22/xI-65 K- 615 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна 2385

И.Ф.Колпаков

НЕОБРАТИМЫЕ ИЗМЕНЕНИЯ НЕКОТОРЫХ СТАТИЧЕСКИХ ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ ПРИ ОБЛУЧЕНИИ ИХ ПРОТОНАМИ С ЭНЕРГИЕЙ 680 МЭВ

И.Ф.Колпаков

НЕОБРАТИМЫЕ ИЗМЕНЕНИЯ НЕКОТОРЫХ СТАТИЧЕСКИХ ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ ПРИ ОБЛУЧЕНИИ ИХ ПРОТОНАМИ С ЭНЕРГИЕЙ 680 МЭВ

Направлено в "Вопросы радиоэлектроники"

320 2/3

4

Исслед ование поведения полупроводниковых приборов в условиях излучения имеет существенное значение для конструирования электронной аппаратуры, работающей в сильных радиационных полях (аппаратура для спутииков, орбиты которых находятся в радиационных поясах Земли, космических кораблей, экспериментальные приборы для измерений на реакторах и ускорителях, аппаратура, регистрирующая ядерные взрывы). Протонная компонента радиационных поясов и космических лучей может быть смоделирована на ускорителях частиц высоких энергий (интересными являются пучки протонов с энергией в диапазоне от 10 до 650 Мэв с интенсивностями 10⁵ частиц/см²сак), поэтому исследование поведения полупроводниковых приборов и схем при облучении их протонами высоких энергий полезно не только с точки зрения вопросов конструирования аппаратуры для экспериментов на самих ускорителях, но также и с точки зрения разработки электронных приборов для космических исследований.

Действие излучення на сами полупроводниковые материалы достаточно хорошо изучено. Различают объемные и поверхностные, обратимые и необратимые эффекты ионизирующего излучения. Поверхностные эффекты, как вообще поверхностные явления в полупроводниках, являются изученными сравнительно слабо. Поверхностные повреждения могут быть обратимыми и исчезать через некоторое время после прекращения облучения. Необратимые поверхностные явления сводятся к появлению дополнительных энергетических уровней на поверхности, что приводит к увеличению обратного тока через ра -переход. К обратимым объемным эффектам относится протекающий через полупроводник электрический ток, обусловленный образованием электронно-дырочных пар в условиях ионизирующих излучений. Ионизация исчезает с постоянной, равиой времени жизни неосновных носителей. К обратимым эффектам относится также повышение температуры полупроводникового вещества вследствие энерговыделения при очень больших потоках частии.

В данной работе исследовались изменения некоторых параметров полупроводниковых приборов, являющиеся, в основном, результатом необратимых эффектов. Протоны с энергиями от 10 до 500 Мэв вызывают смещения атомов решетки^{/1/} (эффект Френкеля), что приводит к образованию дефектных уровней в области запрещенной

з

зоны полупроводника. Эти дефектные уровни увеличивают скорость рекомбинации неосновных носителей и уменьшают время их жизни, поскольку скорость рекомбинации обратно пропорциональна времени жизни. Уменьшение времени жизни и изменение сопротивления являются основными объемными необратимыми эффектами облучения. Время жизни связано с пропушенным потоком частиц следующим соотношением:

$$\frac{1}{r} = \frac{1}{r_{o}} + C\Phi , \qquad (1)$$

где Ф - поток в 1/см², _{го} - время жизни до облучения, С - постоянная, которая зависит от вида и энергии частиц, типа полупроводникового вещества (германий, кремний и т.д.), проводимости, температуры, типа проводимости (р,в), типа примесей, плотности неравновесных носителей, то есть от величины протекающего тока и т.д. Проявление последствий облучения в сильной степени зависит также от режима измерений. Все данные, которые будут приведены ниже, получены при пассивном облучении, а измерения проводились в активном режиме. Постоянная С для кремния на порядок меньше, чем для германия. Что касается изменения сопротивления с облучением, то для кремния наблюдается его увеличение. Для в -германия также наблюдается увеличение сопротивления, но под действием облучения он может переходить в р -германий. Для р -германия эффект увеличения сопротивления выражен не так сильно, как для кремния и в -германия.

Изучалось поведение диодов, туннельных диодов и транзисторов при облучении протонами с энергией 680 Мэв на синхроциклотроне ОИЯИ. Полученные данные следует считать предварительными и оценочными, так как они не подкреплены статистически по числу облучаемых приборов (исследовались единичные количества образцов каждого типа, а поведение при облучении характеризуется различием от образца к образду). кроме того, положение приборов в самом протонном пучке контролировалось недостаточно, что могло привести к значительным отклонениям реально прошедшего потока от измеренного; также надо отметить относительно невысокую точность измерения потока (поток измерялся в большинстве опытов по алюминию, а в части опытов по углероду определялась интенсивность, затем по сцинтилляционному счетчику контролировалась относительная интенсивность в течение опыта). Точность измерении параметров не была высокой вследствие недостаточной точности измерительных приборов (использовались большей частью характериографы), а также вследствие того, что проходил Эначительный период времени между моментом измерения характеристик и установки прибора на дальнейшее облучение, так что могло иметь место частичное восстановление нараметров прибора, время экспозиции было большим (сутки) а за этот период происходили изменения температуры, изменяющие параметры приборов и т.д.

Потоком отказа считался потох протонов, при котором какой-лябо параметр испытываемого прибора выходил за пределы, указанные в справочных данных. Такой критерий отказа является весьма строгим, поскольку в конкретных случаях использования приборов в схемах может быть допущено значительно большее откдонение данного параметра, особенно, когда применяется отридательная обратная связь. Потох отказа определялся с точностью линейного приближения между экспериментальными точками.

Изменение параметров диодов

Для диодов при облучении характерно объясияемое поверхностными эффектами увеличение обратного пробивного напряжения и прямого сопротивления. Обратный тох увеличивается ввиду роста числа дентров захвата и поворхностного тока, поэтому обратное сопротивление, как правило, падает с ростом пропущенного потока частии,

Испытывался ряд дводов, германвевых в кремнневых. В основном вэмерялся только обратный ток дводов, хотя изменение прямого сопротивления может также служить дополнительно причиной отказа.

Ниже приводятся основные полученные результаты для дводов. В подзаголовках в скобках указано число испытанных образдов.

Германиевый выпрямительный сплавной диод Д7 (1)

Обратный ток не выходит из допустимых пределов отклонения при потоке 10¹⁵ р/см² (см. рис. 1). Прямое сопротивление не измерено. Больший поток не пропускался.

Германиевые точечные диоды

Д9 (1)

Обратный ток остался в допустимых пределах при потоке 10¹⁵ р/см² (см.рис.1). Прямое сопротивление не измерено. Больший поток не пропускался.

1

<u>д10 (1)</u>

Поток отказа по обратному току находится между 0,3-1.10¹⁵ р/см² (см.рис.1). Прямое сопротивление не измерено.

<u>дн (1)</u>

Поток отказа по прямому сопротивлению близок к 10¹⁵ р/см² (см. рис. 2а). При этом нотоке обратный ток не превышает допустимого.

<u>д18 (1)</u>

Поток отказа по обратному току равен 3·10¹⁴ р/см² (см. рис. 1). Прямое сопротивление при этом потоке заметно увеличивается, но остается меньше предельно допустимого.

Кремниевый точечный диод Д103А (1)

Обратный ток не превышает предельно допустимого при потоке 10¹⁵ р/см² (см. рис. 1), однако, увеличение прямого сопротивления уже при потоке менее 3·10¹⁴ приводит к отказу (см. рис. 26). Больший поток протонов через диод не пропускался.

Поведение туннельных диодов

Известно, что туннельные дводы более стойки к облучению, чем дводы и транзнсторы, так как принцип их работы базируется на основных иосителях и не зависит от времени жизни неосновных носителей. Изменяется ток минимума и диффузионная ветвы вследствие образования ловушечных центров в запрешенной зоне под действием облучения⁽³⁾. Указанные изменения при облучении протонами не были обнаружены, так как не был достигнут предел радиационной стойкости. Облучались в -германиевый туннельный диод типа 1И302 с током максимума 3,5 ма и туннельный диод из арсенида галлия с током максимума 3,5 ма и емкостью 5 пф потоком $3 \cdot 10^{15}$ р/см², а также туниельные дноды на р-германии (2 образда) с токами максимума 4,85 и 9,55 ма и емкостями 19 и 23 пкф, соответственно, и обращенные дноды на р-германии с токами максимума 68 и 73 мка и емкостью 2 пкф потоком $3,7 \times 10^{14}$ р/см².

Изменение параметров транзисторов

Наиболее выраженным эффектом облучения для транзисторов является уменьшение коэффициента усиления, связанное с уменьшением времени жизни неосновных носителей

6

 $a = a_0 - t K' \Phi$

где \bar{i} - среднее время пролета носителей через базу, а K' - постоянная, являющаяся сункцией тех же переменных, что н ^C в выражении (1). В частности, зависимость а от Ф может быть нелинейной вследствие того, что K' зависит от типа проводнмости, а при облучении а -германий переходит в Р -германий, поэтому коэффициент усиления может даже расти при определенных дозах. Так как f_a -обратно пропорциопальна $1/\bar{t}$, то можно записать для a:

$$a = a_{\bullet} - \frac{K}{f_a} \Phi .$$
 (3)

Поскольку предельные частоты транзисторов находятся в днаназоне 1 кгц-1 Ггд, то потоки частиц, при которых происходят отказы, могут различаться на 6 порядков. Высокочастотные траняенсторы могут выходить из строя раньше, чем предсказывается выраженнем (3), так как при облучении увеличивается сопротивление полупроводников и могут иметь место изменения величия, связанных с проводимостью, таких, как емкость перехода, напряжение прокалывания, падение напряжения на транзисторе в состоянии насыщения, распределенное сопротивление базы и т.д. Выход из строя может быть также обусловлен поверхностными эффектами, которые проявляются в увеличении обратного тока и уменьшения пробивного напряжения. Протонами облучался ряд маломощных транзисторов, германиевых и креминевых. Коэффициент усиления, в целом, изменяется в соответствии с выражением (3), но для высокочастотных транзисторов наблюдались значительные отклонения, которые кроме неточности измерений можно объяснить зависимостью постоянной К от типа проводимости и изменением типа проводимости под действием облучения.

Далее даны результаты, полученные для транзисторов. Как и для диодов, в подзаголовках в скобках указано число исследованных образдов.

Германиевые маломощные низкочастотные транзисторы

Π9A(2)

Козффициент передачи в схеме с общей базой - а становится меньше предельно допустимого значения при потоке не более 5·10¹² р/см² (см. рис. 3). Поток отказа для обратного тока коллектора Ј_{ка}не достигается при падении а до 0 (см. рис. 4).

$$K/f_a = 5 \cdot 10^{-14} \text{ cm}^2/\text{p.cem}$$

П13(1)

Отказ наступает из-за увеличения J_{K_0} при потоке 2,4·10¹⁴ р/см² (см. рис. 4). При таком потоке (см. рис. 3) а остается еще в пределах допусков. Возможно, что данные по а завышают поток отказа, как видно из результатов по П14 и П15 далее. $K/f_a = 7,5\cdot10^{-17}$ см²/р.сек.

7

(2)

П14(2)

Поток отказа по $J_{K_0} = 2,5^{\circ}10^{13} \text{ р/см}^2$ (рвс. 4), по $a = 2,2^{\circ}10^{14} \text{ р/см}^2$ (рвс.3). Постоянная K/f_a заключева в пределах 1-1,9·10⁻¹⁵ см²/р.сек.

П15 (1)

Поток отказа по J_{κ_0} равен 6·10¹³ р/см² (см. рис. 4), а по $a = 1,75 \cdot 10^{14} \text{ р/см}^2$ (рис. 3). К/f_a находится в диапазоне $5 - 9 \cdot 10^{-17} \text{ см}^2$ /р.сек.

Кремниевый маломошный низкочастотный транзистор П103 (1)

Отказ наступает из-за падения а при потоке 1,2·10¹² р/см² (см. рис. 3). По Ј_{ко}отказ не наступает и при падении а до ⁰ (см. рис. 4).

$$K/f_a = 5.10^{-14} \text{ cm}^2/\text{p.cex.}$$

Германиевые диффузионные высокочастотные транзисторы

Π403A(2)

Один из образцов случайно вышел из строя после экспозиции 2,38·10¹⁴ p/cm^2 (1-я точка на рис. 3 и 4), но уже после этой экспозиции ток J_{K_0} данного транзистора превышал предельно допустимый, поэтому поток отказа можно считать равным 2,4·10¹⁴ p/cm^2 . Поток отказа для второго образца, по-видимому, завышен – по J_{K_0} он не достигается даже при наибольшем пропущенном потоке – 3;1·10¹⁵ p/cm^2 , а по а поток отказа равен 2·10¹⁵ p/cm^2 .

$$K/f_a = 3,4.10^{-17} \text{ cm}^2/\text{p.cex.}$$

Π416 (3)

Один образец случайно вышел из строя при замере на потоке $4,3\cdot10^{13}$ р/см², поэтому при больших потоках измерения велись на двух образцах, однако, поток отказа по *а* был достигнут раньше и составляет $3\cdot10^{13}$ р/см² (см. рис. 3). По J_{K_o} поток отказа равен $1,4\cdot10^{14}$ р/см² (рис. 4). Постоянная

$$K/f_a = 1.3 - 2.4 \cdot 10^{-15} \text{ cm}^2/\text{p.cex.}$$

1T308 (5)

Поток отказа по а составляет $8 \cdot 10^{13}$ р/см² (рис. 3), а по $J_{K_0} = 1.5 \cdot 10^{14}$ р/см² (рис. 4) $K/f_a = 5.5 \cdot 10^{-16}$ р/см².

1T303 (2)

У одного из образцов наблюдалось аномальное увеличение коэффициента усиления с ростом потока пропущенных протонов (см. рис. 3), причины которого могут заключаться в переходе п-Ge в р-Ge. Поток отказа не был достигнут при 1,80·10¹³ 2 (большим потоком эти транзисторы не облучались).

$$K/f_a = 1,6 \cdot 10^{-15} \text{ p/cm}^2$$
.

П418 (З)

Ток Ј_к возрастал, а коэффициент а падал, при облучении до потока 3,1·10¹⁵ р/см², но поток отказа достигнут не был. У образцов наблюдалось аномальное возрастание коэффициента а на начальных этапах облучения (рис. 3), которое можно объяснить переходом n-Ge в p-Ge. По-видимому измерения дали завышенную величиму радиационной стойкости. Постоянная

$$K/f_a = 5, 6.10^{-10} \text{ cm}^2/\text{p.cex.}$$

Кремниевый диффузионный высокочастотный транзистор П503 (1)

Поток отказа по а составляет 1,4·10 12 р/см 2 (см. рис. 3), при этом не было замечено изменения J_к.

 $k/f_a = 5,3.10^{-13} \text{ cm}^2/\text{p.cex.}$

Итоги измерений сведены в таблицы 1, 2 и 3.

Заключение

Несмотря на небольшое количество исследованных образдов каждого типа приборов и недостаточную точность измерений параметров из результатов облучения могут быть сделаны количественные выводы и даны определенные рекомендации по использованию этих приборов в аппаратуре, работающей в условиях облучения протонами высоких энергий. Германиевые плоскостные и точечные диоды не выходят из строя по обратному току до потоков $0,3-3\cdot10^{15}$ р/см². Прямое сопротивление, как правило, не измерялось, но оно может служить причиной отказа (Д11). Кремниевый диод Д103А выходит из строя вследствие увеличения прямого сопротивления при потоках менее $3\cdot10^{14}$ р/см². Потоки отказа туннельных и обращевных диодов выше $3\cdot10^{15}$ р/см² (а -германий, арсения галлия) - $3,7\cdot10^{14}$ р/см² (Р -германий). Германиевые плоскостные и диффузионные маломощные транзисторы типа рар выходят из строя в области потоков $5\cdot10^{12} - 2,4\cdot10^{14}$ р/см² вследствие увеличения J_{K_0} и уменьшения а.

Стойкость высокочастотных транзисторов оказывается выше, как правило, чем низкочастотных. Кремпиевые транзисторы выходят из строя вследствие падения а при потоках менее $1,2\cdot 10^{12}$ р/см², то есть их стойхость ниже, чем у германиевых транзисторов. Радиационная стойкость схем может быть обеспечена за счет применения более высокочастотных полупроводниковых приборов, применения пониженных напряжепий питания для уменьшения влияния роста J_{K_0} и введения отрицательной обратной срязи для компенсации падения а . Падение коэффициента усиления а можно предсказывать при известных потоках, пользуясь полученными постоянными K/f_0 и K.

В заключение автор пользуется возможностью поблагодарить Э.Г. Литвинову, А.Г. Морозова и Б.П. Осипенко за помощь в измерениях.

Литература

 Wertheim Gunter. Radiation Effects in Semiconductors, Nucleonics, 20, no.7, 47 (1962).
James W. Easley. Radiation Effects in Semiconductor Devices. Nucleonics, 20, no.7 (1962).
W.A.Bohan, A.J.Wager. The Effects of Steady-State and Pulse Radiation on GaAs Tunnel Diodes. IRE Trans., NS-9, no. 1, 346 (1962).

4. Radiation Effects on Transistors for Space. Nucleonics, 21, no. 7, 56 (1963).

Рукопись поступила в издательский отдел 4 октября 1965 г.

Таблица

Диоды

Мате риал	Тип	Коли- чест.	Поток отказа (в р/см ²)	Парам. отказа	Примечание
Герм. плоск	Д7	1	более 10 ¹⁵	Ј обр	Прямое сопротивле- ние не измерено
Герм. точеч.	Д9	1	более 10 ¹⁵	Ј _{обр}	Прямое сопр от ивле- ние не измерено
-*-	Д10	1	менее 0,3-1.10 ¹⁵		. _" _
-*-	Д11	1	10 ¹⁵	R np	
*	Д18	1	3·10 ¹⁴	Ј обр	
Кремн. точеч.	Д103А	1	менее 3·10 ¹⁴	R np	Ј _{обр} не изменилосн

Таблица 2								
		• .	Туняельные диоды	_				
в -герм.	1И302	1	более 3·10 ¹⁵	_				
арсен. галл.		1	более 3,7·10 ¹⁴					
р -герм.		2	более 3,7-10 ¹⁴					
р -герм.	обращ. диод	2						

Таблица З

Материал	Тип	Коли- чество	Поток отказа (в р/см ²)	Парам. отказа	Примечание
Спл.герм.	П9А	2	5·10 ¹²	a	
-'-	П13	1	2,4·10 ¹⁴	J _{Ko}	
	П14	2	2,5·10 ¹³		по а поток отказа 2.4·10 ¹⁴
-*	П15	1	6*10 ¹³		по а поток отказа 1,75.10 ¹⁴
Спл. кремн.	П103	1	1,2.10 ¹²	a	· · · · · · · · · · · · · · · · · · ·
Герм. диф.	П403А	2	2,4·10 ¹⁴	J _K ₊	по а поток отказа 2•10 ¹⁵
-*-	П416	8	3-10 ¹³	a	по Ј _{ко} поток отказа 1,4•1014
-*-	17308	5	8-10 ¹³		по ј поток отказа 1.5·10 ¹⁴
 "	17303	2	более 1,86•10	•	имеются допустимые изменения обоих пара- метров Ј _{Ка} , а
*	П418	8	более 3,1·10 ¹⁵		имеются допустамые отклонения обоих пара- метров J. , а.
Кремн.диф.	П503	1	1,4.10 ¹²	α	~ ~ K • . • •

Рис. 1. Зависимость обратного тока диодов от пропущенного потока протонов. Обратное напряжение измерения для диода Д18

- 10 в, для остальных - 11,5 в.

а) Д11 при облучении потоком протонов 2 - $3 \cdot 10^{14}$ р/см², 3 - 10^{15} р/см²,

5) Д103А при облучении потоком протонов $2 - 3 \cdot 10^{14} \text{ р/см}^2$.

٩.

2

Рис. 4. Зависимость обрагного тока транзисторов Ј_{ко}от пропушенного потока протонов.