C 346.48 2/10-66 K-659 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна 2604 and the state of the second

К СРЕДНЕМУ ЧИСЛУ " -МЕЗОНОВ В НЕУПРУГИХ " Р -ВЗАИМОДЕЙСТВИЯХ

1966

ABODATOPHS BUCOKMX JHEPTNI

Д.К. Копылова, М. Спыркез^{х/}

К СРЕДНЕМУ ЧИСЛУ ^л⁰ -МЕЗОНОВ В НЕУПРУГИХ ^л р -ВЗАИМОДЕЙСТВИЯХ

4112/2 mp.

x/Сотрудник Института атомной физики Румынской академии наук (г.Бухарест).

Martin Landson Rageo Landond Rais IMOTERA

2604

Введение

В нашей предыдущей работе^{/1/}, выполненной на 24- литровой пропановой пузырьковой камере, облученной π^- -мезонами с импульсом (7-8) Гэв/с, при определении среднего числа π^0 -мезонов по зарегистрированным в камере γ -квантам были получены указания на недостаток π^0 -мезонов. В частности, среднее число π^0 -мезонов в двухлучевых неупругих π^- р -взаимодействиях оказалось равным 0.6 + 0.2, в то время как оно должно быть по крайней мере не меньше единицы. Косвенные указания такого рода имеются и в других работах (см. $^{/2,3/}$).

В настоящей работе была предпринята попытка определить среднее число π° -мезонов на взаимодействие в пропановой пузырьковой камере при импульсе π^{-} -мезонов (3,95 + 0,06) Гэв/с. Для этого были использованы неупругие 2-лучевые π^{-} р -взаимодействия, сопровождающиеся испусканием медленного протона. Среднее число π° -ме-зонов, найденных по конверсионным электронно-позитронным парам, оказалось равным (1,6 + 0,3). Это число согласуется с результатами расчетов по модели с одномезонным обменом ($\bar{n}_{\pi^{\circ}} = 1.8$)^{/4/}. Найдено также среднее число π° -мезонов в событиях, в которых рождается ρ^{-} -мезон. Число π° -мезонов в этих взаимодействиях 0,7 + 0,2, т.е. в пределах ошибок также не отличается от ожидаемого.

Эксперимент

В работе были использованы результаты просмотра 16200 кадров, на которых по обычным критериям, описанным, например, в^{/5/}, отбирались 2-лучевые события с одним черным вторичным следом. После измерений и расчетов было выделено 866 случаев, имеющих вторичный протон с импульсом (180-500) Мэв/с. Большинство этих протонов останавливалось в камере, и их импульс определялся по пробегу. Для каждого события была рассчитана недостающая масса M_x . и для дальнейшего анализа были использованы только те взаимодействия, которые имели $M_x > 0$ (см. работу^{/6/}). Из событий, имеющих $M_x > 0$, были отброшены случаев, производилось по угловым характеристикам

3

(компланарность, соотношение угол-угол), кроме этого, требовалось, чтобы для них $M^2 > 0.15 (\Gamma_{3B}/c^2)^2$.

Окончательно было отобрано 314 неупругих $\pi^- p$ взаимодействий, соответствуюших реакциям $\pi^- p \to p\pi^- k\pi^0$ ($k \ge 1$). Распределение этих случаев по M_{χ}^2 приведено на рис. 1.

Для выделения событий с рождением ρ^- -мезона было построено распределение найденных случаев по величине ω^2 , которая равна квадрату полной энергии всех испущенных π -мезонов в их системе покоя, выраженной в единицах массы π -мезона. ω^2 вычислялась по формуле $\frac{(E_0 - E_p)^2 - (\overline{P}_0 - \overline{P}_p)^2}{2}$,

полученное распределение приведено на рис. 2. События с $\omega^2 = 22 - 36$ соответствуют взаимодействиям с рождением р -мезона, на рис. 1 они заштрихованы. Приведенная на рис. 2 плавная кривая рассчитана по программе ФОРС (Фон резонансных состояний). В этой программе распределение по эффективным массам вычислялось по ковариантной модели множественного рождения. При этом брались только события с рождением медленного протона и учитывалось угловое распределение протонов, взятое из эксперимента. Для нормировки фоновой кривой брались все пресобытия. Вычитая фон в области р -мезона и пренебрегая интерференцией, можно оценить сечение рождения р -- мезонов в отобранных нами взаимодействиях. Отметим, что в нашем случае эта оценка является нижней границей, т.к. не рассматриваются случаи рождения р - мезона, которые из-за ошибок в измерениях импульсов попали в область с М 🔹 < 0. Полученная оценка σ_α ≥ 0,10 мб. Если учесть число случаев с ω = 22-36, имеюших M² < 0 , то для сечения можно получить верхнюю границу, которая в нашем случае оказалась равной 0.24 мб^{х/}. Таким образом, сечение образования р -мезона находится в пределах (0.1 < σ < 0.24) мб и хорошо согласуется с результатами, полученными другими авторами. Например, в работе, сделанной на водородной пузырьковой камере с импульсом п -мезонов 4 Гэв/с , сечение рождения р -мезона в области передач четырехмерного импульса протону, соответствующих нашим, получилось равным 0,22 мб.

Расчет фона по программе ФОРС показал, что только в 10% случаев, имеющих $\omega^2 = 22 - 36$, образуются $2\pi^0$ -мезона, а в остальных $1\pi^0$ -мезон. Таким образом, зная распределение событий с $\omega^2 = 22 - 36$ по M_{χ}^2 (заштрихованная часть рис. 1), можно найти экспериментальную ошибку в M_{χ}^2 для случаев с рождением одного π^0 -мезона. Среднеквадратичиая ошибка получилась равной 0,16 (Гэв/с²)², т.е. значительно

х/Оценка сечения производилась в предположении, что отобранные нами события соответствуют взаимодействиям со свободным протоном. Это предположение кажется нам оправданным с достаточной точностью (см. по этому поводу работу⁵) большей квадрата массы *п* -мезона. Из приведенных результатов следует, что, используя только недостающие массы, в наших условиях нельзя полностью выделить канал реакций с рождением одного *п*⁰ -мезона.

В отобранных 314 неупругих *п* р событиях было зарегистрировано по конверсионным парам 77 у -квантов, которые можно было считать испущенными из точек взаимодействия. Эффективность просмотра событий с у -квантами - 98%. Для каждого у кванта был рассчитан статистический вес, учитывающий зависимость эффективности регистрации у -кванта от геометрических условий и его энергии. Расчеты проводились, двумя способами. В первом способе веса вычислялись по формуле

 $W_{i} = (1 - \exp[\ell\mu(E_{v})])^{-1}$

и для полного числа у -квантов получено значение $\Sigma W_1 = 922 \pm 141$ ^{X/}. Во втором способе расчеты проводились методом, аналогичным использованному в работе ^{/9/}. Была составлена программа для электронно-счетной машины, позволяющая методом Монте-Карло разыграть положение звезд и у -квантов в камере. Подробное описание программы приводится в приложении. После яроведенных расчетов число у -квантов получилось равным 1090+158; Как видно, оба способа вычисления геометрических поправок дали совпадающие результаты, и поэтому было взято среднее из двух способов расчета. Среднее число π° -мезонов оказалось равным $\bar{n}_{\pi^{\circ}} = 1.6 \pm 0.3$, что совпадает с результатами расчетов, выполненных по модели с одномезонным обменом ($\bar{n}_{\pi^{\circ}} = 1,8$). В случаях с рождением ρ^{-} -мезона (90 событий) было найдено 15 у -квантов. С учетом геометрическ ких поправок это соответствует среднему числу π° -мезонов на взаимодействие, которое равно 0,7 + 0,2. Видно, что это число существенно не отличается от ожидаемого ($n_{\pi^{\circ}} = 1,0$).

Таким образом, мы не наблюдали статистически обеспеченных отклонений среднего числа π^0 -мезонов, зарегистрированных в камере по конверсионным парам, от ожидае-мого.

Авторы выражают свою признательность В.Б. Любимову, М.И. Полгорецкому за постоянный интерес к работе и полезные обсуждения, а также благодарят группу лаборантов за участие в расчетах и измерениях.

ПРИЛОЖЕНИЕ

Приводится метод вычисления геометрической эффективности событий с у-квантами с учетом условий опыта, а также некоторых данных о динамике процесса возникновения электронно-позитронных пар. Вычисление геометрической эффективности основано на моделировании рассматриваемых процессов.

 $x/Ошибки везде вычислялись по формуле <math>\pm \sqrt{\Sigma w^2}$, приведенной в работе /10/

Для каждого события (рйс. 3) известны импульсы всех частиц, включая у квант, и углы между векторами импульсов каждой частицы и направлением пучка. При помощи случайных чисел разыгрываем координаты центра события в эффективной области камеры, азимутальные углы, точку образования электронно-позитронной пары, поворот плоскости e⁺ e⁻ вокруг направления у - кванта, импульсы электрона и позитрона. Например, событие разыгрываем в камере 100 раз. в раз событие удовлетворяет необходимым критериям, а в остальных случаях - нет. $\frac{n}{100}$ назовем эффективностью регистрации события, а <u>100</u> - его весом.

Рассмотрим схему расчета более подробно. 1) Координаты центра эвезды.

$$X_0 = A' + a_1 (A'' - A'),$$

$$Y_0 = B' + a_2 (B'' - B'),$$

$$Z_0 = C' + a_8 (C'' - C'),$$

A', A'', B', B'', C', C'' – координаты, определяющие эффективные размеры камеры, a_i (i = 1, 2, 3) – случайные числа ($0 < a_i < 1$).

2) Азимутальный угол у -кванта и его новые направляющие косинусы (l', m', ъ').

$$\begin{split} & \overline{\phi_{\gamma}} = 2\pi a_4 + \phi_{\gamma} ; \qquad 0 < a_4 < 1 . \\ \ell_{\gamma}' = \sqrt{1 - m_{\gamma}^2} \cdot \cos \overline{\phi_{\gamma}} ; \qquad m_{\gamma}' = m_{\gamma} ; \qquad -n_{\gamma}' = \sqrt{1 - m_{\gamma}^2} \cdot \sin \overline{\phi_{\gamma}} . \end{split}$$

3) Расстояние L, между точками образования пары и центром звезды.

$$L_{\gamma} = \frac{t_0}{\mu (P_{\gamma})} \cdot \ln a_5$$

L находим по формуле, приведенной в работе $^{/9/}$. $\mu(P_{\gamma})$ – полная вероятность образования пары на радиационной длине t_0 ($t_0 = 106$ см).

4) Координаты вершины пары

 $X_{\gamma} = L_{\gamma} \cdot \ell_{\gamma}'; Y_{\gamma} = L_{\gamma} \cdot m_{\gamma}'; Z_{\gamma} = L_{\gamma} \cdot n_{\gamma}'.$

Если полученные координаты находятся в пределах эффективной области камеры, то расчет продолжается дальше, если же нет, то расчет повторяется заново с определения координат звезды.

5) Поворачиваем плоскость электрона и позитрона (которая, как правило, существует для медленных у -квантов) вокруг направления у -кванта.

e' (e 🗍 .

Для упрошения примем начальное значение азимутального угла позитрона за 0, а угол ф электрона за л 6) Импульс позитрона (электрона)

Из таблицы 2 находим длины следов е⁺ и е⁻, соответствующие импульсам, взятым с ошибкой 30%. Таблица составлена по данным, приведенным в работе^{/11/}.

 $P_{+} = \alpha_{7} \cdot P_{\gamma}$; $P_{-} = P_{\gamma} - P_{+}$.

7) Координаты конца следа $e^+(e^-)$ в полярной системе координат (полярная ось направлена по \overline{P}_{y}). $\xi = k, \sin \theta, \cos \phi$:

$$\zeta_{+} = k_{+} \sin \theta_{+} \sin \phi_{+}$$
$$\eta_{+} = k_{+} \cos \theta_{+}$$

8) Координаты конца следа e⁺(e⁻) в декартовой системе координат (с центром в вершине пары), а затем в основной системе координат (системе, связанной с камерой).

$$\begin{aligned} X_{+} &= \frac{Y_{y}}{L_{y}} \cdot \frac{X_{y}}{R_{y}} \xi_{+} + \frac{X_{y}}{L_{y}} \eta_{+} - \frac{Z_{y}}{R_{y}} \zeta_{+} ; & R_{y} = \sqrt{X_{y}^{2} + Z_{y}^{2}} ; \\ Y_{+} &= -\frac{R_{y}}{L_{y}} \xi_{+} + \frac{Y_{y}}{L_{y}} \eta_{+} ; & \overline{X_{+}} = X_{0} + X_{y} + X_{+} ; \\ Z_{+} &= \frac{Y_{y}}{L_{y}} \cdot \frac{Z_{y}}{R_{y}} \xi_{+} + \frac{Z_{y}}{L_{y}} \eta_{+} + \frac{X_{y}}{R_{y}} \zeta_{+} ; & \overline{Z_{+}} = Z_{0} + Z_{y} + Z_{+} . \end{aligned}$$

Координаты конца следа X₊, Y₊, Z₊ в основной системе координат должны находиться в пределах размеров камеры.

> $A_1 < \bar{X}_+ < A_2$ Если это условие для e_+ и e_- выполняет- $B_1 < \bar{Y}_+ < B_2$ ся, то переходим к дальнейшему расчету, если $C_1 < \bar{Z}_+ < C_2$ же нет - то начинаем расчет заново.

9) Азимутальный угол ϕ следа и новые ℓ_i , m'_i , n'_i . Для всех следов звезды случайное число a_i остается таким же, как и для следа у -хванта.

10) Вычисляем три отрезка, длинами которых являются расстояния от центра звезды до стенок камеры .

 $\frac{A - X_0}{\ell'_1} , \frac{B - Y_0}{m'_1} , \frac{C - Z_0}{n'_1} ; \quad \text{где}$ если $\ell'_1 > 0$, то $A = A_2$; если $\ell'_1 < 0$, то $A = A_1$; если $m'_1 > 0$, то $B = B_2$; если $m'_1 < 0$, то $B = B_1$; если $n'_1 > 0$, то $C = C_2$; если $m'_1 < 0$, то $C = C_1$.

6

Выбираем наименьшее значение из трех и назовем его £ . Дальнейший расчет идет в зависимости от того, останавливается частица в камере или нет.

а) Частица выходит из камеры: находим проекцию наименьшей длины \pounds на плоскость ху $R = \pounds \sqrt{1-{a'}^2}$ и сравниваем ее с величиной k, взятой из табляцы 3. В таблице приводится длина трека, необходимая для измерения импульса частицы с ошибкой 30%. Если $R \ge k$, то переходим к расчету данных для следующей частицы звезды; если это неравенство не выполняется, то расчет повторяется заново с определения координат звезды.

б) Частица останавливается в камере: сравниваем ℒ с D (D -длина следа частицы, остановившейся в камере). Если ℒ ≥ D , то переходим к расчету следующей частицы звезды, если ℒ < D , то начинаем расчет заново. Для остальных заряженных частиц звезды повторяется все то же самое.

Если наблюдаются события с 2-мя и большим числом у -квантов, то расчет проводится с каждым у -квантом отдельно. Каждое событие считаем на электронносчетной машине 100 N раз и получаем его усредненный вес и среднеквадратичную ошибку. (В наших расчетах N = 100 и ошибка - 3%).

Таблица 1

Р _у Мэв	10	20	30	40	50	60	70	80	90	100	
μ	0,20	0,30	0,36	0,4I	0,44	0,47	0,49	0,5Í	0,53	0 , 54	•

I 50	200	250	300	400	500	600	700	900	I500
0,59	0,62	0,64	0,65	0,67	0,69	0,70	0,71	0,72	0,74

2500 5000 I0000											
0,75	0,76	0,77									
Таблица 2											

Длина следа	3	4	5.	6	7	8	9	10	II	12
^р + Мэв	I50	330	550	800	II50	I420	1800	2200	2600	300 0

Таблица З

P 225 415 585 850 1170 1530 1940 2380 2920 3460 4050 4650 540	k cur	3	4	5	6	7	8	9	IO	II	I2	13	I4	15
Man	Р	225	415	585	850	1170	1530	1940	2380	2920	3460	4050	4650	5400

k - проекция полной длины на плоскость ху

Литература

- 1. D.K.Kopylova, V.B.Ljubimov, M.Spirchez. Преприят ОИЯИ, Е-1557, Дубна, 1964.
- D.T.King, Bull, Am. Phys. Soc., 8, 560 (1963). Proc. 4-th International Conf. on Nucl. Photography, Geneva, 1964.
- 3. J.Cohen and E.M. Friedlander. C.R. 50, November, Румыния. 1964.
- В.С. Барашенков, Д.И. Блохинцев, Ван Жун, Э.К. Михул, Хуан Цзу-чжань, Ху Шикэ. ЖЭТФ, т. 42, вып. 1, 217 (1962).
- 5. Д.К. Копылова, В.Б. Любимов, М.И. Подгорецкий, Х. Ризаев, З. Трка. ЖЭТФ, т. 44,

1481 (1963).

- 6. Д.К. Копылова, В.Б. Любимов, М.И. Подгорецкий, З. Трка. Препринт ОИЯИ, 1186, Дубна, 1963.
- 7. В.Е. Комолова, Г.И. Копылов. Препринт ОИЯИ, Р-2027, Дубна, 1965.
- Aachen-Birmingham-Bonn-Hamburg-London-Munchen Collaboration, Nuovo Cim., T. 31, 4, 729 (1964).
- В.Ф. Вишневский, Ду Юань-цай, Г.И. Копылов, В.Е. Комолова, В.И. Мороэ, А.В. Никитин, А.И. Родионов, Ю.А. Троян, Цзянь Шао-цзунь, Чжан Вэнь-юй, Б.А. Шахбазян, Янь У-гуан. Препринт ОИЯИ, Р-1489, Дубна, 1964.
- В.Ф. Вишневский, В.И. Мороз, Б.А. Шахбазян, Янь У-гуан. Препринт ОИЯИ, P-2215, Дубна, 1965.
- Ю.А. Будагов, А.Г. Володько, В.Б. Флягин, П.В. Шляпников. Препринт ОИЯИ, P-1971, Дубна, 1965.

Рукопись поступила в издательский отдел 28 февраля 1966 г.

Рис. 1. Распределение тр - взаимодействий по недостающим массам M_x.

Рис. 2. Распределение пр -взаимодействий по ω² (см.текст).

10

ŵ

Рис. 3.

11