

Г.И. Макаренко, Г.А. Ососков

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО КОЛИЧЕСТВА ТОЧЕК, ИЗМЕРЯЕМЫХ НА ТРЕКЕ

2574

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО КОЛИЧЕСТВА ТОЧЕК, ИЗМЕРЯЕМЫХ НА ТРЕКЕ

40 55/2 yg.

2574

.

Введение

Для экспериментаторов весьма важным является вопрос о том, сколько точек надо измерить на треке для его обработки.

Понятно, что чем большее количество точек измеряется, тем точнее определяется радиус кривизны **R** трека, а следовательно, и импульс **P** частицы. Однако при обработке экспериментальных данных на электронных вычислительных машинах (ЭВМ) в целях экономии машинного времени желательнс обходиться необходимым минимумом данных или, другими словами, измерять на треке, а затем обрабатывать такое количество точек (наименьшее), которое обеспечивало бы с определенным уровнем надежности заданную величину относительной погрешности радиуса кривизны.

Немаловажным также является и вопрос о расположении измеряемых точек на треке (нужно ли их располагать равномерно вдоль трека или как-то группировать?).

Насколько нам известно, до настоящего времени не проводилось статистических исследований по этим вопросам. Экспериментаторы пользуются лишь эмпирическими правилами о числе точек (см. ^{/1/}) и некоторыми теоретическими соображениями о их расположении (см. ^{/2-4/}).

В настоящей заметке на основании статистической обработки более чем 1200 треков из пропановой 24-литровой камеры, измеренных на микроскопе УИМ-21, показывается, что при определенном расположении измеряемых точек (аналогично тому, как это предлагается в^{/4/}) можно уменьшить их количество. При этом сохраняется уровень надежности в определении относительной погрешности радиуса кривизны. В заключение даются некоторые рекомендации о выборе количества и о расположении измеряемых точек на обрабатываемом треке.

§ 1. Выбор методики

В соответствни с широко распространенным способом (см., например, ^{/1/}) мы предполагаем, что радиус кривизны трека вычисляется путем замены трека параболой с последующим определением ее параметров методом наименьших квадратов. Считаем,

что радиус кривизны трека, вычисленный после измерения на нем N точек, является точным. Обозначим его через R_0 . Затем выбрасываем по определенному правилу одну точку за другой, и каждый раз вновь обрабатываем трек вышеупомянутым способом по программе, имеющейся в ВШ ОИЯИ. Каждый раз находим величину радиуса R_k (где индекс k означает количество оставшихся на треке точек), а также величину относительной погрешности $\frac{\Delta R_k}{R_k}$, где $\Delta R_k = |R_0 - R_k|$.

Сформулируем точно правило выброса точек.

 Сначала устанавливаем, какие точки должны остаться на треке после всех выбросов (эти точки будем называть неподвижными). В случае, когда N четно, Ч = 2 в, и в случае, когда N нечетно, N = 2 в + 1 (в = 1,2,, 9), в качестве неподвижных мы оставляем точки с номерами 1, в , в + 1 и N.

Такое расположение неподвижных точек нам представляется наиболее выгодным, так как даже по трем точкам – двум крайним и средней – можно провести параболу, которая в первом приближении аппроксимирует трек.

2. Далее производится выброс сопряженных точек поочередно с левой и правой половины трека. Точки с номерами й и р мы называем сопряженными, если й+р = N +1.

Замечание. Если одна из точек пары (l, p) является неподвижной, то она, естественно, не выбрасывается. Например, при N = 15 неподвижными точками будут 1,7,8 и 15. Имеем пары сопряженных точек (1,15), (2,14), (3,13), (4,12), (5,11), (6,10) и (7,9). Пара (1,15) не выбрасывается, так как каждая из двух точек неподвижная, а из пары (7,9) выбрасывается только точка с номером 7, а точка с номером 9 остается, так как она неподвижная.

Все треки, прошедшие описанную выше процедуру выброса, мы разбили на 10 групп в зависимости от их длины L и первоначальной величины радиуса кривизны R₀ (см. таблицу 1).

Далее для каждого трека находим характеристическое число M_{jk} - это наименьшее число точек на треке, начиная с которого выполняется условие

$$\frac{\Delta R_1}{R} \leq 10\% \tag{1}$$

для всех і ≥ М_{јк}. Здесь ј означает номер трека в К - й группе (К = 1,2,... ..., 10), так что ј = 1,2, ..., г_к, гле г_к -количество треков в К - й группе.

Рассмотрим пример, приведенный на рис. 1.

В этом примере M _{jk} = 9 (но не 6!). Первоначально, не имея никаких сведений о характере распределения величин M _{ik} , мы предположили его нормальным.

	p. R.	L	r _ĸ	Mk	Р ^(к) 90%
I.	R ≤ 100 cm	L ≤ 10 см	64	6,2	12
2.		L> 10 cm	38	4,I	5
3.		L ≤ IO cm	40	6,I	10
4.	100 <k<sub>e≤ 300 cm</k<sub>	L > 10 cm	77	4,8	8
5.	300 < R < 500 cm	L ≤ 15 cm	20	8,4	15
6.		∠> 15 см	36	4,7	8
7.	500 <r,≤1000 cm<="" td=""><td>L≤ 15 cm</td><td>32</td><td>6,8</td><td>II</td></r,≤1000>	L≤ 15 cm	32	6,8	II
8.		L > 15 cm	47	4,9	7
9.	R > 1000 cm	L ≤ 20 cm	71	6,0	9
10	•	L > 20 cm	51	4,6	6

Таблица 1

Выборочные оценки параметров, определяющих нормальное распределение - средние значения M_k и стандартные уклонения σ_{M_k} , - подсчитывались по формулам:

$$M_{k} = \frac{1}{r_{k}} \sum_{j=1}^{r_{k}} M_{jk} , \qquad (2)$$

$$\sigma_{M_{k}} = \sqrt{\frac{1}{r_{k}-1}} \sum_{j=1}^{r_{k}} M_{jk}^{9} - \frac{r_{k}}{r_{k}-1} M_{k}^{9} \quad . \tag{3}$$

Результаты вычислений величин М приведены в таблице 1 (см. 5-й столбец).

При подсчете величин омь было обнаружено, что гипотеза о нормальном распре-

делении характеристических чисел M_{jk} не подтвержядается. Для того, чтобы соста_{вить} представление об истинном распределении M_{jk}, были построены гистограммы, две из которых (для первой и третьей групп треков) приведены для примера на рис. 2 .

Гистограммой мы называем таблицу, показывающую, сколько раз число M_{jk} принимало значение 4,5 ..., 18. Если через ν_{ik} обозначить содержимое i -й ячейки **k** -й гистограммы (i = 1,2, ..., 15), то это означает, что M_{jk} приняло значение i+3 ровно ν_{ik} раз. Отметим, что $\sum_{i=1}^{L} \nu_{ik} = r_k$. На гистограммах виден резко асимметричный характер распределения. По гистограммам для каждой из 10 групп были найдены $P_{aR}^{(k)}$ (k = 1,2,...,10) - оптимальные числа точек на треке, которые обеспечивают заданную относительную погрешность с уровнем надежности q %. Например, пусть подсчеты дали нам $P_{00R}^{(k)} = 12$. Это означает, что если на любом треке **k** -й группы взять 12 (или больше 12) точек, то в 90 случаях из 100 мы гарантируем, что относительная погрешность $\frac{\Delta R}{R}$ не будет превышать 10%.

Числа Р находятся из соотношений

$$\sum_{i=p_{q}^{k} \to 4}^{15} \nu_{ik} \leqslant \frac{r_{k}}{100} (100-q) < \sum_{i=p_{q}^{k} \to 8}^{15} \nu_{ik}$$
(4)

При q = 90% с помощью десяти гистограмм и соотношения (4) были определены ве-(k) личины Р_{90%} (k = 1,2, ..., 10). Они помещены в последнем столбце таблицы 1.

На рис. 2 наглядно показано, как получаются величины $P_q^{(1)}$ и $P_q^{(3)}$ для q = 90%. Часть каждой гистограммы, составляющая 90% всех случаев, не заштрихована. Абсцисса, с которой начинается заштрихованная часть, и дает нам оптимальное число точек $P_{905}^{(1)}$ и $P_{905}^{(3)}$.

Сразу же можно отметить, что получающееся количество рекомендаций по оптимальному числу точек слишком велико (десять) и оператору, занимающемуся просмотром фотографий треков, было бы трудно их запомнить.

Кроме того, статистика по группам оказалась бедной (в среднем 48 треков), а распределение треков по группам – неравномёрным (от 20 до 77 в группе).

Таким образом, в результате нервых расчетов напрашиваются выводы:

1. Надо сократить число групп, например, до 6.

2. Необходимо увеличить статистику в каждой группе.

3. Разбиение треков на группы в зависимости от их длины должно производиться не наугад, а с учетом распределения треков по L. Для этого необходимо построить гистограммы распределения то L. для каждой из групп выбранных радиусов.

Таблица 2

Распределение треков	по	их	длине
----------------------	----	----	-------

LCM	R °< 100	$100 \leq R_{\circ} < 300$	R. _≥ 300
4	4I	13	21
5	9	2	12
6	20	7	5
7	II	5	7
8	9	6	20
9 *		I5	10
IO	18	24	8
II	18	8	8
12	7	7	17
13	12	16	3
I4	9	II	17
15	8	13	2I
16	6	I	10
17	6	9	I6
18	4	2	I4
19	-	12	6
20	2	4	9
21	-	-	-
2 2	-	-	-
23	-	-	-
24	-	-	-
25	-	-	-
26	17	49	146

§ 2. Статистическая обработка материала и выводы

Для очередной группы треков (760 штук) процедура выброса точек была несколько видоизменена, однако основное требование всегда соблюдалось, а именно: неподвижные точки распределялись на треке не равномерно, а так, что часть их оставалась на концах, а часть в середине. Например, если на треке оставалось всего 4 точки, то две из них были в середине и по одной на концах; если оставалось 7 точек, то по две распределялось на концах и 3 в середине трека; при 9 (соответственно при 12) оставшихся точках они располагались по 3 (соответственно по 4) на концах и 3 (соответственно 4) в середине трека.

Была составлена специальная программа на ЭВМ, с помощью которой опробовано несколько вариантов разбиения треков на группы в зависимости от величин R₀ и L.

Мы остановились на шести группах, которые получились следующим образом: все множество треков было разбито сначала на три группы по R₀. Затем в каждой группе была подведена статистика распределения треков по их длине L (см. таблицу 2) и выбрано такое значение L , чтобы каждая из групп разбивалась этим значением примерно на две равные подгруппы. В таблице 2 напротнв таких значений L проведены пунктирные линии.

Отметим, что при выбранном разбиении группы получились достаточно большими и отличаются одна от другой менее чем в два раза (в нанхудшем случае), в то время как при обработке первой партии треков (476 штук) группы 4 и 5, например, отличались почти в 4 раза.

Для каждой группы были построены гистограммы (см. рис. 3), показывающие число случаев ν_{ik} , когда в K -й группе измерение і точек на треке приводит к ошибке $\frac{\Delta R}{R}$, не превосходящей заданной величины (5%, 10%, 20%). Как и на рис. 2, на каждой гистограмме часть, составляющая q = 90% всех случаев, не заштрихована. Подробная характеристика групп приведена в таблице 3.

При внимательном рассмотрении таблицы 3, содержащей результаты расчета оптимального количества точек, можно сделать следующие выводы.

5. Таблица 3 дает количественное указание о том, сколько именно точек надо измерять в различных практических случаях. Например, если на треке 1 группы будем измерять 10 точек, располагая их по 3 на концах и 4 в середине, то в 90 случаях из 100 относительная ошибка <u>А</u> <u>А</u> <u>а</u> не превысит 10%.

Тот же результат следует ожидать, если измерять 6 точек на треках III группы, 8 точек - на треках II группы и т.д. (см. 6-ю колонку таблицы 3).

Таблица З

NeNe rp.	R. L. (om) (om)	L	кол-во треков	q. = 90 % q. = 95 %					
		в груп.	$\frac{\Delta R}{R} \le 20\%$	10%	5%	20%	I0%	5%	
I	2	3	4	5	6	7	8	9	IO
I	R. < 100	L=9	99	8	IO	12	IO	12	12
П	R.< 100	623	108	6	6	IO	II	13	13
III	I00≤R,<300	L≤ I 3	103	7	8	II	8	IO	II
IJ	100≤ R.<300	L> 13	102	4	5	IO	4	8	13
y	R. > 300	L≤17	171	8	II	12	II	12	14
УI	R.≥ 300	L>17	177	6	8	IO	8	9	15

Итак, таблица 3 при измерениях точек на треках при помощи микроскопа может быть использована следующим образом: сначала совсем грубо измеряем длину трека L и радиус кривизны R (например, по шаблону) и далее по таблице 3 определяем количество точек, необходимое для того, чтобы $\frac{\Delta R}{R}$ не превышало заданной величины относительной ошибки. При практическом использовании таблицу 3 можно сократить (например, из 5-10 колонок оставить только 6-ю и 7-ю).

II. Широко известно положение, что при равномерном распределении точек на треке относительная ошибка $\frac{\Delta R}{R}$ убывает с ростом числа N измеренных точек, как $\frac{C}{\sqrt{N}}$ (С-совыт) (см., например, 2,37). Таблица 3 показывает, что в нашем случае ("специальное" неравномерное распределение точек) величина $\frac{\Delta R}{R}$ убывает с ростом N быстрее, чем $\frac{C}{\sqrt{N}}$.

Таким образом, целесообразно точки на треке измерять не равномерно, а группами: на концах и в середине трека. Это позволит уменьшить количество измеряемых точек, не увеличивая при этом относительной погрешности $\frac{\Delta R}{B}$.

Ш. Для намерения раднуса кривизны трекса с высокой относительной точностью (5%) в случае R₀ > 300 см необходимо измерять 14-15 точек. На первый взгляд это число кажется слишком большим, особенно в случае длинных треков. Однако следует учесть, что при R > 300 см трек представляет собой почти прямую линию, и поэтому легко ошибиться в знаке раднуса кривизны. Этим и объясняется требование об измерении большого числа точек.

Считаем необходимым сделать следующие замечания:

 Таблица 3, на основании которой были сделаны наши выводы об оптимальном количестве точек на треке, получена в результате статистической обработки представленных авторам 760 треков различной длины и имеющих различные радиусы кривизны.

Для достижения большей падежности результатов целесообразно обработать по указанной схеме большее количество треков, например, 3-4 тысячи.

2. В связи с переходом от измерений на микроскопах к измерениям на полуавтоматах имеет смысл составить аналогичную таблицу для обработки треков с больших пузырьковых камер.

В заключение мы выражаем благодарность руководителю группы ВЦ Е.А. Логиновой за внимание к работе, К.Н. Даниловой за составление программы по выбросу точек, Г.А. Абрамовой и Н.А. Богачевой за помощь в оформлении результатов.

В процессе работь: над этой заметкой мы часто обсуждали различные вопросы с Е.Н. Кладницкой. Мы благодарим ее за ценные советы.

Литература

- 1. Е.Н. Кладницкая. Материалы совещания по методике пузырьковых камер. Препринт ОИЯИ, 796, Дубна, 1961.
- В.Г. Гришин, Э.П. Кистенев, Л.И. Лепилова, В.И. Мороз, Му Цзюнь. Момерение энергетических и угловых характеристик электронов и у -квантов в пропановой пузырьковой камере. Препринт ОИЯИ Р-2277, Дубна, 1965.
- 3. L.Michejda. Report No. 386 /VI. Institute of Nuclear Research, Warsaw, 1963.

4. R.L. Glackstern. Nuclear Instruments and Methods, 24, 381-389 (1963).

5. Б.Л. Ван дер Варден. Математическая статистика, ИЛ, М., 1960.

Рукопись поступила в издательский отдел 12 февраля 1966 г.

Рис. 3

Pac. 3