

А.С. Даревский, Т.А. Мачехина, С. Набыванец, И. Сосновска, Е. Сосновски

НЕКОТОРЫЕ ВОПРОСЫ ПРИМЕНЕНИЯ МЕТОДА ВРЕМЕНИ ПРОЛЕТА К НЕЙТРОНОСТРУКТУРНЫМ ИССЛЕДОВАНИЯМ НА ИМПУЛЬСНОМ БЫСТРОМ РЕАКТОРЕ (ИБР)

1965

албератерия нейтреннем физики

А.С. Даревский, Т.А. Мачехина, С. Набыванец, И. Сосновска, Е. Сосновски

f 9/2

 $\omega$ 

НЕКОТОРЫЕ ВОПРОСЫ ПРИМЕНЕНИЯ МЕТОДА ВРЕМЕНИ ПРОЛЕТА К НЕЙТРОНОСТРУКТУРНЫМ ИССЛЕДОВАНИЯМ НА ИМПУЛЬСНОМ БЫСТРОМ РЕАКТОРЕ (ИБР)

OGLEREBOUREE CHARACTERSY ELEPIME ECCRESSENT **BNS ANOTEKA** 

## Введение

Применение метода времени пролета для нейтроноструктурных исследований на импульсном быстром реакторе  $^{/1-4/}$  не только дало возможность исследования структуры твердого тела, но также показало преимущества этого метода по сравнению с обычным  $^{/5,6/}$ .

В связи с этим возникла необходимость дальнейшего усовершенствования эксперимента и обработки результатов, в частности, введения фактора Дебая-Валлера и поправки на зависимость поглощения нейтронов в образце от длины волны.

Кроме того, было необходимо значительно повысить светосилу спектрометра, что было достигнуто применением широкоугольного коллиматора /7/.

## 1. Аппаратура

Схема спектрометра показана на рис. 1. Плоский замедлитель (2) вплотную примыкает к активной зоне импульсного быстрого реактора (1). В качестве замедлителя применен водный раствор  $H_3 BO_3^{/3/}$ . Пучок медленных нейтронов проходит через стальной двадцатиминутный коллиматор (3) соллеровского типа, помещенный в стене зала реактора, вакуумную трубу (7), окно водяной защиты (11) и рассеивается на порошкообразном образце (8). Рассеянные на образце нейтроны (одновременно на углы 52° и 90°), проходя через коллиматоры (3), понадают на детекторы (5)<sup>/8/</sup>. Вторая, более светосильная установка для измерения рассеяния на 90° состоит из широкоугольного коллиматора (4) и детектора (6). Более подробно схема этой установки показана в верхнем углу рис. 1.

Здесь (1) – широкоугольный коллиматор, (2) – три детектора, (3) – водяная защита и (4) – тележка.

Широкоугольный коллиматор представляет собой коллиматор соллеровского типа с увеличенной высотой щели с одного конца. Передций конец коллиматора имеет окно площадью 115 x 450 мм<sup>2</sup>, задний конец - 115 x 1500 мм<sup>2</sup>. Длина коллиматора

1000 мм. Стенки и прокладки стальные. По горизонтали угол раствора составляет 20', по вертикали коллиматор охватывает угол 62°. Коллиматор помещен в водяную защиту (2), состоящую из двух боковых частей, имеющих выступы, которые позволяют защищать коллиматор сверху и снизу. Задняя часть защиты имеет выступы, в которых помещаются детекторы. Толщина слоя воды 250 мм. Коллиматор вместе с водяной защитой и детекторами стоит на передвижной тележке (4), позволяющей удобно юстировать коллиматор.

Применение широкоугольного коллиматора требует очень точной юстировки. Особенно важно установление его строго под углом 90° по отношению к прямому пучку. Это достигается с помощью теодолита, помещенного на оси прямого пучка, слесарная оптическая головка высокого класса служит подставкой. Таким образом, широкоугольный коллиматор был установлен под углом 90° ± 04' по отношению к направлению прямого пучка.

#### 2. Детекторы для широкоугольного коллиматора

Широкоугольный коллиматор работает в сочетании с трехсекционным сцинтилляционным детектором, каждая секция которого представляет собой прямоугольный счетчик, построенный на базе 4-х фотоумножителей ФЭУ-24 по принципу работы<sup>/8/</sup>. Рабочая площадь каждой секции 100 х 500 мм<sup>2</sup>. Передняя стенка детектора состоит из пластины Al толщиной 1 мм, и пластины прозрачного плексигласа толщиной 2 мм. Между ними находится порошковый светосостав Za S (Ag)+ B<sub>2</sub> O<sub>3</sub>, обогащенный B<sup>10</sup>. Толщина слоя светосостава 1 мм, держится он при помощи дистанционных прокладок.

Блок-схема детектора представлена на рис. 2. Электрические импульсы с параллельно включенных фотоумножителей (по 4 в каждой секции) после суммирования и формировки подаются на многоканальный анализатор. Однородность чувствительности детектора по всей его площади достигалась путем подбора электрических параметров и расстояния между фотоумножителями и светочувтствительным слоем. На рис. 3 представлена зависимость чувствительности отдельной секции детектора от места попадания узкого пучка нейтронов (сечение пучка 5х5 мм<sup>2</sup>). На осях отложены числа отсчетов и места попадания пучка. Как видно из рис. 3, однородность чувствительности детектора вполне удовлетворительная. Характеристики детектора и его чувствительность к тепловым нейтронам такие же, как в работах <sup>/8,9/</sup>. V

На рис. 4 и 5 представлены нейтронограммы кремния для одного и того же образца. Как видно из рис. 4, применение широкоугольного коллиматора уцеличивает светосилу спектрометра на порядок, сохраняя при этом хорошую разрешающую способность. Рис. 5 показывает, как изменение угла рассеяния позволяет перемещать интересующие нас максимумы в более удобные области длин волн.

#### Определение эффективного спектра

∨ В работе <sup>/10/</sup> была получена формула для интенсивности брегговского максимума на порошковых образцах в методе времени пролета:

$$J_{hk\ell} = c \left( J_0 \lambda^4 j F^2 \right)_{hk\ell} . \tag{1}$$

С учетом тепловых колебаний и поглощения в образце (1) принимает вид:

$$J_{hk\ell} = c' \cdot (J_0 \lambda^4 j F'^2)_{hk\ell} \Lambda (\lambda), \qquad (2)$$

где  $J_0$  – интенсивность падающего спектра на единичный интервал длии воли,  $\lambda$  – длина волны нейтронов, j – фактор повторяемости, с – аппаратурная константа,  $J_0 \lambda^4$  – так называемый эффективный спектр,  $F_{kkl} = \Sigma$  b,  $e^{2\pi i (kx_j + ky_j + lx_j)}$  – структурный фактор,  $F'_{kkl} = \Sigma$  b,  $e^{2\pi i (kx_j + ky_j + lx_j)}$  – структурный фактор с учетом фактора Дебая-Валлера,  $\lambda(\lambda)$  – функция поглощения,

На рис. 6 приведены падающий спектр  $J_0^{(1)}$  и эффективный спектр  $J_0^{\lambda^4}$  (П). Падающий спектр измерялся тем же детектором, что и нейтронограмма, помещенным на место образца. Измерения проводились при малой мощности реактора, при обработке результатов вводилась поправка на мертвое время анализатора. С целью проверки измеренного эффективного спектра несколько значений  $J_0^{\lambda^4}$  были вычислены из нейтронограммы известной структуры кремния, причем в расчет вводился фактор Дебая-Валлера ( $2\theta = 52^{\circ}, 2\theta = 90^{\circ}$ ).

Вычисленный таким образом спектр нормировался на значение интенсивности эффективного спектра в точке  $\lambda = 1,57$  Å. Как видно, результаты, полученные из структуры кремния, согласуются с результатами измерения прямого пучка. В области выше 4Å измерения прямого пучка из-за иизких интенсивностей становятся затруднительиыми, в этом случае следует опираться на эффективный спектр, рассчитанный из известной структуры.

### 3. Учет тепловых колебаний атомов

В случае простых структур с известной температурой Дебая поправка на тепловые колебания вводится простым способом, известным из рентгеноструктурного анализа (например, <sup>/10/</sup>). Если ввести этот фактор в расчеты для кремния, то наблюдается понижение фактора расходимости

$$R = \frac{\sum_{\substack{hkl}{j:F^2}} -jF^2}{\sum_{\substack{j:F^2\\hkl}} j:F^2}},$$

В измерениях при 29 = 90° и T = 20°C R понижается с 8 до 4%, а при T = 350°C с 15 до 6%. Из этого следует, что в расчеты следует вводить фактор Дебая-Валлера. В случае сложных структур тепловой фактор нужно вводить как неизвестный параметр.

## 4. Учет поправок на поглощение нейтронов в образце

В обычном методе нейтроноструктурных исследований рассматривается зависимость поглощения в образце от угла  $\theta$ . В методе времени пролета поглощение в образце является функцией длины волны. Для проведения эксперимента были выбраны  $Z_n \$ и W. Надежным методом определения зависимости коэффициента поглощения нейтронов в образце от длины волны является метод определения пропускания через исследуемый образец. Это измерение удобно проводить на белом пучке, рассенваемом на монокристалле, так как измерения на прямом пучке затруднены из-за больших перегрузок детектора в средней части нейтронного спектра и больших ошибок в длинноволновой части. В нашем случае монокристалл Ві стоял на месте образца (8) в брагговском положении (см. рис. 1).

Нейтроны отражались от семейства плоскостей типа (bbb), где b = 1,..., 6. Таким образом можно было измерять пропускание в широком диапазоне длин волн (от 1Å до 5,5Å). Исследуемый образец помещался между монокристаллом (8) и коллиматором (3) (см. рис. 1). Рис. 7 представляет собой нейтронограммы, полученные в случае образца Zn (1 – с поглотителем и I<sub>0</sub> – без него). Аналогичные диаграммы были получены в случае вольфрама. Зависимость поглощения I<sub>0</sub>/I от длины волны для Zn и W представлена на рис. 8 и 9 соответственно. Приведенная на рис. 10 нейтронограмма W была снята при угле рассеяния 20 = 90°. Образец помешался на пропускание, симметрично относительно падающего и отраженного пучков, размеры образца превышали размеры пучка нейтронов.

Формулы, учитывающие поглощение в образце в зависимости от геометрии образец - пучок, имеют вид '11/:

> в случае прохождения  $A(\lambda) = const(I / I_0)^{\frac{1}{cos\,\theta}}$ ; (3) в случае отражения  $A(\lambda) = const \left[\frac{1}{\ell_n - \frac{1}{I_0}} \left[1 - (I/I_0)^{\frac{2}{sla\,\theta}}\right]$ . (4)

Нейтронограмма W была обработана по формулам (2) п (3). В таблице 1 представлены результаты расчетов для W с учетом поглошенчя и без него, а также приведены значения функции A<sup>-1</sup> (A) для рассчитываемых максимумов. Как видно, введение поправкя на поглошение приводит к значительному уменьшению фактора расходимости. Сравнение экспериментальных результатов для 1/I<sub>0</sub> с тыбличными сечениями не проводилось ввиду неоднородности толщины образда.

# Литература

- 1. В.В.Нитп, З.Г.Папулова, И.Сосновска, Е.Сосновски. ФТТ 6, 1369 (1964).
- 2. В.В.Нита, И.Сосновска, Е.Сосновски. Препринт ОИЯИ 1614, Дубна 1964.
- 3. В.В.Нитп, И.Сосновска, Е.Сосновски, Ф.Л.Шапиро. Материалы рабочего совещания по неупругому рассеянию нейтронов в кристаллах и жидкостях' Препринт ОИЯИ, 2081, Дубиа 1965.
- 4. B.Buras, I.Lecijewicz, W.W.Nitc, I.Sosnowska, I.Sosnowski, F.L.Shapiro, "Third United Nations International Conference on the Peaceful Uses of Atomic Energy", A (Conf 28/p/ 4 88).
- 5. И.Сосновска, Е.Сосновски, С.В.Киселев, Р.П.Озеров. Преприят ОИЯИ Р-1909, Дубна 1964.
- 6. 5. 5ypac. Phys. Stat. Sol., 4, 349 (1964).

11 .- ?

7. В.В.Голиков и др. ПТЭ, <u>2</u>, 59 (1963).

8. В.В. Голиков, Ф.Л.Шапиро, А.Шкатула, Е.Яник. Препринт ОИЯИ 1065, Дубна 1962.
9. А.И.Китайгородский. Рентгеноструктурный анализ, 1950 г.

#### Рукопись поступила в издательский отдел 28 октября 1965 г.

| hĸl | λ     | jF_calc | jF_exp | Δ    | R   | Α''n  | j Faexp | Δ             | R <sub>a</sub> |
|-----|-------|---------|--------|------|-----|-------|---------|---------------|----------------|
| 110 | 3.170 | 10.22   | 4.49   | -5.7 | 23% | 0.155 | 9.03    | -1.19         | 8%             |
| 200 | 2.241 | 5.00    | 3.66   | -1.3 |     | 0.243 | 4.69    | -0.31         |                |
| 211 | 1.830 | 19.62   | 19.88  | +0.3 |     | 0.3/2 | 19.88   | +0.26         |                |
| 220 | 1.585 | 9.61    | 9.54   | -0.1 |     | 0.354 | 8.41    | -1.20         |                |
| 310 | 1.418 | 18.85   | 25.85  | +7.0 |     | 0.380 | 21.21   | <b>+2.3</b> 6 |                |

6



Рис. 1. Схема спектрометра.

8



Рис. 2. Блок-схема детекторов для широкоугольного коллиматора.





Рис. 4. Нейтронограмма Si для угла рассеяния 20 = 90<sup>0</sup> (обычный и широкоугольный детектор).

11





