C 346.55 M-215 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна Constanting of the

Э.И. Мальцев

21/11 65

2234

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ТРЕХЧАСТИЧНЫХ ЛЕПТОННЫХ РАСПАДОВ ЗАРЯЖЕННЫХ К-МЕЗОНОВ

Обзор

1965

34 to/1 up.

Э.И. Мальцев

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ТРЕХЧАСТИЧНЫХ ЛЕПТОННЫХ РАСПАДОВ ЗАРЯЖЕННЫХ К-МЕЗОНОВ

Обзор

объединенный инститор изара ах исследова об БИБЛИОТЕНА

Прошедшая летом прошлого года в Дубне конференция по физике высоких энергий подвела итог очередного этапа исследования свойств трехчастичных лептонных распадов заряженных К -мезонов. Теперь уже можно говорить о том, что успешно закончился первый период выяснения основных характеристик, таких, например, как вариант взанмодействия, ответственный за эти распады, и началось детальное количественное изучение процессов

$$K^{-} \rightarrow \ell^{+} \pi^{\circ} \nu$$
.

В связи с этим интересно проследить путь развития наших знаний о распадах К⁻ мезонов, подвести итог проделанной работы и обсудить новые проблемы, на которые обращено в настоящее время внимание физиков.

К осени 1964 года суммарная статистика всех лабораторий мира составила уже почти 3. 10^5 случаев^{X/}. Это позволило надежно установить доминирующий в распадах вариант взаимодействия, оценить величину отношения частот $\Gamma(K_{\mu3})/\Gamma(K_{\bullet3})$ -распадов, имеющую фундаментальное значение для понимания распадных свойств К -мезонов, и величину $\xi = f_{+}/f_{+}$ -отношение формфакторов,-также являющуюся важной характеристикой K_{ℓ} -распадов.

Набранный статистический материал дал возможность вплотную подойти к количественному решению таких вопросов, как энергетическая зависимость формфакторов, проблемы µ-е -укиверсальности и нелокальности. По-видимому, часть из этих тем будет рассмотрена в самое ближайшее время.

1. Основные характеристики распадов $K \rightarrow \ell \pi^{\rho} \nu$

Прежде чем нерейти к рассмотренню экспериментальных данных о трехчастичных лептонных распадах заряженных К -мезонов, мы выпишем здесь несколько основных формул и поясним терминологию. В самом общем случае матричный элемент распада $k^+_{-} + l^-_{-} \pi^o \nu$ имеет вид /1/:

х/Речь идет о К , анализированных лишь частично.

$$M \sim \delta^{4} (P_{K} - P_{\pi} - P_{\ell} - P_{\nu}) \sum_{i} \bar{u}_{\nu} O_{i} u \ell A^{i}, \qquad (1)$$

где Р_к, Р_п, Р_ℓ в Р_ν – 4-импульсы каона, пиона, лептона в нейтряно соответственно, а О₁ и А¹ в зависямости от вида взаимодействия имеют следующую форму:

S:
$$O_1 = I$$
, $A^1 \sim f_n$;
V: $O_1 = \gamma_n$, $A^1 \sim [f_+(P_K + P_\pi) + f_-(P_K - P_\pi)] a$;
T: $O_1 = \sigma_{\alpha\beta}$, $A^1 \sim [f_-P_K - P_\pi]$.

Здесь f_s, f₊, f₋ н f₋формфакторы, зависящие от энергин п° -мезона.

Если подсчитать полную вероятность $K^{+}\ell_{3}$ -распада, то она будет зависеть, вообще говоря, от всех этих формфакторов и их комбинаций. Однако, поскольку нас в дальнейшем будет интересовать V -варкант взаимодействия, то мы рассмотрим все формулы для V -типа связей. Выпишем сейчас отношение частот распада $\Gamma(K^{+}_{\mu3})/\Gamma(K^{+}_{e3})$. Это отношение полностью описывается параметром $\xi = f_{\mu}/f_{+}$ (в предположения постоянства формфакторов).

$$R = \frac{\Gamma(K_{\mu\delta})}{\Gamma(K_{\sigma\delta})} = 0,651 + 0,126 \xi + 0,0189 \xi^{2} + ...$$
(2)

Легко видеть, что это уравнение имеет два решения, соответствующих определенной величине ξ . Но, кроме отношения частот распада, параметр ξ характеризует также ряд энергетических и угловых распределений и поляризацию μ^+ -мезона из $K_{\mu s}^+$ Для иллюстрации приведем здесь одно из таких распределений – энергетический спектр μ^+ -мезонов из $K_{\mu s}^+$ распада в покое:

$$dT/dE_{\mu} \sim f_1(E_{\mu})\xi^2 + f_2(E_{\mu})\xi + f_8(E_{\mu}),$$
 (3)

где $f_i(E_{\mu})$ - некоторые функции от энергии μ -мезона. Здесь уже форма слектра определяет одно значение параметра ξ . Следующей важной характеристикой $K^{\pm}\ell_{3}$ - распадов является энергетическая структура самих формфакторов. Наличие формфакторов связано с виртуальными сильными взаимодействиями, например, такого вида:

Виртуальные барионы в этой днаграмме имеют существенно большие массы, чем даже максимально возможная энергия п^о-мезона. Поэтому можно думать, что формфакторы будут зависеть от энергии п^о-мезона достаточно слабо. Напишем f₊ и f₋ в следующем виде:

$$f_{+} = A_{+}(1 + \lambda_{\psi} + \frac{q^{2}}{m_{\pi}^{2}}) ,$$

$$f_{-} = A_{-}(1 + \lambda_{-}\frac{q}{m_{\pi}^{2}}) ;$$
(4)

здесь λ_{+} и λ_{-} -постоянные множители, меньшие единицы, $q^{2} = m_{K}^{2} + m_{\pi}^{2} - 2m_{K}E_{\pi}$ и A_{+} -константы. С таким видом формфакторов связано несколько проблем. Это, во-первых, степень энергетической зависимости, т.е. величина коэффициентов λ_{-} , во-вторых, требование $\mu - e_{-}$ универсальности ($A_{+K\mu\delta} = A_{+K\circ\delta}$), а также величина отношения A_{-}/A_{+} В $K_{-\mu\delta}^{\pm}$ – распаде (напомним, что из требований ненарушенной SU₃-симметрии должно быть $A_{-}/A_{+}=0$). Еще один круг вопросов, относящихся к $K_{\ell\delta}^{\pm}$ – распадам, касается возможности определения степени нелокальности рождения лептонов. Отказ от локальности приводит к тому, что формфакторы могут зависеть не только от суммарного 4-импульса, переданного лептонам, но и от каждого из 4-импульсов P_{ℓ} и P_{ℓ} . Таким образом, вместо одной характерной величины $q^{2} = (P_{K} - P_{R})^{2} = (P_{\ell} + P_{\ell_{2}}^{2})^{2}$ мы обязаны ввести два параметра, например:

$$q^{2} = (P_{K} - P_{\pi})^{2},$$

 $q'^{2} = (P_{K} - P_{\ell})^{2}.$

Поскольку теперь есть тря незавясямых 4-импульса, то естественно было бы ожидать появления в матричном элементе трех формфакторов вместо двух для локальной векторной связи. Но, как можно показать ^{/3/}, вклад от третьего, нового вектора можно включить в два прежинх – $f_+(P_K + P_\pi)_a + f_-(P_K - P_\pi)_a$.В результате матричный элемент не изменяется, а лишь появляется дополнительная зависимость формфакторов от члена, описывающего нелокальность процесса. Для случая чистой векторной связи формфактор примет следующий вид:

$$f_{+} = A_{+} \left(1 + \lambda_{+} - \frac{q^{2}}{m_{\pi}^{2}} + \mu_{+} - \frac{q^{\prime}}{m_{\pi}^{2}} \right).$$
(5)

Фактор μ характеризует стедень нелокальности, для локального образования лектонов $\mu = 0$. И, наконец, последнее, на чем необходимо остановиться, - это основные выражения для поляризации μ^+ -мезона из $K_{\mu 3}^+$ - распада, которая включает в себя в качестве нараметра величину ξ .

При отсутствии какой-либо деполяризации асимметрия в угловом распределении электронов от распада µ -мезона будет иметь вид

$$1 + (a P_{\mu} \cos \theta \mu B) \cos \theta e B$$
, (6)

где є -нараметр асимметрия μ-є -распада, Р_μ- велична продольной поляризации μ -мезона и θμВ и θеВ -наблюдаемые углы между мюонным и электронным треками и вектором магнитного поля в точке распада μ -мезона.

Итак, если μ^+ -мезон из К _ _ _ _ распада останавлявается в детекторе, его компонента спина вдоль магнитного поля сохраняется и асимметрия электронов распада около этого направления характеризует степень поляризации мюона.

С другой стороны, мы можем непосредственно выразить величину поляризации через энергию мюона и отношение формфакторов в виде /4/

$$P_{\mu} (E_{\mu}) = f_{o}(E_{\mu}) \frac{1 + f_{1}(E_{\mu})\xi + f_{3}(E_{\mu})\xi}{1 + f_{3}(E_{\mu})\xi + f_{4}(E_{\mu})\xi^{2}} .$$
(7)

Таким образом, мы вновь имеем зависимость

Итак, теперь у нас есть минимальный аппарат, описывающий трехчастичные лептонные распады заряженных К -мезонов, и мы можем приступить к анализу имеющихся экспериментальных данных.

2. Анализ экспериментальных данных

За последний год произошли достаточно большие изменения как в смысле накопления экспериментального материала, так и в количественных оценках некоторых величия. Мы не будем обсуждать здесь вопрос о типе связи, поскольку уже ко времени предыдущего обзора ^{/5/} достаточно надежно було установлено преобладание в. К_е -раснадах векторного варканта взаимодействия. Отметим лишь, что все без исключения новые дакные подтверждают полученные ранее результаты.

а) Оденка величины отношения формфакторов ξ = f_/f_

Все эксперименты по определению величны ξ можно разбить на четыре группы: оденка ξ из отношения частот $\Gamma(K_{\mu\delta})/\Gamma(K_{\delta\delta})$, информация из энергетических спектров $\mu - \pi$ π° -мезонов, корреляционные соотношения различного рода, являющиеся функцией: ξ , и эксперименты по измерению поляризации μ из $K_{\mu\delta}$ -распада, которая также зависит от величины ξ .

Нанменее точными из этих методических возможностей являются оценки ξ по форме энергетических спектров, поскольку иривые для различных ξ слабо отличаются друг от друга. Хорошо различаются кривые для разных ξ для поляризационных соотношений, но значительные трудности, а в связи с этим и ошибки появляются при определении величины поляризации из-за деполяризационных свойсть сред.

В последнее время все в большем числе работ начинают использоваться различного веда корреляционные соотношения, в мекоторых из которых ^{/6/} используются новые выражения ^{/7/}, позволяющие проводить достаточно хорошее разделение кривых для различных ξ . Интересно сравнить данные, суммированные в прошлогоднем обзоре о K^+_{ℓ} -

у . Латереско сраванта данны, суммарозника в примоголасы сосоре о к уз распадах , с полученными за последний год. В таблице 1 приведены полученные значения ξ и метод, который использовался для оценки.

Нач	ало 1964 г.		Начало 1985 г.				
Авторы	Метод	ξ	Авторы	Метод	ξ		
I.M.Dobbs et al. 1/8/	µ ⁺ -энергетический спектр	-9	V.Bisi et al. (13)	⁴ -энергетически спектр	±± ≥ -3		
A.M.Bojarski et al. /9/	μ ⁺ -энергетический сцектр	-9	В.С.Курбатов и др./6/	μ ⁺ _эмергетически сцектр	$a \ge -2$ $\le +2$		
I.L. Brown et al. /10/	π [°] − импульсный спектр	+2	T.H.Groves et al.(14)	— энергетичес- кий спектр	0		
. A.M. Bojarski et al. /9/	поляризация μ+	0	G.L.Jensen (15)	π ⁰ -импульс~ ный спектр	-1 ⁺² -3		
V.A.Smirnitski, A.O.Weissenberg	поляризания µ ⁺ "/23/	0	G.Gidel et al. (16)	диаграмма Да- литца (энергия	,3+0,9 или		
				μ ⁺ - н π ^о -ме- зона) -	5,2+0,7		

1	:	2	3	1	2	3
G.Gidal/11/	поляризация	μ ⁺ 0		G.Gidal et al./17/	поляризация µ	+ -0,15 + 0,90 жлн -4,05 + 0,75
B.P.Roe et al. /12/	Отношение частот $\Gamma(K^+_{\mu 3})/\Gamma(K^+_{.3})$	1,8 + 0,8 жлж -8,5 + 0,8		F.S.Shaklee/18/	Отношение частот $\Gamma(K^+_{\mu\delta})/\Gamma(K^+_{\delta\delta})$	0 + 0,90 Елн -8,5 + 0,90
/11/ G.Gidal	Отношение частот $\Gamma(K^+)/\Gamma(K^+)_{\mu\delta}$.8	0 ± 1,21 		В.С.Курбатов и др. (8)	Отношение частот Г(К ⁺)/Г(К ⁺) µ8 •8	0,64 + 1,00 RAW -7,3 + 1,0
				V.Bisi et al. /13/	Отношение $\Gamma(\mathbf{K}^+_{\mu s})/\Gamma(\mathbf{K}^+_{ss})$	0,3 + 0,8 [—] —7,1 + 0,8
				B.P.Roe et al. /19/	Отношение частот $\Gamma(K^+)/\Gamma(K^+)_{\mu 3}$ • 8	-0,2 + 0,8 или -6,5 + 0,8
				B.P.Roe et al. 1/19/	корреляции - у - у	+0,8 + 2,0
			1	В.С.Курбатов др. (8)	корреляции · γ -лептон	0 + 2,0

Если просуммировать последние данные, полученные при использования всех методик, кроме энергетических спектров μ^+ -мезонов, то для средневзвешенной величины <> имеем:

> $\langle \xi \rangle_{i} = 0 \pm 0,30,$ $\langle \xi \rangle_{i} = -5,71 \pm 0,30,$

а для всех экспериментов, включая старые данные, имеем следующую картину (для одного решения ξ):

									•								
									•								
									•								
									•								
-9	- 8	-7	- 6	- 5	- 4	- 3	- 2	-1	 0.	1	2	3	4	5	6	F	

Из этого распределения видно, что величина отношения формфакторов ξ с большой вероятностью заключена в пределах — $1 \leq \xi \leq +2$.

б) Энергетическая зависимость формфакторов

Как уже говорилось выше, разрешение вопроса о структуре формфакторов достатечно затруднительно и требует значительного статистического материала. Кроме этого, если мы априори не введем предположение о чистой V -связи лля К 2 -распадов, то вообще не сможем получить однозначного вывода, поскольку может быть:

а) либо формфакторы не постоянны;

б) либо есть примеси S - и T - связей.

Казалось бы, что самым надежным путем для решения этой проблемы является, все-таки предварительное установление возможного наличия примесей невекторных типов связей с помощью анализа таких данных, которые не зависят от формфакторов. Такая возможность существует - это различного рода распредоления при фиксированной энергии

π[°] -мезона (т.е. при неменяющихся формфакторах). Для реализация такого предположения требуется статистика порядка тысяч событий. Еще раз напомним, что в настоящее время набран статистический материал, позволяющий провести эту работу. Однако пока анализ E_{π[°]} = Const не проведен. В связи с этим займемся исследованием имеющихся данных в предположение чистой V-связи в K to a-распадах.

Как уже было написано выше, формфакторы можно представить в виде

$$\begin{split} f_{+} &= A_{+}(1+\lambda_{+} - \frac{q^{2}}{m^{2}}) , \\ f_{-} &= A_{-}(1+\lambda_{-} - \frac{q^{2}}{m^{2}}) . \\ \pi_{-} \end{split}$$

Из требования µ-е -универсальности мы должны иметь

распада

$$A_{+\kappa_{\mu 8}} = A_{+\kappa_{e 8}}$$

н разумно предположить, что ход энергетической зависимости (т.е. величина λ) приблизительно одинаков для K_{e3}^+ — и $K_{\mu3}^+$ — расцадов, т.к. области изменения энергии π^o —мезона в обеих распадах очень близки.

В таблице 2 приведены все имеющиеся данные о величине λ_{+} из K_{e3}^{+} и λ_{+} из $K_{\mu 8}^{+}$ (считая $\lambda_{+} \approx \lambda_{-} \approx \lambda$).

Как мы видим, ситуация здесь такова, что ничего определенного, даже о знаке величины λ , пока нельзя сказать.

3. Проверка гипотезы µ - е - универсальности

Одним из наименее изученных вопросов в $K \stackrel{+}{\ell}_{8}$ - распадах является вопрос о проверке гипотезы $\mu - e$ - универсальности. Из этой гипотезы следует, что

$$A_{+\mathbf{K}_{os}} = A_{+\mathbf{K}_{\mu s}},$$
$$\lambda_{+\mathbf{K}_{os}} = \lambda_{+\mathbf{K}_{\mu s}} = \lambda_{+\mathbf{K}_{\mu s}},$$

Изучением этой проблемы занималась Мичиганская группа, опубликовавшая первые результаты в 1962 г. и получившая в

$$\frac{A + K \mu s}{A + K \mu s} = 1,07 \pm 0,18,$$

В дальнейших работах этой групны^{/10,19/} была несколько улучшена точность ^A_{+Kµ3} / A _{+K.3} = 1,08 ± 0,14, и при использовани этого значения получено

$$\lambda_{+\pi} = -0,01 + 0,03,$$

$$\lambda_{+\pi} = -0,05 + 0,065,$$

в то время как из гипотезы $\mu - e - универсальности (A_{+K_{e3}} = A_{+K_{\mu3}})$ следует $\lambda_{+K_{e3}} = \lambda_{+K_{\mu3}} = \lambda = -0,02 \pm 0,027.$

Как мы ведем, для разрешения проблемы $\mu - e$ -уннеерсальности нужно еще значительное повышение точности эксперимента (по крайней мере на порядок) и, может быть, качественно новый подход к анализу данных. Заметим, что сейчас величины A ,

λ , находятся по форме энергетических и угловых распределений и полной вероятности распада, и здесь трудно ожидать большого увеличения точности даже при достаточно большом статистическом материале. Имеются численные оценки величин A _ и A /19/

$$A_{+} = (7, 6 \pm 0, 5) \cdot 10^{-2} \text{ Mpg}^{-2} \text{ cer}, \frac{\%}{A_{-}} = (-0, 8 \pm 5, 8) \cdot 10^{-2} \text{ Mpg}^{-2} \text{ cer}, \frac{\%}{A_{-}},$$

If discriminant otherweaks A_{-} / A_{+} enceed $A_{-} / A_{+}^{\infty} - 0, 1 \pm 0, 75.$
Ence pas hanomers, where the structure of su $_{3}$ -created checker $A_{-} / A_{+} = 0.$

4. Локальность ?

Единственной работой, рассматривавшей возможное отклонение от локального рождения лептонов, является работа /15/, основанная на анализе данных, полученных на 30-сантиметровой Хе – камере. Из углового распределения для φ (угол разлета у -квантов от π° -мезонов) они получили выражение, связывающее величины λ и (см. разлел 1) в виде

$$k = \frac{\lambda - \frac{1}{2} \mu}{1 + \mu - \frac{m^2 k + m^2}{m^2} \pi}$$

где k = const. Поскольку λ и μ не могут быть определены одновременно, попытаемся оценить их из косвенных соображений. Для $\mu = 0$ (локальность) лучшее значение для λ было найдено равным (K_{e3}^+ - распад) $\lambda = -0,01$. Это дает k = -0.01. а также связь между μ и λ в виде

$$\lambda = -0.01 + 0.358 \mu$$
.

Другим возможным методом нахождения величины μ является генерирование К_{•8} -распадов по программе Монте-Карло в предположении чистой V -связи с произвольными μ и λ для импульсного спектра π⁰- мезонов и требование, чтобы полученное распределение совпало с экспериментальными данными. Акализ дал максимум функции правдоподобия для значения μ = 0,01 и для доверительного уровия около 90% интервал

$$0.01 < \mu < 0.03.$$

Здесь также можно сказать, что проблема еще очень далека от своего разрешения.

д) Примесь S – и Т – связей в К⁺_{•8} – распаде⁽ Если не предполагать априори, что К⁺_{•8} – распад описывается чистой V – связью, или чистой S –связью, или чистой Т – связью, то нужно написать V² + S² + T² = 1,

где V, S т Т характернэуют вклады от соответствующих связей в отнормированную на единицу полную вероятность процесса. Анализ, проведенный аналогично тому, который применялся для нахождения величины µ, дал следующие результаты /15/:

а) формфакторы постоянные

б) формфакторы не постоянные

λ	т	S	la L _{CMECH}
-0,01	0,0	0,0	0,0 + 2
-0,03	0,3	0,0	-5,4 + 2
-0,05	0,4	0,0	-14,1 + 3
-0,07	0,5	0,0	-15,0 + 4
-0,05	0,0	0,28	0,5 + 2
-0,07	0,0	0,38	-3,7 + 2

Здесь L ______ -функция максимального правдонедобия для параметров V , S , T для двухмерного распределения по ϕ и θ' , где θ' – угел между каправлением вылета леитона и биссектрисой угна разлета γ -квентов от π° – мезона.

5. Заключительные замечания

Итак, какова же в настоящее время ситуация с изучением трехчастичных лептонных распадов К⁻-мезонов ? По-видямому, можно считать доказанным преобладание векторного типа связей, хотя возможны небольшие примеск S - и T - вариантов взаимодействия.

Установлена, правда, еще недостаточно точно, величина отношения формфакторов $<\xi>=0+0,80$ и предел ξ , по крайней мере не больший

$$-1 \leq \xi \leq +2$$

(RAH $<\xi> = -5,71+0,31$).

Получены предварительные давные об энергетической структуре формфакторов и возможной нелокальности распадов, но к ним пока нельзя относиться сколько-инбудь серьезно.

Говоря в целом о всей проблеме $K_{\ell,8}^{-}$ – распадов, можно сказать, что в настоящее время полученные результаты наметили пути дальнейшего изучения вопроса. Подтверждение во всех слабых взаимодействиях V – А тика связи обязывает установать достаточно точные границы применимости этой теории и найти возможные отклоневия.

Каким путем лучше всего идтя, чтобы решить последовательно все перечисленные выше задачи ? На наш взгляд, такая последовательность должна иметь следующий вид

степень примесей	проблема µ - е	SEEPTETESCLAS	BOILDOCH
к V-варианту К *	• универсальности • К в К _{µ 8}	зависимость формфакторов К и К	нелокальности К

Этот путь кажется разумным из следующих соображений. До тех пор пока мы не знаем количественного состава примесей к У - связя, мы инчего не можем сказать ни об энергетической структуре формфакторов, ни о возможной нелокальности пропессов, поскольку любое искажение формы энергетических или угловых распределений может возникать как следствие действия любого из этих механизмов.

Навлучшим способом опенки примесей к V – типу взаимодействия могут быть получены при анализе распределений всех типов при фиксированной энергии π° -мезона, когда формфакторы строго постоянны. Затем проверка гипотезы $\mu - e$ – универсальности, также по данным при фиксированных эмергиях π° -мезонов и полному

времени жизни для К ...

К - каналов распада.

Установление этих двух характеристик позволит изучить энергетическую структуру формфакторов при использовании результатов при разных фиксированных энергиях π° мезона и данных о полной вероятности распадов. Здесь следует отметить, что вклад в формфактеры, обусловленный возможной нелокальностью, принципиально не может быть выделен в чистом виде: здесь, возможно, потребуются дополнительные эксперименты для установдения массы возможной промежуточной частицы.

Вот все те соображения относительно экспериментальной ситуации в К l з -раснадах, которые хотелось бы отметить в настоящем обзоре.

В заключение мне котелось бы поблагодарить И.В. Чувило за ряд полезных советов.

Литература

- 1. S.W.Macdowell. Notas de Fisica, v. 8, n (Brasil) (1961).
- 2. A.Pais, S.B.Trelman. Phys. Rev., 105, 1616 (1957).
- 8. B.P.Roe. Univ. of Michigan Bubble Chamber Group Research Note, n. X-2 (1963) .
- 4. N.Brene, L.Egardt, S.Qvist. Nucl. Phys., 22, 553 (1961).
- Б.А. Смиринтский. Школа теоретической и экспериментальной физики Нор-Амберд, стр. 360, Ереван, 1964.
- В.С. Курбатов, Э.И. Мальцев, А.И. Маслаков, Д. Пинтер, Г.М. Сташков, И.В. Чувело, А.И. Шиловская. Материалы XII международной конференции по физике высоких энергий, Дубиа, 1964 г.
- Б.С. Курбатов, Э.И. Мальцев, А.И. Маслаков, А.А. Стручков, А.И. Шкловская. Преприят ОИЯИ, Р-1955, Дубка, 1964.
- I.M.Dobbs, K.Lande, A.K.Mann, K.Reibel, F.I.Sciulli, H.Uto, D.N.White, K.K.Young. Phys. Rev. Lett., 8, 295 (1962).
- 9. A.M.Boyarski, E.C.Loh, L.Q.Niemela, D.M.Ritson, R.Weinstein, S.Ozaki. Phys. Rev., 128, 2398 (1962).
- I.L.Bromn, I.A.Kadyk, G.H.Trilling, R.T.Van de Walle, B.P.Roc, D.Sinclair. Phys. Rev., Lett., 8, 450 (1962).
- 11. G.Gidal (частное сообщение о работах Мичиганской, Калифорнийской и Туринской групп, 1964).
- 12. B.P.Roe, D.Sinclair. Phys. Rev. Lett., 7, 346 (1961).
- V.Bisi, G.Borreani, R.Cester, A.Debendetti, M.I.Ferrero, C.M.Garelli, A.Marzari-chiesa, B.Quassiati, G. Rinaundo, M.Vigone, A.E.Werbrouck. Phys. Rev. Left., 17, 490 (1964).
- 14. T.H.Groves, P.R.Klein, V.Vanderburg. Phys. Rev., v. 135, 58, 1269 (1964).
- 15. G.L.Jensen. Doctoral Thesis. Univ. of Michigan (1964). Study of the three-body leptonic decay modes of + k - meson.
- G.Gidal, W.M.Powell, R.T.Pu, C.Sandlev, U.Camerimi, W.F.Fry, R.Hantmann, R.March, D.Murphree, S.Natali. Univ. of California, UCRL-11547 (1964).
- 17. G.Gidal, W.M.Powell, R.March, S.Natuli. Phys. Rev., Lett., 3, 95 (1964).

- 18. F.S.Shaklee. Doctoral thesis, Univ. of Michigan (1964), The Branching Ratios of the Positive K-Meson.
- 19. B.P.Roe, D.Sinclair, F.S.Shaklee, G.L.Jensen. Bull. Am . Phys. Boc., 89, 34 (1964).
- 20. I.L.Brown, J.A.Kadyk, G.H.Trilling, R.T.Van de Walle, B.P.Roe, D.Sinclair. Phys. Rev. Lett., 7, 423 (1961).
- 21. G.E.Kalmus, A.Kernan, U.Camerini, C.Hendersen. Univ. of California, U.C.R.L. 11553 (1964).

.

- 22. G.Borreani, G.Rinange, A.E.Werbrouck. Phys. Lett., 2, 123 (1964).
- 23. V.A.Smirnitski, A.O.Weissenberg, Phys. Rev. Lett., 12, 244 (1964).

Рукопись поступила в издательский отдел 23 июня 1965 г.