

1966

2641

В.И. Приходько, В.Г. Тишин

ГЕНЕРАТОРЫ ЦУГА ИМПУЛЬСОВ ДЛЯ АНАЛОГО-ЦИФРОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ В.И. Приходько, В.Г. Тишин

ГЕНЕРАТОРЫ ЦУГА ИМПУЛЬСОВ ДЛЯ АНАЛОГО-ЦИФРОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ

Научно-техническая библиотека ОИЯИ

1. Введение

В настоящее время наиболее распространным типом аналого-цифровых преобразователей (АЦП) являются преобразователи с амплитудно-временной трансформацией. Преобразователь такого типа можно разделить на две основные части: 1) устройство, преобразующее амплитуду исследуемого сигнала в пропорциональный интервал времени; 2) устройство, преобразующее этот интервал в цифровой код (генератор цуга импульсов и адресный счетчик).

Ряд основных характеристик АШП связан с качеством работы генератора цуга импульсов. К этим характеристикам относятся: 1) стабильность коэффициента преобразования (усиления) АШП, которая зависит, в частности, от стабильности частоты генератора; 2) время преобразования (быстродействие) АШП, равное nT_{μ} , где T_{μ} – период импульсов в цуге; n – число каиалов; 3) дифференциальная нелинейность, зависящая от неравномерности частоты генератора.

Качество работы самих генераторов, в свою очередь, зависит от ряда факторов: изменения напряжения питания, температурного дрейфа, стабильности элементов, типа транзисторов и т.д. Поэтому при проектировании АЦП одним из важнейших этапов является разработка генератора пуга импульсов.

Генератор может быть выполнен по одной из блок-схем, приведенных на рис. 1: ждущий генератор (рис. 1а), непрерывный генератор с фазировкой начала и конца серии (рис. 1б), ждущий генератор с фазировкой конца серии (рис. 1в).

Наиболее простым устройством является ждущий генератор. Это может быть ждущий мультивибратор /1/, /2/, генератор с задержанной обратной связью /3/, генератор синусоидальных колебаний с внешним запуском и дополнительной формировкой /4/. В этих схемах на вход подается прямоугольный импульс с достаточно крутым фронтом и спадом (t _ф, cn << T_ц), на выходе генератора получается цуг импульсов, число которых пропорционально длительности запускающего импульса. При разработке ждущих генераторов возникает ряд трудностей, которые не всегда удается преодолеть. В первую

очередь это относится к повышению частоты генератора (особенно в релаксационных схемах). Второй важной особенностью этих схем является вероятность появления неполноценных импульсов в конце цуга. Это явление может привести к существенному уменьшению амплитуды последнего импульса, а так как порог срабатывания первого триггера адресного счетчика различен для двух состояний триггера, то в преобразователе при этом наблюдается значительная неравномерность ширины четных и нечетных каналов.

Непрерывный генератор с фазировкой начала и конца серии /5/ (рис. 16) лишен этого недостатка. В данном генераторе на вход схемы фазировки (СФ) подается импульс начала линейного разряда емкости, здесь он фазируется с импульсом серии и подается на триггер (Тр), управляющий клапаном (К). На выходе клапана появляется цуг импульсов. Конен цуга фазируется схемой (СФ₂) с импульсом окончания линейного разряда. К числу достоинств этого генератора следует также отнести высокую стабильность частоты (это легко достигается с помощью кварца). Однако конструирование генератора по данной блок-схеме на большую частоту (свыше 10 мгц) встречает известные трудности при схемном решении отдельных узлов.

Некоторым компромиссом между двумя рассмотренными схемами является ждущий генератор с фазировкой конца серии (рис. 1в). Такая схема позволяет устранить уменьшение последнего импульса в цуге и, кроме того, она значительно проше схемы непрерывного генератора с двумя фазировками. Ждущий генератор в этой схеме управляется триггером, на вход 1 которого подается импульс начала разряда емкости. На вход 2 с некоторой задержкой, равной приблизительно 0,3 Т_ц, подается с выхода схемы фазировки импульс цуга, следующий непосредственно за импульсом окончания разряда. Таким образом, момент обрыва ЖГ оказывается четко сфазированным с последним импульсом цуга.

Следует заметить, что применение подобной схемы эффективно лишь для малоинерционных генераторов, у которых время затухания меньше длительности периода импульсов цуга.

Из трех описанных выше схем наиболее просты и надежны ждущие генераторы, поэтому они нашли самое широкое применение в АЦП с амплитудно-временной трансформацией. Ниже рассматривается ряд схем ждущих генераторов, а также ждущий генератор с фазировкой конца серии, имеющие частоту импульсов в цуге 10-20 мгц.

II . Ждущие генераторы

Одним из наиболее простых схемных решений генератора цуга с рабочей частотой 10-20 мгц является ждуший мультивибратор^{/1/} (ряс. 2). Запуск мультивибратора

4

осуществляется подачей отрицательного смещения в базу транзистора Т₂. Длительность фронта и спада запускающего импульса не должна превышать 10-20 нсек. Цуг импульсов через эмиттерный повторитель ЭП (T₃) снимается от коллектора Т₂.

Мультивибратор представляет собой симметричную схему с эмиттерной связью. Для устойчивости по постоянному току в эмиттеры Т₁ и Т₂ включены "связки" (R₄, R₅).

Частота определяется сопротивлениями R_1 , R_2 , R_3 и емкостями C_1 , C_2 , а также величиной напряжения питания. Для указанных в схеме номиналов частота импульсов в цуге составляет 10 мгц, амплитуда 4-5 в. Схема работает до 40 мгц без существенного ухудшения качественных показателей^{x)}.

На рис. З изображена схема генератора цуга, выполненного на основе генератора синусоидальных колебаний с трансформаторной обратной связью. Генератор собран на транзисторе T₂. Запуск схемы осуществляется отрицательным прямоугольным импульсом через эмиттерный повторитель T₁. Цуг импульсов формируется из отрицательной полуволны синусоиды на туннельном диоде типа ЗИЗО1Б и транзисторах T₄, T₅, T₆. Амплитуда выходных импульсов 6в, частота 12 мгц. Частота импульсов в цуге зависит от параметров контура. Плавное изменение частоты осуществляется триммером С. Достоинством данного генератора является высокая стабильность частоты, присущая схемам подобного типа.

Для получения цуга импульсов с частотой до 100 мгц и более можно применить схему, приведенную на рис. $4^{/3/}$. Генератором является туннельный диод, который в исходном состоянии находится в устойчивой рабочей точке. Сопротивление R выбирается таким образом, чтобы с приходом отрицательного запускающего импульса туннельный диод начинал генерировать с частотой, определяемой величиной смещения на нем и индуктивностью L. Предельная частота серии в данном генераторе зависит от быстродействия схемы формирования (транзисторы T₁, T₂, T₃).

LA.

Имеются сообщения об АШП, в котором преобразование интервала времени в цифровой код происходит с частотой 116 мгц. В этом преобразователе генератор цуга импульсов и триггера адресного счетчика выполнены на туннельных диодах /6/.

Генератор цуга может быть построен на основе LC генератора с емкостиой обратной связью (рис. 5)^{/8/}. Запускающий импульс запирает диод Д₁, шунтирующий контур, к в схеме возникают синусоидальные колебания, которые с выхода генератора (эмиттер T₁) через ЭП (T₂) поступают на схему формирования (TД, T₃, T₄). Частота колебаний задается параметрами контура. Следует отметить, что данная схема весьма критична к изменениям температуры.

х) Результаты испытания схем на стабильность частоты при изменении напряжения питання и температуры приведены в таблице 1.

III. Ждущий генератор с фазировкой конца серии

Схема генератора (рис. 6) построена в соответствии с блок-схемой, представленной на рис. 1в^{/9/}. Импульс начала линейного разряда емкости подается на вход 1 триггера управления ТУ (туннельный диод ТД 1). Импульс с ТУ усиливается и формируется дифференциальным усилителем (T_1 , T_2). Отрицательный перепад напряжения амплитудой 6в с коллектора T_1 , через эмиттерный повторитель T_3 , запускает ждущий генератор ($TД_2$). Серия импульсов усиливается транзистором T_5 и на выходе ЭП (T_6) получается кодовая серия в виде пачки положительных импульсов амплитудой 6 в и частотой 20 мгц. Импульс окончания линейного разряда (вход 2) поступает через ЭП (T_7) на схему пропускания СП ($TД_3$). На выход СП проходит только один импульс пуга, следующий сразу же после окончания импульса на входе 2. С выхода СП импульс усиливается на T_9 и через ЭП (T_{10}) сбрасывает ТУ. Генератор готов к следующему циклу. Частота ЖГ определяется теми же факторами, что и в схеме генератора, приведенной на рис. 4.

IV. Измерение дифференциальной нелинейности генераторов

Блок-схема устройства для измерения дифференциальной нелинейности генератора изображена на рис. 7. На вход схемы "обострителя" фронта СО подаются импульсы. статистически распределенные во времени. С выхода СО импульсы поступают на нормально открытую схему "И", состояние которой определяется состоянием триггера Тр-2. На выход "И" проходит только один импульс, который запускает блокинг-генератор БГ, управляющий триггерами Тр-1 и Тр-2. Тр-2 устанавливается в состояние "1", тем самым блокируя схему "И" на время, равное T₁ + T_{бл}, где T₁ - время работы ждущего генератора ЖГ; Т_{бл} - время блокировки устройства при переносе адреса с триггеров счетчика в память. Тр-1 взводится импульсом от БГ. а сбрасывается импульсом от внешнего генератора по входу 2. На выходе Тр-1 появляется отрицательный импульс, который дополнительно формируется дифференциальным усилителем ДУ и подается на ждущий генератор. ЖГ генерирует цуг импульсов, поступающий на вход адресного счетчика. Импульс от внешнего генератора, одновременно со сбросом Тр-1, запускает схему блокировки СБ. На выходе СБ формируются два импульса. Эти импульсы (положительный и отрицательный) дифференцируются и усиливаются соответственно усилителями У-1 и У-2. На У-2 формируется импульс переноса логики памяти; на У-1 - импульс сброса адресного счетчика адреса и пуска и ТР-2.

6

Частота следования импульсов от внешнего генератора выбирается из условия:

$T_{TOH} > T_{TA} \cdot n_{max} + T_{CA}$

где Т_{ген} - период импульсов генератора; Т_ц - период импульсов в цуге, п_{тах} - число каналов памяти.

Если в течение рабочего цикла на вход 1 импульсы не поступают, то Тр-2 устанавливается в состояние "1" импульсом внешнего генератора и блокирует схему "И" на время Т_{бл}. Работа устройства поясняется временной диаграммой (рис. 8).

Если на вход 1 поступают импульсы от какого-либо источника ядерного излучения с некоторой средней интенсивностью \overline{N} , то зависимость числа импульсов в канале от его номера подчиняется показательному закону распределения временных интервалов. Это видно из рис. 9, где приведена кривая, характеризующая дифференциальнуя нелинейность мультивибратора. Чтобы получить "белый" спектр, необходимо выполнить условие $\overline{N} \ll F_{\text{ген}}$, но в этом случае время набора информации будет очень большим (для кривой, изображенной на рис. 9, оно равно 5 часам). Поэтому блок-схема установки была несколько видоизменена. Запуск триггера Тр-2 осуществляется импульсом от генератора ГИ-4М, сброс – либо от БГ, либо от импульса со второго выхода ГИ-4М, задержанного относительно первого на время $T_3 = n max_{\Pi} T_{\Pi} = 0,1$ мкс и $n_{max} = 500$, $T_3 = 50$ мкс). Частота следования импульсов 10 кгц. На вход 1 подавались импульсы от другого генератора с частотой 7 кгц.

Можно ожидать, что в данном случае равновероятен приход импульса в любой из временных каналов. На рис. 10 приведена кривая, характеризующая дифференциальную нелинейность той же схемы (рис. 2). Время измерения – 30 минут. Сравнивая кривые на рис. 9 и 10, можно заметить, что отклонения кривой (рис. 9) от экспоненты, а кривой (рис. 10) от прямой, носят одинаковый характер. Это указывает на равноправность описанных методов измерения. Результаты измерения дифференциальной нелинейности (без учета статистического разброса) для всех схем, исследованных в данной работе, приведены в таблице II .

V. Измерение стабильности частоты генераторов

Для проверки стабильности частоты генераторов импульс с первого выхода ГИ-4М подавался одновременно на сброс Тр-2 и на вход 1 (рис. 7). Таким образом, продолжительность каждого цикла была одинаковой и равной времени задержки между импульсами. Выбор нужного канала осуществлялся изменением Т_а генератора ГИ-4М.

Как видно из таблицы 1, наиболее стабильным по всем параметрам является генератор цуга с трансформаторной обратной связью (рис. 3). Для данной схемы при изменении напряжения питания на ±10% частота меняется на 1%; при изменении температуры от +20°C до +50°C изменений на уровне 450 канала не замечено. Дифференциальная нелинейность равна +0,9%.

Мультивибратор имеет наименьшую из всех схем величину дифференциальной не-. линейности, но зато он значительно уступает генератору с трансформаторной обратной связью по стабильности частоты. На рис. 9 и 10 виден "выбег" частоты мультивибратора.

Генератор на туннельном диоде (рис. 4) стабилен при изменении температуры, однако критичен к изменениям напряжения питания. Это объясняется тем, что при изменении напряжения меняется смещение на туннельном диоде, что приводит к изменению частоты генерации.

Достоинством данного генератора является возможность получения большой частоты импульсов в цуге (до 200 - 300 мгц).

Ждущий генератор с фазировкой конца серии (рис. 6) в данных условиях не обладает никакими преимущества по сравнению с остальными схемами. Это объясняется тем, что во всех генераторах тшательным подбором параметров схем и порогов формирователей удалось исключить уменьшение амплитуды последнего импульса серий.

Другой причиной явилось то обстоятельство, что схемы испытывались на частотах 10-20 мгц (это ограничение было наложено быстродействием триггеров адресного счетчика), при фронте и спаде запускающего сигнала, равных 10-20 нсек. В этих условиях сравнительно легко исключить уменьшение амплитуды последнего импульса цуга. Преимущества фазировки проявляются на частотах свыше 20 мгц (при тех же параметрах запускающего импульса).

В разработанном авторами аналого-цифровом преобразователе на 4096 каналов /7/ была применена комбинированная схема, представляющая собой генератор с трансформаторной обратной связью, в котором в качестве формирователя используется мультивибратор, работающий в режиме деления частоты 1 : 1.

	Напряж.	Напряж.			Номер канала			
	питания по ном. - бв	по ном. + 6в	Схема рис.2	Схема рия.3	Схема рис.4	Схем рис.		
	6,0	6,0	I 00	I 00	100	100		
	5,7	6,0	-	· •••	87	-		
	5,4	6,0	. 99	IOI	-	.99		
+20 ⁰	6,3	6,0	I 04	-	106	I 03		

6,0

5.7

5.4

6,3

6.6

6,0

6.0

6,6

6,0

6,0

6,0

6.0

6.0

6,0

+20⁰

+500

Таблица І.

Cxema

рис.5

I00

I09

Схема

рис.6

I00

95

I05

I00

I00

I00

I04

Таблица П.

I05

98

I00

I05

I00

99

IOI

450

450

100

I00

I00

I00

<u></u>	Grove	Grove	Carotto	Carovo	Curovo
	рис.2	рис.3	рис.4	рис.5	рис.6
Дифференц. нелинейн. (в %)	<u>+</u> 0,85	<u>+</u> 0,9	<u>+</u> 1,2	<u>+</u> 1,3	<u>+</u> 1,05
			· .		

g

Литература

1. R.L.Chase. IRE Trans., NS-9,1,(1962), p.4.

2. M.G.Strauss. Rev. Sci. Instr., v.34, no.4(1963) p. 335

3. T.WFlowerday, D.D. Mckibin. Proceed.of IRE, v. 49, (1961) no, 8, p. 1409

4. Генерирование электрических колебаний специальной формы, М., "Советское радио", 1951 г.

5. Л.А. Маталин и др. ПТЭ, № 3 (1960) стр. 84.

- 6. F.Iselin. Instr. Techn. in Nucl. Pulse Analysis, Washington, 1964, p. 118.
- 7. В.И. Прихолько, В.Г. Тишин. Препринт ОИЯИ 2492, Дубна 1966 .
- 8. А.Н. Утюжников. Предварительная обработка информация с детекторов излучения. Диссертация. Дубна 1965 г.

Рукопись поступила в издательский отдел 19 марта 1966 г.

9. В.Г. Тишин. Препринт ОИЯИ 2163, Дубна 1965.

Рис. 2. Ждущий мультивибратор.

Рис. 1. Блок-схемы генераторов цуга импульсов для АЦП: а) ждущий генератор; б) непрерывный генератор с фазировкой начала и конца серии; в) ждущий генератор с фазировкой конца серии.

10

Рис. 3. Ждущий генератор с трансформаторной обратной связью.

12

Рис. 7. Блок-схема устройства для измерения дифференциальной нелоние и нелинейности генераторов. עבלבאטנ מקלבכט ח עולנג עטמוצח 20497 7-1 £ eHel 10 K 4 Bxod 2 Om n 3 Bxod1

