

Ю.Анджеевски, Во Ким Тхань, В.А.Втюрин, А.Корейво, Ю.П.Попов, М.Стэмпиньски

СПЕКТРОМЕТРИЯ а-ЧАСТИЦ ИЗ РЕАКЦИИ ¹⁴³ Nd (n, a)¹⁴⁰Ce НА РЕЗОНАНСНЫХ НЕЙТРОНАХ

ВВЕДЕНИЕ

Ядро ¹⁴³ Nd было одним из первых тяжелых ядер, при исследовании которого в пучке медленных нейтронов была обнаружена реакция (n,a). Эксперименты проводились сначала на тепловых ¹, а затем на резонансных нейтронах ²². Изучение спектров *a*-частиц из реакции ¹⁴³Nd(n,a) ¹⁴⁰Ce позволило экспериментально исследовать парциальные *a*-переходы, а также двухступенчатую реакцию (n,ya) на нейтронах тепловых ^{3,4} и резонансных /при $E_0 = 55$ зв ¹⁴³Nd ⁵⁵/. В последней работе были также измерены полные *a*-ширины наиболее сильных резонансов в области энергий до 700 эВ.

Соэдание нового спектрометра а -частиц ⁶ дало возможность расширить исследуемый диапазон энергий нейтронов до -10 кэВ. Это позволило надеяться на получение новых данных о компаундсостояниях, образующихся после захвата нейтронов ядрами ¹⁴³Nd, и их а -распаде, в частности, на определение спинов резонансов, измерение усредненных по резонансам сечений в киловольтной области с целью уточнения значения средней а -щирины и т.д.

МЕТОДИКА ИЗМЕРЕНИЙ И ОБРАБОТКИ РЕЗУЛЬТАТОВ

Измерения проводились по методу времени пролета на импульсном реакторе ИБР-30, работавшем в качестве бустера для ускорителя ЛУЭ-40. Геометрия эксперимента с цилиндрической ионизационной камерой в качестве а-спектрометра ⁷⁶⁷ описана ранее⁷⁷⁷ Были проведены две серии экспериментов на пролетных базах 85 и 30 м. Статистическая точность измерения на длинной базе была меньше, но благодаря лучшему временному разрешению и меньшей лерегрузке детекторного тракта в момент импульса мощности реактора в этой серии экспериментов можно было наблюдать отдельные резонансы до энергии 2600 эВ, а также измерять усредненные по резонансам сечения реакции (п.а) до энергим ~13 кэВ.

Измерения на короткой базе проводились с целью выделения вклада более слабых резонансов. Для уменьшения перегрузки от импульса мощности реактора и улучшения отношения медленных нейтронов к быстрым во второй серии измерений пучок нейтронов фильтровался блоком из мягкого алюминиевого сплава толщиной 10 см. Поскольку такой фильтр, а также заглушки на концах вакуумных отрезков нейтроновода, изготовленные из того же сплава, содержали марганец, это могло приводить к "выеданию" нейтронного потока в районе сильных резонансов марганца с E_0 =337, 1098 и 2375 зВ. Для того, чтобы оценить этот эффект, мы сравнивал; соотношение числа отсчетов а-частиц для рассматриваемых резонансов в измерениях первой и второй серии и отсюда получили, что содержание марганца составляет /1,6±0,1/%. Это позволило внести поправки, учитывающие влияние резонансов Мл на энергетическую зависимость потока нейтронов.

Рецикличные нейтроны, а также нейтроны, термализовавшиеся в помещении, поглощались кадмиевым экраном толщиной 1 мм, окружавшим камеру со всех сторон. /Для поглощения рецикличных нейтронов в измерениях на базе 85 м в пучок устанавливался дополнительный борный фильтр толщиной 0,53 г/см²/. Характеристики мишени и основные данные, относящиеся к измерениям, приведены в табл.1.

Ядро- мишенъ	Вид сое- динения	Обога- щение, %	Пло- щадь, см ²	Толщина, мг/см ²	База, м	Времен- ное раз- решение	Время измере- ния, ч
¹⁴³ Nd	Nd ₂ 0 _{;3}	83,5	3650	0,67	84,5	48	140
				-	30	135	322

т	~6			1
	au	มเท	цa	

Для анализа и регистрации сигналов с камеры использовался измерительный модуль на базе ЭВМ "Электроника 100/16 И", работавший в двухмерном режиме /амплитуда сигнала - время пролета/. Регистрируемые события по мере поступления запоминались в оперативной памяти ЭВМ, а затем в виде блоков записывались на магнитную ленту. Получение одномерных спектров, времяпролетных /в амплитудных окнах отдельных «-переходов/ и амплитудных /во временных окнах соответствующих резонансов/, проводилось путем сортировки записанного на ленте двухмерного массива на ЭВМ СDC-6500.

При захвате в -нейтронов ядрами ¹⁴³Nd образуются компаунд-состояния со спинами и четностью 3 и 4 Из состояний 4 а-распад возможен только на возбужденные уровни конечного ядра ¹⁴⁰Се с ненулевым спином / а-распад 4 → 0⁺ запрещен правилами отбора/. Поскольку первое возбужденное состояние 2⁺ в ¹⁴⁰Се находится при энергии возбуждения 1,6 МэВ, это приводит к уменьшению проницаемости кулоновского барьера, а следовательно, и средних а-ширин для состояний 4 по срав-

нению с а чширинами для состояний 3 приблизительно на два порядка. В основное состояние 0⁺ дочернего ядра правилами отбора разрешены «-переходы только из состояний 3. Это позволяет сравнительно легко идентифицировать такие состояния по спину, получив времяпролетный спектр в амплитудном окне ао перехода. Этот спектр /рис. 1/ использовался нами и для разделения вкладов близких пар резонансов с Е . 657,6; 708 эВ и Е_{л*}971; 1007 эВ. В качестве эталонной бралась форма линии отдельного резонанса с Е₀=852,6 эВ, находящегося в непосред-ственной близости от них. На <u>рис.2</u> представлены амплитудные спектры отдельных резонансов и дублета 657,6+708 зВ, полученные после вычитания фона, измеренного в промежутках между резонансами, а также амплитудные спектры, усредненные по резонансам в килоэлектронвольтной области энергии нейтронов. На рис.3 показаны амплитудные спектры высоколежащих резонансов. Вычитание фона из этих спектров и спектров, усредненных по резонансам, производилось путем плавной экстраполяции хода фоновой кривой в область высоких энергий, соответствующую «-переходам в первое возбужденное и основное состояния дочернего ядра. Кроме того, при обработке этих спектров был учтен вклад рецикличных нейтронов, проходящих через борный фильтр.

Число «-частиц в резонансах со спином 4 определялось из времяпролетных и амплитудных спектров, измеренных на короткой базе. Для учета вклада Близкорасположенных резонансов со слином 3 из временных спектров, полученных в амплитудных окнах, соответствующих переходам а , а , и энергетическому интервалу реакции (n, γα),- спектр 1, вычитался временной спектр, полученный в амплитудном окне «_п-перехода,- спектр II. Последний был пронормирован таким образом, чтобы компенсировать вклад резонансов 3 /коэффициент нормировки К мы взяли равным отношению суммы площадей резонансов с Е = 127,4 и 135,5 эВ для спектров I и II /. Вклад резонансов со спином и четностью 4 выделялся из полученного разностного временного спектра обычным образом. Следует отметить, что такой метод выделения должен давать погрешность, обусловленную разным соотношением интенсивностей а - перехода и а , а ... - переходов для отдельных резонансов.Поэтому вклады реакции (п. и) при переходе на возбужденные состояния и реакции (n, уа) оценивались нами также путем выделения их из амплитудных спектров, полученных во временных окнах соответствующих резонансов.В пределах ошибок результаты, полученные этими методами, совпадают. Плошади резонансов 4, приводимые в табл.2, получены как средние взвешенные для этих двух методов.

При определении «-ширин в качестве калибровочной была использована «-ширина резонанса 179,5 эВ ^{/8/}. Данные о полных

Рис.1. Времяпролетный спектр реакции 143 Nd(д,a) 140 Се в амплитудном окне a_0 -перехода. Стрелками показано положение известных резонансов со спином и четностью 3 $^{-}$. Пунктиром для $E_{\rm n} > 2900$ зВ обозначены интервалы, в которых были получены только усредненные по резонансам сечения.

Рис.2. Амплитудные спектры низколежащих резонансов после вычитания фона и спектры, усредненные по резонансам в килоэлектронвольтной области энергий. Пунктиром показан ход фона.

и нейтронных ширинах калибровочных и исследуемых резонансов были взяты из компиляции ⁹⁷. Методика калибровки была описана ранее в работе ⁷⁷.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Число α -частиц в резонансах, полученные нами α -ширины и данные о спинах измеренных резонансов приведены в <u>табл.2</u>. Для всех резонансов наши данные о спинах хорошо согласуются с данными компиляции ^{/9/}, а для резонансов с $E_{\alpha} \approx 852,6;$ 971,6;

<u>Рис.3</u>. Амплитудные спектры высоколежащих резонансов.

1007,8; 1082,4; 1211,2 эВ - с более поздней работой $^{10'}$ Резонансам с E_0 =1433,8 эВ и E_0 = 2631,7 эВ нами было впервые приписано значение слина 3⁻. Поскольку для резонансов 55,3; 158,9 и 306 эВ верхние оценки ширин Γ_{α_0} оказальсь значительно меньше среднего значения $<\Gamma_{\alpha_0}>= 21,3$ мкзВ / Γ_{α_0} /55,3 зВ/ <0,024 мкзВ, Γ_{α_0} /158,9 эВ/ < 0,05 мкзВ и Γ_{α_0} /306 зВ/ < 20,034 зВ/, им был приписан спин 4⁻ с уровнем достоверности 95%.

Приводимые в <u>табл.2</u> а -ширины для резонансов со спином и четностью 3 являются практически парциальными ширинами a_0 -переходов /см. амплитудные спектры этих резонансов на рис.2 и 3/. Для резонансов 4 в <u>табл.2</u> приведены полные a-ширины, где заметную роль, возможно, играет ширина Гума, напри-

6

Таблица 2

E ₀ /38/	J#		N.	Га /мкэв/
	/9,10	, наши данные	a	
-6	37	}		4.6 ± 0.9
55.3	4-	4-	330 ± 50	0.12 ± 0.04
127.4	37	3~	615 🛎 35	8,0 ± 1,5
135.5	3	3-	1315 ± 45	32 ± 8
158.9	4-	4	I75 ± 47	0,18 ± 0,08
179,5	3-	3~	115 ± 13	2,6 ± 0,3
186,6	4-		< II5	< 0,16
306,2	4-		68 ± 35	2,3 ± 21
324,4	3**		< 7	< 0,5
350,4	37		< IO	< 1,0
406.C	37	3'''	550 ± 27	58 ± 12
506,8	37		< 5	< I,5
576,2	37		< 6	< 5
657,6	37	37	27 ± 14	7 ± 4
708,3	37	3-	9I ± 29	28 ± 10
852,6	3-	3-	69 ± IO	95 ± 24
971,6	37	3	II ± 6	I2 ± 7
1007,7	3-	3-	I4 ± 6	< 13
IC82,4	37	37	51 ± 8	47 ± 13
1211,2	3-	3-	34 ± 7	26 ± 8
I433,6		37	102 ± 11	ID8 ± 24
2631,7		37	26 ± 6	84 ± 24

мер, в резонансе с $E_0 = 55,3$ зв отношение $\Gamma_{\gamma\alpha} / \Gamma_{\alpha} = 0,65^{/5/}$. Поскольку согласно статистической теории $\Gamma_{\gamma\alpha}$ слабо флуктуирует от резонанса к резонансу одного спина ($\Gamma_{\gamma\alpha} - 2\%$), представляло интерес уточнить «-ширины резонанса $E_0 = 158,7$ зв и в особенности $E_0 = 186,6$ зв, для которого в работе / 6/ была получена верхняя оценка, близкая к $\Gamma_{\gamma\alpha}$ резонанса $E_0 = 55,3$ зв. Как можно видеть из табл.2, нам удалось заметно увеличить точность определения Γ_{α} для резонанса $E_0 = 186,6$ зв нам не удалось ввиду сложности разделения его с близко расположенным резонансом с $E_0 = 179,5$ зв со спином 3.

Полученные нами значения «-ширин позволили построить распределение «-ширин перехода в основное состояние и определить

<u>Рис.4.</u> Распределение ширин a_0 -перехода ¹⁴³Nd для 16 резонансов с E_0 до 1200 эВ. Стрелками обозначены верхние оценки ширин. Штрих-пунктиром показана гистограмма, полученная при условии равенства Γ_{α} их верхним оценкам; плавные кривые /сплошная и пунктирная/ - теоретические распределения « -ширин, ν -число степеней свободы распределения. экспериментальное значение эффективного числа степеней свободы этого распределения

$$\nu_{\varphi\varphi\varphi}^{\Re CH} = \frac{2 < \Gamma_{\alpha_0} >^2}{< \Gamma_{\alpha_0}^2 > - < \Gamma_{\alpha_0}^2}$$

На рис.4 показано распределение а-ширин для резонансов со спином 3-, находящихся в интервале до ~1200 эВ. Для пяти резонансов в этой области удалось получить лишь верхние оценки ширин /ступеньки гистограммы со стрелками/, но величина их мала, и если положить а -ширины этих резонансов равными верхним оценкам, то средняя а-ширина <Г_а > изменяется лишь на 6%. Для этого интервала было получено "эксп-1,35÷1,13. Первая величина относится к случаю, когда для указанных пяти резонансов величины Г, полагались равными их верхним оценкам, а вторая к случаю, когда эти Га полагались равными нулю. На рис.4 видно хорошее

согласие полученного распределения с предсказываемым статистической теорией с и_{зф.д} ≈1.

На интервале 1,2⁺2,9 кэВ из 17 резонансов со спином 3⁻, ожидаемых исходя из известной плотности уровней, мы наблюдали только два / $E_0 = 1433,8$ и $E_0 = 2631,7$ зВ/, поэтому определение средней а -ширины для этого интервала проводилось исходя из усредненного по этому интервалу сечения реакции (п.а). В области энергии нейтронов свыше 2,9 кэВ нами были получены только усредненные по резонансам сечения реакции (п.а). Слектры а частиц в интервалах 2,9+5 кэВ и 5+8,5 кэВ представлены на <u>рис.2</u>. Пунктирной кривой показан ход фона с учетом рецикличных нейтронов. Усредненные сечения определялись нами при помощи выражения /8/ работы /11/:

$$\langle \sigma_{(\mathbf{n},\alpha_{0})} \rangle = \frac{N_{\alpha_{0}}}{N_{\alpha_{k}}} \frac{\phi(\mathbf{E}_{0}^{k})\lambda_{k}^{2}\mathbf{g}_{J}^{k}\boldsymbol{\pi}\boldsymbol{\Gamma}_{n}^{k}\boldsymbol{\Gamma}_{\alpha}^{k}}{2\boldsymbol{\Gamma}_{k}\int_{\boldsymbol{\Phi}_{\mathbf{E}_{n}}}\phi(\mathbf{E}_{n})d\mathbf{E}_{n}},$$

здесь ΔE_n - интервал усреднения. Измеренные сечения позволили получить параметр $<\frac{\Gamma_a}{D}$ -/см. выражение /2/ работы /11//:

$$\langle \frac{\Gamma_{a_0}}{D} \rangle_{J} \approx \frac{\langle \sigma_{(n, a_0)} \rangle 2 \int_{E_n} \phi(E_n) dE_n}{\int_{\Delta E_n} \phi(E_n) \lambda^2 \frac{\langle \Gamma_n \rangle}{\langle \Gamma \rangle} F(E_n) dE_n}$$

Поскольку а - переходы на возбужденное состояние дочернего ядра 140Се составляют 1%, эти данные практически характеризуют поведение ширин «-перехода в основное состояние. Совокупность полученных значений средних *а*-ширин /табл.3/ не противоречит предположению статистической теории о независимости средней а - ширины от энергии нейтронов.

<u>ΔЕ</u> в /кэв/	μ*	N _{a o}	^{<σ} (1,a ₀) ^{>} /мкбарн/	$< \frac{\Gamma_a}{D} > 10$	<Г _{ао} >) ⁻⁸ /мкэВ/
0÷1,2	15			13 <u>+</u> 5	21 <u>+</u> 8
1,2÷2,9	19	145 <u>+</u> 30	150 <u>+</u> 35	11 <u>+</u> 5	18 <u>+</u> 7
2, 9 ÷5,0	27	72 <u>+</u> 11	105 <u>+</u> 24	14 <u>+</u> 5	23 <u>+</u> 8
5,0÷8,5	44	44 <u>+</u> 10	65 <u>+</u> 21	13+6	21 <u>+</u> 9
8,5÷13,7	66	28 <u>+</u> 15	45 <u>+</u> 24	14 <u>+</u> 9	23 <u>+</u> 14

Таблица 3

* μ_0 - зффективное число резонансов, ответственных за среднее сечение /или величину Γ_{α_0}/D / в данном интервале энергий /подробнее см. / 11/ /.

В связи с проводимыми в последние годы исследованиями реакции (0, a) на фильтрованных пучках нейтронов^{/12/} необходимо обратить внимание на малую величину средней альфа-ширины в районе 2 кэВ /"провал" на рис. 1/, поскольку для скандиевого фильт-

Рис.5. Усредненное по резонансам сечение реакции 143 Nd(п,«) 140 Ce Треугольники – данные настоящей работы, приведенные в табл.3, кружок – результат работы (12), квадрат – результат работы (13), сплошная линия – расоты в предположении «Сп. D>= const.

ра топшиной 96 см более 80% потока нейтронов приходится на интервал 1.6 - 2.4 кэВ. т.е. в промежутке между наблюдаемыми нами сильными резонансами, которые дают основной вклал в сечение на интервале 1,2-2,9 кэВ. Исключение резонансов En = 1,433 кэВ и Е. = 2.631 кэВ снижает сечение почти втрое: < (п.а) = 55+18 мкбарн /ср. с табл. 3/. Отметим. что результаты измерений сечений зтой реакции на фильтрованном скандием пучке, получаемые разными авторами, могут отличаться, так как на величину сечения будет сильно влиять ширина полосы пропускания фильтра /зависит от того, войдут ли сильные резонансы с. Е о = = 1,433 кэВ и F_a= 2,631 кэВ в полосу пролускания фильтра/.

ЗАКЛЮЧЕНИЕ

Проведенные исследования реакции 143 Nd(n, a) 140 Се позволили получить а -ширины и проанализировать их статистические свойства на большом числе резонансов. Экспериментальные значения усредненных по резонансам сечений хорошо описываются расчетной зависимостью сечения от энергии, лолученной в предположении постоянства <Г a_0 /D> /см. <u>рис.5</u>/, хотя для узких энергетических интервалов можно наблюдать значительные флуктуации /интервал 1,6-2,6 кэВ/. Распределение парциальных альфаширии перехода в основное состояние удовлетворяет распределению Портера-Томаса.

В заключение авторы считают своим приятным долгом выразить благодарность Т.С.Зваровой и И.Зайдель за изготовление мишени из ¹⁴³Nd, М.З.Ишмухамедову, А.П.Сиротину и В.А.Владимирову за

10

наладку измерительного модуля. Ю.Намсраю и А.С.Савватееву за подготовку математического обеспечения модуля и Т.М.Островной за составление программы сортировки двухмерной информации.

ΠΗΤΕΡΔΤΥΡΔ

- 1. MacFarlane R.D., Almodovar J. Phys.Rev., 1962, 127, p.1665.
- 2. Квитек И., Попов Ю.П. Письма в ЖЭТФ. 1967. т.5. вып.10. c. 365.
- 3. Oakey N.S., MacFarlane R.D. Phys.Lett., 1968, 26B, p.662.
- 4. Emsallem A., Asghar M. In: Neutron Capture Gamma-Ray Spectroscopy, Petten, 1975, p.395; Aldea L, et al. Z.Phys., 1977, A283, p.391.
- 5. Винивартер П. и др. ОИЯИ, РЗ-6754, Дубна, 1972.
- 6. Анджеевски Ю. и др. ОИЯИ, 13-12458, Дубна, 1979. 7. Во Ким Тхань и др. ОИЯИ, P3-11644, Дубна, 1978.
- 8. Гледенов Ю.М., Пак Хон Чер, Попов Ю.П. Бюллетень центра данных ЛИЯФ, 1977, вып.4, с.3.
- 9. Neutron Cross Section, BNL 325, vol.1, Third Ed., 1973.
- 10. Rohr G. et al. In: Neutron Capture Gamma-Ray Spectroscopy. ed. by R.E.Crien and W.R.Kane. Plenum Press. N.Y., 1979. p.734.
- 11. Во Ким Тхань и др. ОИЯИ, РЗ-12755, Д.бна, 1979.
- 12. Анджеевски Ю. и др. ОИЯИ, РЗ-13013, Дубна, 1980.
- 13. Попов Ю.П., Салацкий В.И., Хуухэнхуу Г. ОИЯИ, 3-12095. Дубна, 1979.

Рукопись поступила в издательский отдел 21 августа 1980 года.