по реакции (n, f) обусловлена прежде всего невозможностью измерить спектр первичных δ -лучей. Из эксперимента обычно удается получить лишь величину /уји, иногда, оценить мультипольность первичных 8-переходов.

Для сравнения с данными по реакции (n, χ_{c}) на основе шарин Γ_{gf} была получена силовая функция первичных δ -переходов при помощи выражения $2\pi \Gamma_{c} \Gamma_{c} \Gamma_{c}$

 $S_{\delta}^{\text{sc}} = \frac{2\pi f_{\delta_{3}} f_{\delta}(B_{n})}{\mathcal{D}_{i} \Delta E_{\delta} \sum_{k} E_{\delta_{3}}^{\text{sc}} F_{k} (1 - W_{4}^{\text{sc}})} .$

Здесь $P_{k} = \left[1 + e_{k} P\left(\frac{E_{k} - E_{j}}{\hbar \omega}\right)\right]^{-1}$ проницаемость барьера деления. Параметры барьера деления E_{j} и $\hbar \omega$, а также зависимость средней вероятности деления W_{j} от энергии возбуждения компаунд-ядра были взяты из данных по реакции (d, P_{j}).

Полученные таким образом на основе экспериментальных значений $\Gamma_{\mathcal{F}_{1}}$ силовые функции представлены на рисунках 8 и 9 (квадратики). Исходя из близости $S_{\mathcal{F}_{2}}^{cc}$ в районе редких земель и актиноидов были сделаны оценки ширин $\Gamma_{\mathcal{F}_{2}}$ для делящихся ядер, которые приведены в таблице 3.

					¢.		Таолица	13	
Ядро- мишень	²³³ U	²³⁵ U	²³⁷ Np	²³⁸ Pu	²³⁹ Pu	²⁴¹ Pu	^{24I} Am	²⁴³ Am	
I Г४у [мэВ]	8,3	3,2	0,15	0,02	16,5	2	5•10 ⁻⁶	10-4	
Г ^{II} Гъз [мэВ]	4,6	I,6	2.10-7	0,032	12	I,4			

Поскольку использовались параметры двугорбого барьера, то были получены две группы оценок ширин $\int_{\delta_1}^{J}$: $\int_{\delta_2}^{J}$ для быстрой реакции (h, δ_2), соответствующей прохождению сразу обоих барьеров, и задержанной на время порядка периода полураспада состояний во второй яме $-\int_{\delta_2}^{J}$.

Экспериментальные значения силовой функции Sg позволяют сравнительно просто оценить величины полных радиационных ширин этих ядер при помощи выражения 2/

$$\int_{0}^{tot} \int_{0}^{\infty} \mathcal{D}_{i} S_{\delta}^{c} E_{\delta}^{3} \rho((u - E_{\delta}), J) dE_{\delta}$$

Для определения погрешности, вносимой видом функции плотности уровней ρ (\mathcal{E}^* , \mathcal{J}), расчет проводился с использованием ρ (\mathcal{E}^* , \mathcal{J}) по модели ферми-газа с группировкой в оболочки и по модели ферми-газа с обратным смещением. Для ядер ¹²³Те и ¹⁴⁷Sm, где величины силовых функций S_{δ}^{cc} сильно зависят от предположения о мультипольности с -спереходов, приводятся две оценки I_{δ}^{tot} соответствующие крайним случаям чистых ЕІ-и МІ-переходов. Для ¹⁴⁹Sm величины S_{δ}^{cc} для обоих мультипольностей близки, и в таблице 4 приведено среднее значение. Погрешности расчетных значений I_{δ}^{tot} включают в себя погрешность S_{δ}^{cc} и неопределенность функции $\rho(\mathcal{E}^{*}, \mathcal{J})$. Усредненные по всем вариантам $\rho(\mathcal{E}^{*}, \mathcal{J})$ полные радиационные ширины приведены в таблице 4.

						Таблица 4	
Ядро –	123 _{Te}		I43 _{Nd}	I4	⁷ Sm	149 5m	
	EI	MI		EI	MI		
To pact. [MOB]	80±36	40±13	30±20	11 ± 6	19±10	32±9	
(v tot [мэВ]	97	±3 (64±15	35	<u>+</u> 9	60±I	

В нижней строке приведены экспериментальные значения полных радиационных ширин за вычетом вклада жестких δ -переходов. Сравнение расчетных значений с экспериментальными указывает на то, что следует ожидать роста S_{δ} в области 2 < \mathcal{E}_{δ} <4 МэВ по сравнению с $S_{\delta}^{\mathcal{E}}$. Это предположение подтверждается также данными по жестким δ -переходам для ¹⁴³ Nd, где S_{δ} в области 5 < \mathcal{E}_{δ} <7 МэВ в 4 – 10 раз превышает $S_{\delta}^{\mathcal{E}}$.

В пятой главе проводится сопоставление экспериментальных данных о мягких и жестких б-переходах и сравнение их с известными моделями б-распада компаунд-состояний ядер.

На рисунках 8 и 9 приведены полученные в настоящей работе значения S⁶ для случаев чистых ЕІ-и МІ-переходов (верхние оценки S⁶) вместе с силовыми функциями жестких б-переходов из обзора Маккулах и Криена (точки и кружочки). Как можно видеть, для МІ-переходов не обнаруживается различий между S⁶ и S⁶ и не обнаруживается зависимости от атомного веса. Для ЕІ-переходов S⁶ среднем меньше S⁶.

Для ядер ^{I44}Nd и ^{I24}Te проведено сопоставление экспериментальных значений силовых функций с →с⁴переходов, с-S-переходов и данных фотоядерных реакций с различными вариантами описания формы гигантского электрического дипольного резонанса (ГЭДР). Если предположить, что соотношение S_{δ}^{cc} (EI)/ S_{δ}^{cc} (MI) для каждой экспериментальной точки такое же, как и для всего спектра, то зависимость

Рис.9. Силовые функции MI-переходов, МэВ-3.

силовой функции с -с-переходов может быть получена из спектра вторичных «-частиц реакции (л, Х «) при помощи выражения

$$S_{\delta_{\kappa}}^{ce}(E_{1}) = \frac{2\pi}{2i} \frac{\Gamma_{\delta_{\kappa}} N_{\delta_{\kappa}}^{\kappa} \Gamma_{\delta}(B_{n}) [1 - E_{\delta}^{\kappa} / (B_{n} - \delta)]^{n}}{N_{\delta_{\kappa}} \Delta E_{\alpha} E_{\delta}^{\kappa^{2}} (T_{\ell(E_{1})} + T_{\ell(H_{1})} S_{\delta}^{ce}(M_{1}) / S_{\delta}^{ce}(E_{1}))}$$

Оценка силовой функции, усредненной в интервале I,6 < Ez<4 МэВ, была получена на основе полной радиационной ширины. Силовые функции в области $E_{\delta} > B_n$ получены на основе данных фотоядерных реакций с помощью выражения

$$S_{\chi_0^{=}}^{*} = 8,67 \cdot 10^{-8} \frac{\langle \overline{O_0} \rangle [\dots \delta]}{E_{\chi} [M \ni B]}$$

На рисунке IO приведены экспериментальные значения силовых функций ¹⁴⁴ Ма мультипольности EI для всех трех видов данных о 8-распаде.

Puc.IO

Как можно видеть, они не согласуются ни с лоренцевской (кривая I), ни с брейт-вигнеровской (кривая 2) формой линии ГЭДР. В то же время данные при $E_{\delta} \ll E_{Q}$ хорошо согласуются с результатами работы С.Г.Кадменского, В.П.Маркушева и В.И.Фурмана X/(прямая).В работах этой группы также находит объяснение относительно большая, по сравнению с жесткими δ -переходами, роль мультипольности МI с -с'переходов, что обусловлено эффектами фрагментации, приводящими к обогащению волновых функций начального и конечного состояний одной четности одинаковыми компонентами, между которыми возможны МІ-и Е2-переходы, а ЕІ – переходы запрещены. Оценка силовых функций, полученная авторами, дает равные величины S_{δ}^{cc} для ЕІ-и МІ-переходов с точностью до множителя 2, совпадающие с экспериментом.

х/Кадменский С.Г., Маркушев В.П., Фурман В.И. ОИЯИ, Р4-82-210, Дубна, 1982. В заключении приводятся основные результаты выполненной работы.

I. Проведены измерения полных ∝ -ширин опорных резонансов 1475m, ¹⁴³Nd и ¹²³Te, что позволило вдвое улучшить точность нормировки ширин Г_α и Гуа указанных ядер.

2. Проведены измерения ширин реакции (n, ү) на ¹⁴³ Nd, позволившие в три раза увеличить точность их определения для резонансов со спином 4⁻, и впервые измерены ширины реакции(n, у d) резонансов ¹²³Те и ¹⁴⁷ Sm.

3. Впервые получено значение радиационной силовой функции EIпереходов с→с' и уточнено значение силовой функции MI-переходов для 144 № /. Для компаунд-ядер ¹²⁴Те и ¹⁴⁷Sm определены суммарные силовые функции EI-и MI-переходов. Рассчитаны силовые функции из данных по реакции (n, χα) на тепловых нейтронах.

4. Уточнено описание формы спектра вторичных α -частиц в реакции ($n, \delta \alpha$). Анализ формы экспериментального спектра реакции I43 Nd ($n, \delta \alpha$)^{I40}Се подтвердил вывод о независимости силовой функции с \rightarrow с'переходов от энергии \mathcal{E}_{δ} . Установлено, что это имеет место и для EI-переходов с \rightarrow с'

5. Получено приближенное выражение, связывающее радиационную силовую функцию с шириной реакции (n, χ), и на основе экспериментальных значений ширин / χ_1 получены оценки силовых функций делящихся ядер. Для других делящихся ядер сделаны оценки ширин / χ_1 .

6. Проведено сравнение значений силовых функций мягких и жестких У-переходов для широкого круга ядер. Для компаунд-ядер ¹⁴⁴ Nd и ¹²⁴Те проведено детальное сопоставление экспериментальных значений силовых функций в широком диапазоне энергий 8-лучей. 7. Показано, что данные для EI-переходов в ядре ¹⁴⁴ Nd не сог-

7. Показано, что данные для EI-переходов в ядре 147/VG не согласуются ни с лоренцевской, ни с брейт-вигнеровской формой линии ГЭДР. В то же время данные в области $E_{\chi} < E_{g}$, видимо, оказывается возможным описать на основе подхода, использующего учет свойств поляризационного оператора и зависимость силовой функции от температуры конечного состояния ядра.

8. Для МІ-переходов в ядре ¹⁴⁴ Nd не исключается возможность вклада МІ гигантского резонанса в районе $E_{\delta} \approx 8$ МэВ. В области

Ез < 1,6 МэВ относительное увеличение роли мультипольности МІ-переходов может бить объяснено эффектами фрагментации, что приводит к обогащению волновых функций начального и конечного состояний одной четности одинаковыми компонентами, между которыми возможны МІ-и Е2переходы, а ЕІ-переходы запрецены.

9. Методическими результатами диссертации являются, во-первых, предложение и использование метода фильтрации пучка импульсного ре-

актора алюминием в сочетании с методом времени пролета, и, во-вторых, разработка и исследование характеристик цилиндрических ионизационных камер с сеткой, что позволило создать светосильный \propto спектрометр для исследования реакций (\mathcal{N}, \propto) и ($\mathcal{N}, \mathcal{X} \propto$).

Работы, положенные в основу диссертации

- D.Анджеевски, Во Ким Тхань, В.А.Втюрин, А.Корейво, М.Стэмпиньски. ОИЯИ, 13-12458, Дубна, 1979.
- Во Ким Тхань, В.А.Вторин, А.Корейво, D.П.Попов, М.Стэмпиньски. ОИЯИ, РЗ-11381, Дубна, 1978.
- В.А.Вторин, К.Недведок, Ю.П.Попов, Р.Ф.Руми, В.И.Фурман, В.И.Салацкий. В кн.: Нейтронная физика, ч.4, ШНИ атоминформ, М., 1976, с.65.
- 4. В.А.Втюрин, Ю.П.Попов. ОИЯИ, РЗ-10775, Дубна, 1977.
- 5. D.Анджеевски, Во Ким Тхань, В.А.Втюрин, D.П.Попов. ОИЯИ, РЗ-81-433, Дубна, 1981.
- 6. В.А.Втюрин. ОИЯИ, РЗ-82-305, Дубна, 1982.
- 7. В.А.Втюрин, Ю.П.Попов. ОИЯИ, РЗ-82-309, Дубна, 1982.
- 8. В.А.Втюрин, К.Недведок, Ю.П.Попов, В.И.Салацкий. ЯФ, 1976, т.23, вып.6, с.1165.
- Vo Kim Thanh, V.A.Vtiurin, A.Korejvo, Yu.P.Popov, M.Stempinski. In: Neutron Capture Gamma-Ray Spectroscopy, ed. by R.Chrien and R.W.Kane. Plenum Press, New York, 1979, p.772.
- 10. В.А.Вторин, D.П.Попов. In: Nuclear Structure; 0ИЯИ, Д-9682, Дубна, 1976, с.114.
- II. В.А.Вторин, D.П.Попов. В кн.: Нейтронная физика, ч.З, ЦНИИатоминформ, М., 1977, с.268.
- I2. Во Ким Тхань, В.А.Вторин, А.Корейво, D.П.Попов, М.Стэмпиньски. В кн.: Тезисы докладов XXVIII совещания по ядерной спектроскопии и структуре ядра. "Наука", Л., 1978, с.162.
- I3. Vo Kim Thanh, V.A.Vtiurin, Yu.P.Popov. In: Neutron Capture Gamma-Ray Spectroscopy and Related Topios. Ed. von Egidy, Conf. Series No.62, Bristol-London, 1981, p.431.

Рукопись поступила в издательский отдел 29 июня 1982 года.