

Ю.В. Норсеев, В.А. Халкин, Чао Тао-нань

ОБ АДСОРБЦИИ ОДНОВАЛЕНТНОГО КАТИОНА АСТАТИНА ФОСФОРНОВОЛЬФРАМАТОМ ЦЕЗИЯ И ГИДРАТИРОВАННОЙ ОКИСЬЮ ВОЛЬФРАМА ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ Изб. Сиб. Сийд. АНС СССР Сер. Хим. Конд. 1965 1965 7 II, вым. 2, с. 21-27.

Ю.В. Норсеев, В.А. Халкин, Чао Тао-нань

ОБ АДСОРБЦИИ ОДНОВАЛЕНТНОГО КАТИОНА АСТАТИНА ФОСФОРНОВОЛЬФРАМАТОМ ЦЕЗИЯ И ГИДРАТИРОВАННОЙ ОКИСЬЮ ВОЛЬФРАМА ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ

Направлено в "Изв. СО АН СССР"

Соъсканскизи инститич пасрених исследование БИБЛИОТЕНА

Методами электромигрании и нонного обмена нами ранее было показано^{/1/}, что астатии, последний нестабильный элемент группы галлондов, может находиться в азотнокислых растворах, содержащих бихромат-нон, в форме однозарядного катнона. По риду свойств этот положительный ион напоминает одновалентный таллий: он извлекается из 1 - 5 м растворов HNO₃ осадком бихромата таллия (таблипа 1), соосаждается с водатом серебра (таблица 2), адсорбируется на кристаллах фосфорновольфрамата пезия^{/2/} (Cs₂ P w)^{x/}

Образование малорастворимых в разбавленных минеральных кислотах солей дигетерополикислот – общее селективное свойство тяжелых одновалентных катионов. Однако адсорбция астатина имеет ряд особенностей, не свойственных другим одновалентным катионам, в частности ТГ⁺ и Cs⁺. В ряду шелочнометаллических солей фосфорновольфрамовой кислоты астатии лучше всего адсорбируется наиболее устойчивой Сs₃PW. Большой избыток нонов цезия в растворе над осадком, практически полностью подавляющий адсорбцию на Cs₃PW других одновалентных металлов, не уменьшает адсорбнию катиона астатина. Кислая соль Cs₂HPW адсорбирует астатии значительно хуже нормальной.

Мы не могля строго объяснить причины такого интересного поведения катнона астатина. В литературе не удалось найти сообщений об аналогичных свойствах каких-либо других элементов. Чтобы получить новые сведения об этом процессе и еще раз уточнить имеющиеся данные, было продолжено исследование адсорбции астатина фосфорновольфраматами.

Мы не останавливаемся в настоящем сообщении на вопросах получения препарата астатина и измерения его радноактивности, так как они были подробно изложены в наших опубликованных статьях /1,2/.

В ходе проведения работы выяснилось, что продукты разложения fight существенно изменяют результаты эксперимента. Поэтому кислота квалификации "x,ч," (ВТУМХП - OPУ-29-55) дополнительно очищалась двухкратной перекристаллизацией из 0,1-0,3 M H NO₃. Чтобы полнее отделить раствор кислоты от тонкой взвеся нерастворимых примесей, к нему добавлялся мелковолокинстый, специально обработанный асбест^{/3/} и суспензия отфильтровывалась через стеклянный фильтр № 4. Перед установx/рw = PW.0₁₀.

кой титра к раствору H₃PW в 2.10⁻⁴ м³ IM HNO₃ – 1.10⁻⁴ M H₃Cr₂O₇ добавляли 10-15.10⁻⁶жг Cs NO₃. Через сутки раствор декантацией отделяли от выпавшего осадка в следы взвеси удаляли центрифугированием. Приготовленный таким образом препарат H₃P W в течение двух-трех недель позволял получать при работе с астатином хорошо воспроизводимые от опыта к опиту результаты.

Осадки фосфорновольфраматов приготавливались не ранее чем за сутки до проведения эксперимента. Св⁺, Rb⁺и NH⁺ осаждали в З М HNO₈ – 0,005 М H ₂Cr₂O₇. При получении нормальных солей концентрация катнона щелочного металла в растворе после осаждения была 2.10⁻² М. Перед работой осадки промывались растворами такого же состава, как и растворы, в которых определялась адсорбция астатина.

Растворы и осадки перемешивались в течение часа в центрифужных пробирках на $10-11.10^{-6}$ м³ стехлянными мешалками, вращавшимися со скоростью ~1000 об/мин. Как видно из результатов, представленных на рисунке 1, адсорбционное равновесие достигается быстро и количество адсорбированного астатина не меняется во времени в интервале от 24.10² до 18.10³ сек. Последнее можно рассматривать кан указание на обратимость процесса адсорбции катиона астатина на поверхности труднорастворимых кристаллов C_{B_A} Р W.

Относительные количества астатина, адсорбированные из 3 М Н N O₃ - 2.10⁻² М Са NO₃ 5.10⁻³ М H₂Cr₂O₇, прямо пропорциональны весу осадка и обратно пропорциональны объему раствора (таблица 3). При различных соотношениях растворов и осадков средние значения козффициентов распределения получаются довольно близкими: от 370 до 475.

Все приведенные выше результаты были получены при 15 + 1°C. Выполнение определений при фиксированной температуре связано с тем, что при прочих равных условиях количество адсорбированного на CS .PW астатина резко падает с увеличением темпєратуры (табляца 4). В координатах lg Kd-t°C экспериментальные точки хороло ложатся на прямую (рис. 2), следовательно, температурная зависимость распределения катиона астатина между Св 3PW и ЗМ НNO - 2.10⁻² M Cs NO - 5.10⁻³ M H Cr 0 - опи- $Kd = a e^{-b/T}$. Уменьшение коэффициентов распределения сывается уравненнем вида не связаво с необратимыми изменениями химического состояния астатина или сорбента: после охлаждения до 0°С предварительно нагретой до 96°С суспензии, содержащей астатин. сорбния полностью восстанавливается. Возможно, что первопричиной отрицательного влияния повышенной температуры на адсорбцию является изменение химического состава поверхности сорбента за счет сдвига вправо равновесия в реакции Св. РW + H⁺ ссв. НРW + Св⁺ . Это вполне вероятно, так как кислая соль растворима на порядок хуже, чем нормальная: 0,07 г/л и 0,8 г/л соответственно /4/. Данные, при-

веденные в таблице 5, показывают, что катном астатина адсорбируется на Св₃ Р W во много раз хуже, чем на Св₃ Р W . В этой связи представляет интерес уже упоминав-

шаяся работа Хэля^{/4/}, в которой отмечается, что коэффициент распределения Cs⁺ между (NH₄)₃PW и 0,1 IM HNO₈ в тридпать раз больше, чем при адсорбнии на (NH₂)HPW. Из данных таблицы 5 следует, что аналогичное отношение коэффициентов распределения для катнона астатина больше ста. Вероятно, в макроколичествах катнои астатина мог бы образовывать с фосфорновольфрамовой кислотой более прочные нормальные соли, чем цезий.

Мы уже высказывали предположение $^{/2/}$, что поскольку катион астатина адсорбируется лучше Cs gW, чем Cs HPW, то повышение адсорбнии в растворах, содержащих интрат цезия, связано с увеличением на поверхности кристаллов концентрации участков с насыщенной структурой, на которых, собственно, и локализуется астатин. Из этого предположения следовало, что не только на Cs gW, но и на Rb W и (NH) PW катион астатина может адсорбироваться лучше ири повышенных концентрациях Rb NO₈ и NH NO₈ в растворе. Такое увеличение адсорбнии астатина, действительно, наблюдается на опыте (таблица 5). Количество астатина, асорбированного на Cs PW слабо зависит от концентрации азотной кислоты в интервале от 1 M до 5 M (рис. 3). Резкое уменьшение сорбируемости при более высоких кислотностях может быть следствнем как изменения состава поверхности, так и разрушения сорбента, которое имеет место в концентрированных растворах минеральных кислот

Мы предполагали, что возможной причиной необычной по сравнению с другими одновалентными катионами адсорбции катиона астатина на фосфорновольфраматах является то, что в данном случае мы вмеем дело не с простым катноном Аt⁺, а со сложныме кислородосодержащими катионами At 0 + , At 0 + , H 0 At . (Известно, что нод имеет аналогичные химические состояния, устойчивые при определенных условиях /6,7/). Поэтому было бы интересно изучить адсорбаню катнона астатина на каком-нибудь труднорастворнмом фосфорновольфрамате одновалентного оксикатнона. Подходящим казался висмутил, который, например, в 1-2 М Н N О в образует труднорастворимый осадок с бихроматом: (ВіО), Сг. О, Исходя из этой отдаленной аналогии, мы надеялись, что сможем синтезировать (BiO), РЖ или (BiO), НРЖ . К сожалению, провести намеченное исследоважие не удалось, так как при сливании IM по HNO, растворов H PW и Ві (NO), происходит разрушение фосфорновольфрамовой кислоты с выпадением гидратированной окиси вольфрама (таблица 6). При рассмотрении приведенных в таблице 6 результатов напрашивается вывод о том, что висмут легко вытесняет одну молекулу из Н.Р. . Возможно, но менее вероятно вытеснение второй молекулы. Види-WO. мо, это ранее не наблюдавшееся другими авторами явление, заслуживает более детального исследования, что, однако, выходит за рамки нашего направления.

Для нас определенный интерес представлял тот факт, что образовавшийся при реакпии н РW и висмута осадок WO: H 0 адсорбировал астатии. Возникал вопрос, не

связана ли адсорбция катиона астатина на Св.РW с мякроразрушениями поверхности сорбента в азотнокислых растворах и с образованием в результате этого процесса на кристаллах фосфорновольфрамата слоя мелкодисперсной вольфрамовой кислоты? Хорошо известно из аналитической практики, что аморфная гидратированная окись вольфрама, обладающая развитой поверхностью, не является селективным ионообменником и может адсорбировать из кислых растворов микроколичества различных катионов.

Выше изложенные соображения делали необходимым изучение адсорбдин катнона вольфрамовой кислотой в азотнокислых растворах.

Объемистые белые осадки ₩0₃H₂О получались за сутки до опыта при сливании охлажденных растворов Na₂WO₄ и ≈ 3M HNO₃. Непосредственно перед проведением определений осадки промывались теми растворами, в которых потом изучалась адсорбция катиона астатина. Условия проведения эксперимента были те же, что и при работе с фосфорновольфраматами.

Время контакта (38.10² сек) было явно недостаточно для достижения условий, близких к равновесным (таблица 7). Но специфика работы с короткоживущим элементом в данном случае делала нерациональным получение экспериментальных данных при более длительных временах.

Результаты опытов приведены в таблицах 8 и 9 и на рисунке 4. Очевидно, что ысе зависимости адсорбции катиона астатина на WO₃. H₂^O имеют совершенно иной характер, чем в случае Cs₃PW и, следовательно, наши опасения, что адсорбция на фосфорновольфраматах связана с разрушением сорбента, неосновательны.

Заключение

- Получены экспериментальные данные об адсорбции катиона астатина на фосфорновольфрамате цезия из растворов азотной кислоты.
- 2. Адсорбивя астатина на Сs₃PW является обратимым процессом. Коэффициент распределения в З МН N O₃ - 2.10⁻² M Cs N O₃ - 5.10⁻³ M H₂Cr₄O₇ при 15^oC равен 420 + 60.
- 3. Количество адсорбированного на Ся_вРW астатина резко убывает с повышеннем температуры. Увеличение кислотности в интервале от 1 М до 5 М НNO₃ мало сказывается на процессе адсорбции.
- 4. Найдено, что в 1 M HNO, висмут легко разрушает молекулу Н РW.
- Приведены сведения об адсорбции катиона астатина на гидратированной окиси вольфрама.

Литература

- 1. Ван Фу-дзюн, Ю.В. Норсеев, В.А. Халкин, Чао Тао-нань. Раднохимия 5, 351 (1963).
- Ван Фу-дзюн, Н.Г. Крылов, Ю.В. Норсеев, Чао Тао-нань, В.А. Халкин. Сб. "Соосаждение и адсорбиия радноактивных элементов", стр. 80-88, изд. "Наука", М-Л, 1965.
- Ю.В. Карякин, И.И. Ангелов. Чистые химические реактивы, стр. 84. Гос. каучнотехн. издательство хим. литературы, М, 1955.

4. T.V. Healy. Radiochimica Acta., 3, No. 1/2, 106 (1964).

5. J.Kritl, V.Kourim. J. Imorg. Nucl. Chem., 12, 3/4, 367 (1960).

6. J.Arotaky, H.Mishra, M.C.R. Symons. J.Chem. Soc., July 2582 (1962).

7. R.B.Bell, E.Gells, . J. Chem. Soc., October, 2734 (1951).

Рукопись поступила в издательский отдел 27 мая 1965 г.

Таблица 1

Соосаждение астатина с $\text{Tf}_{2}\text{Cr}_{2}\text{O}_{7}$ в момент образования осадка и адсорбция астатина на заранее сформированных кристаллах бихромата таллия; 0,01 М H $_{2}\text{Cr}_{2}\text{O}_{7}$ Вес осадка 2.10⁻⁶ кг; объем раствора 5.10⁻⁶ м³.

Процесс	[H NO 3]	%% астатжна в осадже
Соосаждение	1 M	95 + 1
- * -	2 M	94,5
-* -	2 M	94 ^{x/}
Адсорбиня	2 M	84 + 1
- * -	2 M	$80 + 5^{x/}$
Соосаждение	3 M	91,5 + 0,5
- 1 -	4 M	84 + 2
- ' -	4 M	85,5 + 0,5 ^{x/}
- * -	5 M	81

x/ B pactbope 10 kr/m³ La⁺⁸.

Таблица 2

Соосаждение астатина с Ag IO₈ (15.10⁻⁶ кг), Ba(IO₈)₂ (4.10⁻⁵ кг) ж Th(IO₈)₄ (4.10⁻⁵ кг) из 0,5 М H NO₈; 0,005 М H₂Cr₂O₇.

Объем раствора 5.10⁻⁶ м³.

Осадок	Дополнительные компоненты в растворе	% Аt в осадже
Ag IO	0,01 M K IO	96 + 1
	0,01 M Ag NO ₈	91 + 2
	10 Kr/m ³ La+3	91 + 1,5 ^{x/}
Ba (IO 3) 2	0,02 MK IO8	95
- * -	0,02 M Ba(NO ₈) ₂	59 + 4
99 anna	$0,02 \text{ M Ba(NO)}_{2}^{+}$ + 10 kr/m ³ La ⁺³	11 ± 2
Th (10 8) 4	0,01 M K IO 8	47 + 5
- " -	0,01 M Th (NO 3) 4	9,5 + 1,5

x/ Адсорбция на предварительно сформированном осадке Ag IO .

Таблица З

Распределение астатина между осадком $C_{8,3}$ РЖ и раствором ЗМ H NO $_{8}$ -2.10⁻² M C_{8} NO $_{3}$ -5.10⁻³ M H $_{2}$ Cr $_{2}$ O $_{7}$ в зависимости от веса осадка и объема раствора. Время перемешивания 36.10² сек; температура 15 + 1^oC

Bec CsPW (10 ⁻⁶ xr) ⁸	Объем раствора (10-6 м ³)	% Аt на осадке	Коэффициент распределения
30	8	63 + 1	455 + 20
100	5	88 + 0,5	370 + 20
100	8	83 + 1	390 + 30
100	15	76 + 2	475 + 50

Таблица 4

Адсорбаня астатина	на 1.10	Kr Cs PW	E3 5.10-6	м	раствора ЗМ	HNO 8
-2.10^{-2} M Cs NO ₃	-5.10 ⁻³ M	H 2Cr 2O B	38BECEMOCTE	OT	температуры.	
Braus	TADAMAM	WBAWWG 36.10	CAT			

ī	емп	ерат	Apa oC	0	15	30	50	70	96
%	At	на	осадке	97 <u>+</u> 0	88 + 0,5	65,5 + 0,5	27 + 2	7 + 1	~ 0

Таблица 5

Адсорбаня астатина на фосфорновольфрамате цезия, рубидия и аммония из азотнокислых растворов. Вес осадка 1.10⁻⁴ кг; объем раствора 5.10⁻⁸ м³; время перемешивания 38,10² сек; температура 15 + 1[°]C.

Осадок	Состав раствора над осадком	% на	At	адке
Cs H P W	$3M H NO_8 - 5.10^{-3} M H_2 Cr_2 O_7$	6	+	0,5
Cs PW	it is a time	78	+	4
- "	$3M HNO_{8} -5.10^{3} M H_{2} Cr_{2} O_{7} -2.10^{-2} M C_{8} NO_{8}$	88	+	0,5
N	3. 10 ¹ M Cs NO	97	+	0,2
	$ 2.10^{-2}$ M Cs NO ₈ $ 1.10^{-1}$ M Sc (NO ₈) ₈	85	+	1
Rb PW	$3M HNO_{3} -5.10^{-3} M H Cr_{2}O_{7} - 2.10^{-2} M Rb NO_{3}$	48	+	1
- " -	$ 3.10^{-1}$ M $ ^{\prime}$ $-$	74	+	2
(NH) PW	2.10 ⁻² M NH, NO,	5	+	1
	$ 3,10^{-1}$ M $ -$	24	+	4

Н _а РW ыM	Bi(NO ₈) ₈ mM	Выпало в осадок WO 8. H 0 мМ
1,0	0,25	0,248+ 0,01
0,5	0,25	0,240+ 0,002
0,25	0,25	0,247+ 0,002
0,25	0,5	0,298+ 0,01
0,25	1,0	0,348+ 0,024

Табляца в

Таблица 7

Адсорбния астатина на 25.10⁻⁶ кг WO₃. H₂ из 5.10⁻⁶ M^3 3M H NO₃ - 5.10⁻³ M H₂Cr₂O₇ в зависимости от времени перемешивания. Температура 15+1°C.

Время перемешивания (в сек)	36.10 ²	72.10 ²	10,8.10 ³	18.10 ³	
% At на осадке	52 + 2	68 + 0,5	64 + 3	72 + 2	

Таблица 8

Адсорбция	аста	тина на 25.1	0-8	-	0.	H 0		13	5.10	в <u></u> 3	3	M H NO 8	-5.	10	-3 _M
H ₃ Cr ₃ O ₇	B	38BECEMOCT	от	темпе	epar	уры	(C°)	•	Время	nep	BM	BURBARNS	36	.10	Cer.
Температура	c°	0			15			30			70			93	1
% At Ha oca	qke	55 +	1	52	<u>+</u> 2	2	52	+ -	2	35	+	4	15	+	1

Таблица 9

Адсорбция	астатена	HA	25,10	KL	WO . H O	H3	азотнокислых растворов.
Объем раствора	5.10 ⁻⁶ M	;	время	перем	ешивания	36.10	0 ² сек; температура 15+1 °C.

Состав раствора		%	At	в осадке
3M HNO = 5.10 -3 M H Cr 0 7		52	+	2
_* _* _* _* _* _* _	2.10 ⁻² M Cs NO	48	+	3
	3.10 ⁻¹ M	42	+	3
**_*	1.10^{-1} M Sc (NO [*] ₈) ³	45	+	3

Ржс. 1. Адсорбния астатина на 1.10⁻⁴ кг Св. РW из 5.10⁻⁸ м³ раствора ЗМ НNO_в -2.10⁻² M CsNO_в - 5.10⁻³ M H₃Cr₃O₇ в зависимости от времени. Температура 15 + 1°C.

Рис. 4. Адсорбщия астатина на 25.10⁻⁶ кг WO₃. HO из 5.10⁻⁶ м азотнокислогораствора 5.10⁻³ М по H₂Cr₂ O₇ в зависимости от концентрации азотной кислоты. Время перемешивания 36.10⁻² сек; температура 18 + 1° С.