ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

В.Б. Любимов

2109

ИЗУЧЕНИЕ НЕУПРУГИХ ВЗАИМОДЕЙСТВИЙ "--МЕЗОНОВ С НУКЛОНАМИ ПРИ ЭНЕРГИИ 7 ГЭВ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель – доктор физико-математических наук М.И. Подгорецкий

Дубна 1965

h

В.Б. Любимов

2109

ИЗУЧЕНИЕ НЕУПРУГИХ ВЗАИМОДЕЙСТВИЙ "--МЕЗОНОВ С НУКЛОНАМИ ПРИ ЭНЕРГИИ 7 ГЭВ

1726

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель – довтор физико-математических наук М.И. Подгоредкий

объединенный институт ядерных всследований БИБЛИОТЕКА

Дубна 1965

Задача исследования процесса множественного образования частиц при столкновении *п* -мезонов с нуклонами и ядрами является одной из важных проблем физики высоких энергий. Этому вопросу посвящено большое количество экспериментальных работ, выполненных иа ускорителях в области энергий до 18 Гэв. В результате выяснилась ограниченная применимость выводов статистической теории и существенная роль периферических взаимодействий. Однако последовательной теоретической интерпретации множественного образования частиц пока нет. В этих условиях казалось необходимым получить возможно более полную информацию о свойствах частиц, образующихся в элементарном акте взаимодействия,

Настоящая диссертация посвящена исследованию неупругих взаимодействий п-мезонов со свободными и квазисвободными нуклонами. Работа выполнена при помощи пропановой пузырьковой камеры.

Диссертация состоит из пяти глав.

В первой главе дан краткий обзор основных экспериментальных данных по неупругим *п*-N взаимодействиям в области импульсов первичных *п*-мезонов, больших 1 Гэв/с. Сюда относятся прежде всего результаты по множественности образующихся в *п*-N столкновениях вторичных заряженных частий. С увеличением энергии первичных *п*-мезонов растет сечение, приходящееся на долю взаимодействий с большим числом этих частии. Причем полное сечение неупругого *п*-N взаимодействия остается приблизительно постоянным. Средняя множественность вторичных заряженных частиц (*n*₃) меняется с энергией сравнительно медленно: так, в области энергий от 1 до 18 Гэв *n*₃ возрастает от 1,5 до 4.0.

Рассмотрены энергенические характеристики рождающихся частии. Импульсные спектры протонов имеют максимум в области небольших импульсов, характерный для периферических взаимодействий. Особенностью спектров *и* -мезонов является то, что величана наиболее вероятного импульса остается практически постоянной в широком интервале энергий первичных *и* -мезонов. Возрастание среднего импульса вторичных *и* -мезонов происходит за счет увеличения относительной доли высокоэнергичных *и* -мезонов; что касается поперечных импульсов вторичных частии, то они почти не зависятни от первичной энергии, ни от множественности вторичных заряженных частии.

. 3

Угловые распределения вторичных частиц в с.ц.и. во всех случаях анизотропны. Величина анизотропии меняется с множественностью заряженных частиц и возрастает по мере роста первичной энергии. В наибольшей степени это относится к протонам, а также к π^- -мезонам.

Приведена сводка данных для коэффициента неупругости, который определен как отношение полной энергии всех родившихся частиц к полной энергии сталкивающихся частиц в системе, где первичный п⁻-мезон покоится ("зеркальная" система). Величина коэффициента неупругости, скорее всего, мало меняется с первичной энергией.

Глава II посвящена методике эксперимента. В работе использовались снимки, полученные на 24-литровой пропановой камере в двух сериях облучения камеры (пучком *п*-мезонов с импульсом 6,8 Гэв/с и 7,5 Гэв/с) на синхрофазотроне Лаборатории высоких энергий Объединенного института ядерных исследований. Камера находилась в магнитном поле напряженностью 13700 эрстел.

Просмотр фотографий осуществляется на стереолупах и репроекторах. События. отбирались по критериям, изложенным в работе^{/1/}. На снимках с этими событиями измерялись координаты 8-20 точек каждого следа. По измеренным координатам на электронно-счетной машине рассчитывались импульсы частип, направляющие косинусы и пр., а также ошибки в импульсах и углах.

Вторичные отрицательные частицы считались π^- -мезонами, для положительных частиц проводились измерения ионизации. Для этого применялся метод подсчета числа просветов, аналогичный использованному в ^{/2/}. Разделение протонов и π^+ -мезонов производилось в области импульсов до 1,2 Гэв/с. Часть частиц была идентифицирована по пробегу. Все "черные" останавливающиеся следы считались протонами. Всего оказалось возможным идентифицировать 99% следов положительных частиц с импульсом, ≤ 1.2 Гэв/с.

Среди двухлучевых событий были выделены и отброшены случаи упругого рассеяния первичного п -мезона на свободном и квазисвободном протоне. Отбор этих случаев производился в основном но угловым характеристикам (компланарность, соотношение угол-угол).

При просмотре регистрировались электронно-позитронные пары, образованные у квантами, испущенными из точки взаимодействия. По результатам измерений следов пары вычислялась энергия у -кванта и его "статистический вес", учитывающий зависимость эффективности регистрации у -кванта от геометрических условий и энергии.

В главе III изложены полученные результаты по исследованию неупругих #-N столкновений. Всего было отобрано 262 случая взаимодействия. С протоном и 93 случая взаимодействия с нейтроном. Сечение исупругого #-р взаимодействия, $\sigma_{in} = (25\pm3)$ Мэв, согласуется с результатами других работ. Рассмотрено распределение событий по числу вторичных заряженных частиц, приводятся также средние числа этих частиц в *п*-р и *п*-в взаимодействиях. Результаты согласуются с расчетами по статистической теории.

Наиболее полно изучены свойства вторичных *п*-мезонов, так как для *п*-мезонов всех импульсов не требовалось специальной идентификации. На рис. 1 приведены угловые распределения в с.ц.и. Распределения асимметричны, причем величина асимметрии усиливается для малолучевых событий. Такой характер угловых распределений иичего общего не имеет с выводами статистической теории. Что касается импульсных распределений *п*-мезонов (рис. 2), то расчеты по статистической теории качественно не противоречат экспериментальным данным. Средние значения поперечных импульсов *п*-мезонов не зависят от множественности вторичных частиц и практически не отличаются от поперечных импульсов неидентифицированных положительных частиц , *п*^о -мезонов и медленных протонов.

Энергетическое распределение протонов в л.с.к. (рис. 3) имеет максимум, харақтерный для периферических взаимодействий. Доля случаев с медленным протоном составляет ~10% от полного сечения взаимодействия *«*-мезонов с нуклоном, что согласуется с результатами, полученными при других энергиях.

В связи с выводом о заметной роли периферических взаимодействий отобранные события были проанализированы с точки зрения одномезонных диаграмм, представленных на рис. 4. Отмечается, что имеющиеся данные не дают возможности для однозначного выбора между схемамя, приведенными на рисунке.

Найден коэффициент неупругости для всех неупругих *п*-р взаимодействий в "зеркальной" системе. Он заключен в пределах 0,47-0,57 и, скорее всего, увеличивается с кратностью вторичных заряженных частип.

Глава IV посвящена изучению специального класса *п*-р взаимодействий, сопровождающихся испусканием медленного протона с импульсом в л.с.к., не большим 500 Мэв/с^{/3/}. Для этого были использованы результаты дополнительного просмотра 3000 кадров, в котором по общим критериям было выделено 364 2-лучевых, 178 4-луче вых и 66 случаев с числом лучей >4. Все события среди положительно заряженных вторичных частиц имели одни "черный" или "серый" след.

Для выделения столкновений со свободными протонами был использован новый критерий, связанный с вычислением недостающей массы M_{χ} ^{/4/}. Для взаимодействий со свободными протонами величина M_{χ} всегда положительна, для взаимодействий с ядром формальные вычисления M_{χ} часто приводят к довольно большим по модулю мнимым значениям M_{χ} . Таким образом, мнимое значение соответствует тому, что взаимодействие произошло на ядре. Специальная проверка критерия показала, что он оказался достаточно эффективиым, в частности, он дает возможность отделить случаи упругого

5

взаимодействия на квазисвободном протоне ("квазиупругие"случаи) от. неупругих столкновений. Выделение "квазнупругих" случаев по таким характеристикам, как компланарность, соотношение угол-угол и пр.,обычно довольно произвольно.

Распределение по множественности заряженных частиц имеет характерное смещение в сторону большого числа малолучевых взаимодействий в сравнении с распределением по множественности всех *п*-р взаимодействий (не имеющих дополнительного ограничения по импульсу вторичных нуклонов). Такой характер распределений по множественности связан с тем, что периферические взаимодействия относятся в основном к малолучевым звездам.

Угловые распределения вторичных *п*-мезонов в с.п.н. особенно сильно вытянуты вперед в случае двухлучевых взаимодействий. То же самое наблюдается для угловых распределений *п*-мезонов в системе покоя двух *п*-мезонов (рис. 5). Таким образом, если мы имеем дело с *п*-*п* взаимодействием, то оно носит дифракционный характер.

Построенные распределения эффективных масс $\pi^+ p$, $\pi^- p$, $\pi^+ \pi^- u$ пр. не имеют существенных аномалий.

Глава V посвящена специальному изучению свойств π^о-мезонов, образующихся в неупругих столкновениях. Изучение проводилось по зарегистрированным в камере у квантам. Для этого был сделан просмотр ≈1500 кадров. Отбор неупругих п - N взаимодействий осуществлялся по общим критериям, но дополнительно требовалось, чтобы в каждом событии была по крайней мере одна e⁺e⁻-пара. Всего было использовано 202 события с 242 парами.

Найдено среднее число π° -мезонов (\bar{n}) в событиях разной кратности (таблицы 1, 2). Видно, что \bar{n} мало меняется с множественностью вторичных заряженных частиц для $\bar{n}_{3} > 1$. Качественно такой же вывод можно сделать из сопоставления распределения по множественности событий с $e^{+}e^{-}$ -парами с распределением,

		T,	аблица	1	
Множе- ственность	0	2	4	6 r 8	Среднее (<i>π</i> -р)
ñ	3,2 <u>+</u> 0,9	1,05 <u>+</u> 0,11	1,2 <u>+</u> 0,14	1,35 <u>+</u> 0,35	1,4 <u>+</u> 0,11

		Таблица 2	- · · · · · · · · · · · · · · · · · · ·
Множе- ственность	1	3	Среднее (п-п)
and the second s	1;75 <u>+</u> 0,13	0,70 <u>+</u> 0,13 1,20 <u>+</u> 0,31	1,0 <u>+</u> 0,14

найденным для всех $\pi = N$ взацмодействий. Все это означает, что события с разным числом вторичных заряженных частиц значительно отличаются друг от друга по\суммар ному числу рожденных π -мезонов всех знаков.

Среднее число п° -мезонов в событиях разной кратности флюктупрует сравнительно мало. Так, например, для всех п-р взаимодействий величина флюктуации оказывается меньше рассчитанной по статистической теории.

Угловые распределения у -квантов в с.ц.и., которые близки к угловым распределениям п^о -мезонов, анизотропны для малолучевых взаимодействий (рис. 6).

(В таблице 3 приведены средние значения энергии π° -мезонов для π^{-} р столкновений вместе с данными, рассчитанными по статистической теории (л.с.к.) при помощи таблиц случайных звезд .

		Табл	ица З		
Множе- ственность	0	2	4	6	Сумма
$\vec{E}_{\pi^{0}}$ (Гэв), эксперимент	2,04 <u>+</u> 0,12	1 , 29 <u>+</u> 0,30	0,77 <u>+</u> 0,12	0,93 <u>+</u> 0,46	1,08 <u>+</u> 0,18
Ē _π (Гэв), стат.теория	1,50 <u>+</u> 0,33	1 , 54 <u>+</u> 0,09	1,13 <u>+</u> 0,30	0,39 <u>+</u> 0,97	1,41 <u>+</u> 0,07

Для более полного изучения у -квантов, и в частности источников их происхождения, статистика случаев, сопровождающихся образованием е⁺e⁻-пар, была доведена до = 2000. Спектр у ^{сс}квантов для всех *π*-N взаимодействий (2088 у -кваитов) имеет максимум, связанный с распадом *п*^о -мезонов (рис. 7), и не обнаруживает других заметных немонотониостей.

События, сопровождающиеся испусканием двух или более у -квантов, были использованы для выделения π° -мезонов по обоим распадным у -квантам. Для этого было построено распределение эффективных масс пар у -квантов, приведенное на рис. 8. Для случаев из области максимума, соответствующего π° -мезону, были построены энергетические распределения π° -мезонов в л.с.к. и в с.ц.и. (рис. 9 и 10) распределение по поперечным импульсам (рис. 11). Средние значения поперечных импульсов π° -мезонов приведены в таблице 4.

	Таблиц	a 4	
Тип взаимо- действий 42 - 41 20 - 5 - 7 - 7 - 17 - 17 - 17 - 17 - 17 -	and an anna an Anna Anna Anna Anna Anna Ann	7 – C	$\pi - N + \pi - C$
Ē ₁ (Γэв/с) Ετάδο ΤΥΝΟ 0,26 ±0	.10	<u>+</u> 0,10	0,28 <u>+</u> 0,09

На основании изучения неупругих я – N взаимодействий при энергии 7 Гэв можно сделать следующие выводы.

1. Распределение наблюдаемых событий по множественности вторичных заряженных частиц согласуется с расчетами по статистической теории и с данными других работ, выполненных при близких энергиях.

 Импульсные распределения вторичных п -мезонов и п^о-мезонов тахже качественно не противоречат расчетам по статистической теория.

3. Средние поперечные импульсы вторичных *и*[−] -мезонов и *n*⁰-мезонов практически совпадают и не меняются с множественностью вторичных заряженных частяп.

4. Импульсное распределение протонов резко не согласуется с ожидаемым по статистической теории, что позволяет сделать вывод о существенной роли периферических взаимодействий.

5. В с.п.и. угловые распределения вторичных п--мезонов резко анизотропны, причем величина анизотропии уменьшается с ростом кратности.

6. Доля энергии, ядущей на образование дополнительных частиц в системе, где налетающий п-мезон поконтся, заключена в пределах 0,47-0,57 и, скорее всего, увеличивается с кратностью вторичных заряженных частиц.

7. Среднее число рожденных п^о-мезонов не меняется с множественностью вторичных заряженных частиц для в 21.

Основные результаты диссертации опубликованы в работах /1,3,4,6-9/

Литература

- Н.Г.Биргер, Ван Ган-чан, Ван Цу-цзен, Дин Да-цао, Ю.В.Катышев, Е.Н.Кладницкая, Д.К.Копылова, В.Б. Любимов, Нгуен Дин Ты, А.В.Никитин, М.И.Подгорецкий, Ю.А.Смородин, М.И. Соловьев, З.Трка. ЖЭТФ, <u>44</u>, 1481 (1961).
- 2. Г.А. Блинов, Ю.С. Крестников, М.Ф. Ломанов. ЖЭТФ, <u>31</u>, 762 (1960).
- Д.К.Копылова, В.Б. Любимов, М.И.Подгоредкий, Х.Ризаев, З.Трка. ЖЭТФ, <u>44</u>, 1481 (1963).
- Д.К.Копылова, В.Б.Любимов, М.И.Подгоредкий, З.Трка. Препринт ОИЯИ, 1186, Дубна, 1963.
- 5. М.И.Дымент, Г.И.Копылов. Препринт ОИЯИ, Р-581, Дубна, 1980.
- 6. В.Б.Любимов, А.В.Никитин, З.Трка. Препринт ОИЯИ, Р-974, Дубиа, 1962.
- 7. В.Б. Любимов, Му Цзюнь, В.Н.Стрельдов. Препринит ОИЯИ, Р-1624, Дубна, 1964.
- 8. В.Б. Любимов, Му Цзюнь, С.И. Портнова, В.Н.Стрельцов. Препринт ОИЯИ, Р-1629, Дубна, 1964.

Д.К.Копылова, В.Б. Любимов, М.И. Подгорецкий. ОИЯИ, Б-4-1249, Дубна, 1963.
В.С. Барашенков. Препринт ОИЯИ, Р-540, Дубна, 1960.

Рукопись поступила в издательский отдел 10 апреля 1965 г.

. . . .

3.1

197213-1272

ant 'ne d

Ampage and a second as

-remander orthogenetic An Morthelingenetic Tool H Рис. 1. Угловое распределение *т*-мезонов в с.ц.и. для *т*-р взаимодействий разной кратности; *a*= <u>N₂-N₁</u>, где N₂ и N₁- число *т*-мезонов, летящих вперед и назад, соответственно; в число взаимодействий.

