ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

<u>C346</u> 5-911

С.А. Бунятов

2129

РЕАКЦИЯ *π* р→ *π*⁺*π* п ВБЛИЗИ ПОРОГА И *ππ*-ВЗАИМОДЕЙСТВИЕ

Автореферат диссертации на соискание ученой степени . кандидата физико-математических наук

Научный руководитель кандидат физико-математических наук В.М.Сидоров С.А. Бунятов

2736 89

2129

РЕАКЦИЯ $\pi^- p \rightarrow \pi^+ \pi^- n$ ВБЛИЗИ ПОРОГА И $\pi\pi$ -ВЗАИМОДЕЙСТВИЕ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель кандидат физико-математических наук В.М.Сидоров

Объединевный институт здерных исследований БИБЛИОТЕНА Изучение свойств взаимодействия *п* -мезонов с *п*-мезонами необходимо для понимания всех явлений, обусловленных сильными взаимодействиями. С теоретической точки зрения давно известно, что сильное взаимодействие *п* -мезона с нуклоном приводит к сильному *пп* -взаимодействию. Однако до последнего времени (1960 г.) не было получено экспериментальных доказательств того, что *пп* -взаимодействие существенно.

Основные сведения о взаимодействии элементарных частии получены из опытов по рассеянию, в которых частицы мишени были стабильными. п -мезоны являются нестабильными частицами, и пока преждевременно говорить о постановке экспериментов с п-мезонами в качестве мишени. Поэтому источниками информации о пп-взаимодействии могут быть либо опыты по изучению продессов, которые содержат взаимодействие двух виртуальных п-мезонов, либо более прямые опыты по изучению процессов с образованием в конечном состоянии двух или более реальных **π** -мезонов. Помимо экспериментальных трудностей в изучении таких процессов, извлечение количественных данных о 🛛 🛪 параимодействии оказалось чрезвычайно сложным из-за отсутствия в большинстве случаев строгих теоретических методов. Почти уникальная возможность однозначного определения длин *п* -рассеяния в S -состоянии из анализа реакций *π* N → *ππ* N вблизи порога была указана В.Н. Грибовым, А.А.Ансельмом и В.В.Анисовичем 11 в 1959 г. Преимущество подхода, развитого в этих работах, перед другими методами заключается в том, что он основан на строгом рещении задачи учета как п N-, так и пп -взаимодействия в конечном состоянии.

Работы, включенные в реферируемую дассерталию, были начаты в 1960 году главным образом для получения сведений о взаимодействии *п*-мезонов с *п*-мезонами в S-состоянии. С этой целью исследовалась реакция

> > Hard Carley & Rock man

вблизи порога^{х)} в интервале энергий 200-300 Мэв. К началу наших работ сведения

Порог реакции (1) равен 172,4 Мэв.

3.

о реакции (1) в непосредственной близости от порога полностью отсутствовали, а сведения о $\#\pi$ -взаимодействии в S-состоянии, полученные различными методами, носили крайне противоречивый характер.

Диссертация написана на основе исследований, выполненных на синхроциклотроне Лаборатории ядерных проблем в течение 1960 - 1964 г.г. Результаты работ опубликованы в печати ^{/2-6/} и докладывались на международных конференциях по физике высоких энергий (в 1960 г. в Рочестере, в 1962 г. в Женеве и в 1964 г. в Дубне^{/7/}.

Диссертация состоит из трех глав. В первой главе описаны методика измерений и критерин отбора водородных событий. Во второй главе изложены результаты измерений полных сечений, угловых и импульсных распределений вторичных частиц. В третьей главе приведены методы и результаты исследования пп-взаимодействия.

Ниже кратко излагается содержание диссертации.

1. Методика эксперимента

Выбор методики определялся двумя основными требованиями: 1) необходимостью регистрации трехчастичной реакции с сечением порядка 10⁻²⁹ см²; и 2) необходимостью точного измерения энергий и углов вылета медленных *т*-мезонов в интервале энергий от 1 до 50 Мэв. Практически единственным методом, который позволял в обозримое / время выполнить эту задачу, оказался метод фотоэмульсконных камер.

С помощью счетчиков трудно получить полную информацию о трехчастичной реакции. Трудности возникают даже при измерении полных сечений: для измерения малых сечений нужно использовать жидководородную мишень, но медленные мезоны не будут выходить из такой мишени. Другим конкурирующим методом является водородная пузырьковая камера, преимущество которой, как мишени с чистым веществом, - бесспорно. Однако для выполнения такой работы понадобилось бы получить и обработать ~6,8 млн. фотографий при скорости обработки ~100 тыс. фотографий в год.

В наших опытах фотоэмульсконные камеры облучались пучком π^- -мезонов с энергиями 300, 250 и 225 Мэв в мезонной лаборатории ЛЯП. Неопределенность в энергии составляла 2%. Для получения всего материала было облучено 23 камеры (1 камера размером 20x10x10 см³, 2 камеры размером 10x10x10 см³ и 20 камер размером 5x5x5 см³). Для поиска событий, соответствующих рождению дополнительного π мезона на водороде, был использован следующий метод. Эмульспонные слоя просматривались по плошади при увеличении ×105, и регистрировались остановки π^+ -мезоиов по характерным ($\pi^+ + \mu^+ + \nu$)-распадам. Найденные треки π^+ -мезонов прослеживались до звезд с первичным π^- -мезоном. Ионизация, вызываемая первичении

л -мезонами при энергии 200-300 Мэв, близка к минимальной, а ионизация вторичных. л -мезонов в среднем более чем в два раза превышает минимальную. Это позволяло облучать камеры большими потоками - 5.105 мез./см. Выбранный метод поиска оказался оссбенно эффективным для регистрации событий, соответствующих реакции (1) вблизи порога и практически единственно возможным методом при наличии большого фона от реакций вызываемых п-мезонами на сложных ядрах в фотоэмульсии.

Всего было зарегистрировано около 30 000 взаимодействий п-мезона с образованием дополнительного "-мезона. Из них предварительно отбирались случаи с двумя вторичными п -мезонами, не имеющие следов других частиц и треков ядер отдачи. Эти события обсчитывались по специально составленной кинематической программе на электронно-счетной машине, и соответствие их реакции (1) определялось по χ^2 -критерию. Выбранные размеры камер позволяли регистрировать ~ 85% л -мезонов от реакции п р → п п. В интервале энергий 200-300 Мэв окончательно было отобрано 563 события, из них 373 события в интервале энергий 200-245 Мэв и 190 событий в интервале 245-300 Мэв. Среднее значение фона "квазиводородных" событий в анализируемом наборе по двум независимыми оценкам составляет (15+5)%.

II. Полные сечения реакции π р → π⁺π⁻n

Угловые и импульсные распределения вторичных частиц Полные сечения были измерены для шести энергетических интервалов: 200-215, 215-225, 225-240, 240-252, 252-275, 275-300. Окончательные результаты язмерений приводятся в таблице 1.

Габлица І									
Энергия, Мэв	. 1	21	10 <u>+</u> 7	222 <u>+</u> 5	233 <u>+</u> 7	2	46 <u>+</u> 6	264 <u>+</u> 12	288 <u>+</u> 12
Сечение, 10 ⁻²⁷ см ²	2	0,015	<u>+</u> 0,003	0,027 <u>+</u> 0,00	05 0,053 <u>+</u> 0,0	013 0,12	5 <u>+</u> 0,028	0,16 <u>+</u> 0,06	0,38 <u>+</u> 0,09
Для в исследу	срав емом	нения і интер	приводя вале эн	тся оценки нергий:	полных сеч	ений, пол	ученные	в других	работах
Энергия, Мэв	تر الم و الأرواني و الأرواني	224 ^{/8/}		260 ⁷ 97	276 ^{/10/}	290	/11/	317 ^{/9/}	
Сечение, 10 ⁻²⁷ см ²	0	,03 <u>+</u> 0,0	20,	14 <u>+</u> 0,10	0,40 <u>+</u> 0,25	0,61	<u>+</u> 0,13	0,71 <u>+</u> 17	

Экспериментальные данные во всем интервале 200-300 Мэв (рис. 1) не описываются зависимостью $\sigma = CT^2$ (T – кинетическая энергия трех частиц в с.ц.и.), предполагающей постоянство матричного элемента реакции (1).

Кривая с коридором ошибок, приведенная на рис. 2, соответствует эмпирической зависимости $\sigma = C_T T^2 + C_T T^3$.

Результаты расчетов по статической модели /12/ и модели периферических столкновений /13/ не согласуются с экспериментальными данными.

Функцию возбуждения реахции (1) удается описать с помощью обобщенной изобарпой модели^{/14/}. Следует отметить, однако, что в целом модель содержит семь свободных параметров.

Угловые распределения вторичных частиц изучались в двух энергетических интервалах: 200-245 Мэв и 245-300 Мэв (рис. 2). Исследование угловых распределений вторичных частиц существенно для определения области применимости теории Грибова, Ансельма и Анисовича. В этой теории предполагается, что все угловые распределения вторичных частиц в общей системе центра масс должны быть изотропными. В интервале энергий 200-245 Мэв угловые распределения оказались симметричными и изотропными. Следовательно, предположения теории для реакции (1) выполняются в области энергий 172,4-245 Мэв. Во втором энергетическом интервале (245-300 Мэв) угловые распределения π^+ -мезонов близки к изотропным. Угловые распределения π^- -мезонов и нейтронов анизотропны и асимметричны. При этом нейтроны летят преимущественно в переднюю полусферу, а π^- -мезоны - в заднюю полусферу. Согласно модели Шнитцера^{/13/} π^- -мезоны должны лететь преимущественно в переднюю полусферу. Таким образом, угловые распределения π^- -мезонов в интервале энергий 200-300 Мэв находятся в резком противоречии с предсказаниями этой модели.

Исследовались также импульсные распределения вторичных частиц в тех же энергетических интервалах. Наиболее характерны импульсные распределения нейтронов. Они существенно сдвинуты в сторону меньших импульсов по сравнению с фазовой кривой. Так как импульс нейтрона в с.ц.и. однозначно связан с эффективной массой пл-системы, то этот сдвиг может быть объяснен влиянием пл-взаимодействия.

III. Исследования лл -взаимодействия в области низких энергий

Для качественного выяснения вопроса о характере $\pi\pi$ -взаимодействия в области малых энергий желательно было провести исследование спектра эффективных масс $\pi\pi$ системы в наиболее "чистых" условиях. Один из таких экспериментов состоит в изучении спектра масс $\pi\pi$ -системы от реакции $\pi^{-} p \rightarrow \pi^{+} \pi^{-}$ вблизи порога. При небольших

энергиях πN -взаимодействие в конечном состоянии мало, и сильное $\pi\pi$ -взаимодействие должно отчетливо проявляться. Измерения спектра масс $\pi\pi$ -системы выполнены в 1062 г.⁽³⁾ при энергии первичного π^- -мезона 245 Мэв; поэднее⁽⁶⁾ в интервале энергий от 200 до 260 Мэв были измерены спектры масс и $\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-$ (рис. 3). Следует отметить, что спектры $\pi^{\pm}\pi$ -систем в интервале 200-245 Мэв полностью совпадают с фазовым объемом и нет никаких проявлений изобары $N^*_{3/2}$ (1236), в отличне от спектров при более высоких энергиях. Это очень важно в свете работ Анисовича, Дахно⁽¹⁵⁾ и Валуева⁽¹⁶⁾, так как присутствие изобары $N^*_{3/2}$ (1236) существенно влияет на спектр масс $\pi\pi$ -системы. Спектры масс $\pi\pi$ -системы при всёх энергиях отличаются от статистических распределений, но никаких превышений пад фазовой кривой в области малых значений масс не наблюдается. Напротив, спектры имеют превышение над фазовой кривой в области максимально воэможных значений масс.

В работах Абашьяна, Буса и Кроу^{/17/} исследовался импульсный спектр ядер He³ в реакции pd + He³ + $\pi\pi$ В импульсном спектре He³ был обнаружен максимум (так называемая ABC - аномалия). Появление этого максимума объяснялось большой величиной длины рассеяния π -мезонов в состоянии с изотопическим спином T=0 ($a_o = 2 \frac{h}{\mu c}$, где μ - масса покоя π -мезона). Для сравнения полученных данных с данными Абашьяна, Буса и Кроу на рис. 4 показаны результаты деления экспериментальных спектров от реакций $\pi^- p \rightarrow \pi^+ \pi^- a$ и pd + He³ $\pi\pi$ на соответствующие величины фазовых объемов. Видно, что матричный элемент в реакции pd + He³ $\pi\pi$ имеет прямо противоположную зависимость от массы $\pi\pi$ -системы. Резкое отличие в поведении спектров масс $\pi\pi$ в реакции (1) противоречит интерпретация ABC-аномалии как следствия существования в $\pi\pi$ -системе виртуального уровня (аналогичного синглетному уровню в NN -системе), определяемого длиной рассеяния $a_o = 2 \frac{h}{\mu_o}$.

Исследование реакции $\pi^- p \rightarrow \pi^+ \pi^- n$ позволяет с помощью метода Чу и Лоу^{/18/} определить сечение процесса $\pi^+ \pi^- \rightarrow \pi^+ \pi^- n$ проверить тем самым независимым методом вопрос о существовании сильного $\pi \pi$ -взаимодействия, тем более что в некоторых работах были получены результаты, подтверждающие существование ABC-резонанса. Сечение процесса $\pi^+ \pi^- \rightarrow \pi^+ \pi^- было$ определено путем линейной экстраполяции дифференциальных сечений реакции (1) для событий с малой передачей импульса нуклону ($p^2 < 4$) в точку p = -1. Экстраполяция выполнена полиномами двух типов. Среднее значение сечения для интервала М $_{\pi\pi}$ от 280 до 350 Мев оказалось равным (25 ± 9)·10⁻²⁷ см². Этот результат находится в резком противоречии с предположением о большой длине $\pi\pi$ -рассеяния в S -состоянии с) T = 0, которая была получена из интерпретации ABC -аномалии. Сечение процесса $\pi^+ \pi^- \pi^+ \pi^-$ должно было равняться в этом случае 450×10^{-27} см².

Основная цель работы состояла в определении развости длин $\pi\pi$ -рассеяния в S-состоянии ($a_0 - a_2$) с помощью метода, развитого в работах Грибова, Ансельма и Анисовича. Изучение угловых распределений вторичных частии (рис. 2) показало, что околопороговой областью для реакции $\pi^- p \to \pi^+ \pi^- n$ следует считать область 172,4-245 Мэв. Поэтому в дальнейшем анализировалась только часть событий с первичными энергиями 200-245 Мэв. В работе^{/1/} было показано, что квадрат матричного элемента реакции (1) с точностью до линейных по относительным импульсам членов рабон

$$h = \rho^{2}(1 + cK_{12} + dK_{13}),$$

где ρ^2 - квадрат матричного элемента реакция (1) у порога, K_{12} К - относительные импульсы частиц в $\pi^+\pi^-$ и π^+ я - системах, соответственно. При этом отношение коэффициентов равно

$$c/d = -\frac{a_0 - a_2}{b_u},$$

здесь $b_{1/2}$ и $b_{3/2}$ известные длины π N -рассеяния в S -состоянии с изотопическим спином T = 1/2 и T = 3/2.

Для определения отношения коэффициентов с и d анализировалось распределение событий в кинематической плоскости К₁₂, К₁₃(рис. 5). Среднее значение отношения для двух интерналов энсргий 200-225 Мэв и 225-245 Мэв оказалось равным

$$/d = -(0,91 - 0,16),$$

а значение разности длин ## -рассеяния

$$a_0 - a_2 = +(0,25 + 0,05) \frac{h}{\mu c}$$

Следует отметить, что указанная ошибка не учитывает точности линейного приближения и этот вопрос требует дальнейшего анализа. Используя значение a_2 , полученное не-зависимыми методами^{10/}, можно определить величину и знак длины рассеяния в S-со-стоянии с изотопическим спином T = 0

$$a_0 = (0, 46 + 0, 06) \frac{h}{\mu c}$$

и подсчитать сечения рассеяния *п*-мезона на *п*-мезоне при нулевой энергии во всех зарядовых состояниях:

$$\sigma \left(\pi^{+}\pi^{-} + \pi^{+}\pi^{-}\right) = \frac{4\pi}{9} \left|2a_{0} + a_{2}\right|^{2} = (30 + 7) \cdot 10^{-27} \text{ cm}^{2} ,$$

$$\sigma \left(\pi^{+}\pi^{-} + \pi^{0}\pi^{0}\right) = \frac{8\pi}{9} \left|a_{2} - a_{0}\right|^{2} = (3,5 \pm 1,4) \cdot 10^{-27} \text{ cm}^{2}$$

$$\sigma \left(\pi^{0}\pi^{0} \to \pi^{+}\pi^{-}\right) = \frac{16\pi}{9} \left|a_{2} - a_{0}\right|^{2} = (7,0 \pm 2,8) \cdot 10^{-27} \text{ cm}^{2} ,$$

$$\sigma \left(\pi^{0}\pi^{0} \to \pi^{+}\pi^{-}\right) = \frac{8\pi}{9} \left|a_{0} + 2a_{2}\right|^{2} = (35 \pm 9) \cdot 10^{-27} \text{ cm}^{2} ,$$

$$\sigma \left(\pi^{+}\pi^{+} + \pi^{+}\pi^{+}\right) = 8\pi \left|a_{2}\right|^{2} = (16 \pm 7) \cdot 10^{-27} \text{ cm}^{2} ,$$

$$\sigma \left(\pi^{+}\pi^{0} \to \pi^{+}\pi^{0}\right) = 4\pi \left|a_{2}\right|^{2} = (8,0 + 3,5) \cdot 10^{-27} \text{ cm}^{2} .$$

В 1960-61 г.г. многими авторами были предприняты попытки построить теоретическую схему для описания низкоэнергетических процессов $\pi\pi$ -рассеяния, исходя из спектральных представлений для амплитуды рассеяния, предложенных Мандельстамом. Одним из основных параметров в полученных уравнениях является константа $\pi\pi$ -взаимодействия λ , которая определяется как эначение инвариантных амплитуд $\pi\pi$ -рассеяния при нефизическом эначении квадрата полной энергии $\pi\pi$ -системы s=4/3 μ^2 . В работе Серебрякова и Ширкова /20/ дается связь между длинами рассеяния и константой $\pi\pi$ -взаимодействия. Используя значение а $_{0}$ -а $_{2}$ =(0,25+0,05) h, можно определить λ :

$$\lambda = (0,07 + 0,01).$$

Результаты, полученные в работах, включенных в диссертацию, можно сформулировать следующим образом:

1. Зарегистрировано 563 события, соответствующих реакции (1). Измерены полные сечения реакции при шести значениях энергии в интервале 200-300 Мэв. Показано, что статическая модель и модель Гебеля и Шнитцера не описывают экспериментальных данных по полным сечениям.

2. Измерены угловые и импульсные распределения вторичных частиц в с.ц.и. Показано, что околопорогой областью энергии для реакции (1) является область 172,4-245 Мэв.

З. Детально исследованы спектры масс $\pi^+\pi^-$ и $\pi^+\pi$ -систем. В области малых значений масс $\pi\pi$ -системы не обнаружено аномалий, которые могли бы свидетельствовать о существовании сильного $\pi\pi$ -взаимодействия в S -состоянии, описываемого большой длиной рассеяния а .

4. С помощью экстраполяционного метода Чу и Лоу определено сечение процесса $\pi^+\pi^- \rightarrow \pi^+\pi^-$ В интервале масс $\pi\pi$ -системы 280-340 Мэв оно оказалось равным $(25+9)\cdot10^{-27}$ см².

5. Энергетические и угловые распределения вторичных частиц с точностью до линейных по относительным импульсам членов, анализировались с точки эрения теории Грибова, Ансельма и Анисовича^{/1/}. Из приведенного анализа следует, что разность длин $\pi\pi$ рассеяния в S -состоянии a₀ - a₂paвна (0,25 + 0,05) <u>h</u>.

6. При использовании а₂, полученного независимыми методами^{/19/}, определена величина длины рассеяния в состоянии с изотопическим снином T=0 а₀=(0,46 + 0,06) <u>h</u> и подсчитаны сечения рассеяния *п* -мезона на *п* -мезоне при нулевой энергии во всех зарядовых состояниях.

7. Константа связи # - взаимодействия определена равной 0,07+0,01.

Литература

1.	А.А.Апсельм, В.Н.Грибов. ЖЭТФ, <u>37</u> , 501 (1959); В.В.Анисович, А.А.Ансельм, В.Н.Грибов. ЖЭТФ, <u>42</u> , 224 (1962).
2.	Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. ЖЭТФ, 39, 1850 (1960).
3.	Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. ЖЭТФ, 43, 2015 (1962).
4.	Ю.А.Батусов, С.А.Бунятов, До Ин Себ, В.М.Сидоров, В.А.Ярба. ЖЭТФ, 45, 913 (1963).
5.	Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. Препринт ОИЯИ, Р-1823, Дубна. 1964; ЯФ, 1, 526 (1965).
8.	Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. Препринт ОИЯИ, Р-1838, Дубна, 1964.
7.	Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. Proc. X Conf. at Rochester, p.47, 1960;
8.	Ргос. XI Conf. at CERN, p. 115, 1962; Труды XII Международной конференции по физике высоких энергий, Дубна, 1964г. T.Deahl, M.Derrick, T.Fetkovich, T.Fields and G.B.Yodh.
	Phys. Rev., 124, 198 (1961).
9.	W.Perkins, T.Caris, R.Kenney and V.Perez-Mendez. Phys. Rev., 118, 1364 (1960).
10), Т.Д.Блохинцева, В.Г.Гребинник, В.А.Жуков, Г.Либман, Л.Л.Неменов, Г.И.Селнванов, Юань Жун-фан. ЖЭТФ, <u>42</u> , 913 (1962).
11	. Ю.А.Батусов, Н.П.Богачев, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. ДАН, 133, 52 (1960).
12	. Kim Tse Peng and W.Zoellner. Nucl. Phys., 34, 491 (1962).
13	B. H.J.Schnitzer. Phys. Rev., 125, 1059 (1962).
14	4. M.Olsson and G.B.Yodh. Univ. of Maryland. Techn. Rep. 379, 1964.
15	5. В.В.Анисович. А.Г. Дахно. ЖЭТФ, <u>46</u> , 1152 (1964). Phys. Lett., 10, 221 (1964).
16	3. Б.Н.Валуев. ЖЭТФ, <u>47</u> , 649 (1964).
17	. A.Abashian, N.E.Booth, K.M.Crowe. Phys. Rev. Lett., 7, 35 (1961); Phys. Rev., 132, 2309 (1963).
18	B. G.F.Chew, F.E.Low. Phys. Rev., 113, 1640 (1959).
19	D. N.Schmitz. Nuovo Cim., <u>31</u> , 255 (1964).
20). V.V.Serebryakov, D.V.Shirkov. Phys. Lett., 1, 129 (1962).
- 	
	Рукопись поступила в издательский отдел
	20 апреля 1965 г.

in the

Carlenge star

and the second second

요즘 같은 것

and the second second

4 - 4

the street second and

a conservation of the

Рис. 1. Полные сечения реакции π⁻р → π⁺π⁻в. Темные точки - данная работа. Светлые точки - результаты других работ. Кривая I - расчет Шнитцера, кривая II - эмпирическая зависимость C₁T² + C₂T³. Кривая III - расчет Ким Зе Пхена и Целлнера.

Ð

141

to n

Рис. 4. Результат деления спектра масс $\pi \pi$ -системы на фазовый объем (в относительных единицах): а) реакция $\pi^- p \rightarrow \pi^+ \pi^- n$; б) реакция $pd \rightarrow He^{-3} \pi \pi$,

المراجع معرفي الأنوار المراجع المراجع

