

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

2-97-153

На правах рукописи УДК 539.12, 539.14, 539.17

A-615

АМЕЛИН Николай Сергеевич

ЭКСКЛЮЗИВНОЕ ОПИСАНИЕ УЛЬТРА-РЕЛЯТИВИСТСКИХ ЯДЕРНЫХ СТОЛКНОВЕНИЙ И ДИНАМИЧЕСКАЯ МОДЕЛЬ КВАРК-ГЛЮОННЫХ СТРУН

> Специальность: 01.04.16 — физика ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени доктора физико-математических наук

Дубна 1997

Работа выполнена в Лаборатории высоких энергий Объединенного института ядерных исследований.

Официальные оппоненты; доктор физико-математических наук,профессор

Леонид Степанович Ажгирей

доктор физико-математических наук, профессор

Алексей Борисович Кайдалов

доктор физико-математических наук, профессор

Александр Иванович Титов

Ведущее научно-исследовательское учреждение: Научно-исследовательский институт ядерной физики Московского государственного университета, г. Москва

Защита диссертации состоится "_____ 1997 года в "____ часов на заседании диссертационного совета Д-047.01.02 в Лаборатории высоких энергий Объединенного института ядерных исследований по адресу:

141980, г. Дубна Московской области. ЛВЭ ОИЯИ.

С диссертацией можно ознакомиться в библиотеке ЛВЭ ОИЯИ.

Автореферат разослан " " 1997 г.

Ученый секретарь специализированного совета . уминоти М. Ф. Лихачев доктор физ.-мат. наук, профессор

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Теоретические и экспериментальные исследования взаимодействий релятивистских ядер, начатые с пионерских работ А. М. Балдина, в настоящее время стали одним из бурно развивающихся направлений физики высоких энергий. Вслед за получением пучков релятивистских ядер в 1970 году на синхрофазотроне ОИЯИ ядра были ускорены до релятивистских энергий и в других ядерных центрах. В настоящее время получены ультрарелятивистские пучки ядер золота ($E_{aab} = 10.6 \text{ A}\Gamma$ эВ) и ядер свинца $(E_{aab} = 160 \text{ A}\Gamma \Rightarrow B)$ на ускорителях AGS-БНЛ (США) и SPS-ЦЕРН (Швейцария) и ведется интенсивная работа по созданию ядерных коллайдеров RHIC-БНЛ (США) и LHC-ЦЕРН (Швейцария).

Одной из важных особенностей таких столкновений является возможность получения информации о проявлениях кварк-глюонных степеней свободы (кварк-глюонная структура ядер [1]) и об образование нового состояния ядерной материи (кварк-глюонная плазма [2]).

Описание релятивистских адронных и ядерных столкновений из первых принципов квантовой хромодинамики (КХД) ограничены, как правило, вычислением свойств жестких процессов, идущих на малых расстояниях с большими передачами импульса, в то время как основную часть адронных и ядерных сечений взаимодействия при энергиях, достижимых на существующих ускорителях, составляют мягкие процессы. Кроме того, вычисления в рамках КХД касаются в основном цветных кварков и глюонов, а физической реальностью являются бесцветные адроны. Поэтому для количественного описания релятивистских ядерных реакций в условиях быстрого накопления экспериментальной информации и незавершенности ряда проблем КХД актуальной является разработка различных феноменологических моделей. Следует подчеркнуть, что разработка численных моделей, использующих метод Монте-Карло для эксклюзивного описания ядерных реакций в области релятивистских энергий, относится при этом к ключевой проблеме. Такие модели, называемые генераторами искусственных событий, по их возможности полного воспроизведения событий с помощью компьютера, необходимы как при планирования новых экспериментов, так и для анализа полученных экспериментальных данных. Они также выполняют функцию накопления информации, полученной в результате экспериментальных исследований.

> Obschluckles ELETETYT пасьяна исследовани *БИЕЛИОТЕКА*

ядерной материи) в столкновениях ядер свинца при энергии $E_{Aab} = 160 \ A\Gamma \Rightarrow B;$

- исследования роли $\Delta(3/2^+)$ -резонансов в ядерных реакциях в связи с возможностью образования долгоживущей резонансной ядерной материи в столкновениях массивных ядер при ультрарелятивистских энергиях;
- изучения условий термализации систем сталкивающихся ядер при энергиях $E_{Aa\delta} = 10.6 \text{ А}\Gamma$ эВ и $E_{Aa\delta} = 60 - 200 \text{ A}\Gamma$ эВ (оценка тормозной способности массивных ядер, расчеты эволюции величин барионной и энергетической плотностей, оценка возможности установления теплового и химического равновесия и т. д.);
- анализа усиленного образования странных частиц, обнаруженного в центральных ультра-релятивистских столкновениях ядер, предполагаемого на роль сигнала кварк-глюонной плазмы.

Научная новизна работы.

- 1. Впервые создана МКГС для эксклюзивного описания адронных столкновений при высоких энергиях.
- 2. В процессе обобщения МКГС на случай эксклюзивного описания ультра-релятивистских столкновений адронов и ядер с ядерными мишенями и в процессе анализа экспериментальных данных впервые предложены:
 - способ расчета неупругих сечений ядро-ядерных взаимодействий и распределений нуклонов-участников, основанный на численном методе Монте-Карло;
 - численная партонная реализация этой модели;
 - формализм и численный метод расчета многочастичных бозеэйнштейновских корреляций;
 - динамическая численная модель распада взаимодействующих струн.
- 3. Впервые создана кинетическая версия МКГС для эксклюзивного описания столкновений адронов и ядер с ядерными мишенями при релятивистских и ультра-релятивистских энергиях.

В процессе разработки этой модели впервые изучено влияние вторичных перерассеяний адронов на измеряемые характеристики частиц, рожденных в протон-ядерных и ядро-ядерных неупругих столкновениях при энергии $E_{Aab} = 200 \text{ A}\Gamma$ эВ.

- 4. При исследовании эволюций систем сталкивающихся ядер были впервые получены следующие результаты:
 - рассчитаны функции распределения источников эмиссии частиц разного сорта в центральных соударениях ядер серы и массивных ядер золота при энергии $E_{aab} = 10.6 \text{ A}\Gamma$ эB;
 - предсказано образование "резонансной" или "дельта" материи в центральных столкновениях ядер золота при начальной энергии E_{Aa6} = 10.6 АГэВ;
 - предсказана значительная тормозная способность ядер свинца и рассчитаны барионные и энергетические плотности, достигаемые в центральных столкновениях ядер кислорода и золота, ядер серы и ядер свинца при начальной энергии $E_{Aab} = 60 - 200 \text{ A}\Gamma$ эВ;
 - даны предсказания о существовании коллективного поперечного потока барионов во взаимодействиях ядер свинца при $E_{Aab} = 200 \text{ A}\Gamma$ эВ и исследованы экспериментальные условия этого наблюдения;
 - проведен подробный анализ экспериментально обнаруженного усиленного рождения нейтральных странных частиц в центральных ядерных столкновениях при энергии E_{Aa6} = 200 AГэВ.

Научно - практическая значимость работы. МКГС, реализованная в виде компьютерных программ, использовалась и используется различными экспериментальными и теоретическими группами при планировании экспериментов, для моделирования экспериментальных установок и анализа экспериментальных данных во многих ведущих ядерных центрах таких, как ОИЯИ-Дубна, ЦЕРН-Женева, БНЛ-Брукхевен, ГСИ-Дармштадт, проводящих исследования по релятивистской ядерной физике.

Например, эта модель использовалась для анализа экспериментальных данных, полученных на установках ЛВЭ ОИЯИ: 2-метровой про-

4

пановой камере, 1- и 2-метровых водородных камерах и установке "ДИСК". Она выбрана в качестве одной из "стандартных" моделей для планирования экспериментов на ускорителе LHC-ЦЕРН (Швейцария).

Хотя большинство приведенных в диссертации расчетов относятся к области ультра-релятивистских энергий ($E_{Aab} > 10$ АГэВ), различные экспериментальные и теоретические группы применяли кинетическую версию МКГС для успешного описания двойных дифференциальных сечений рождения нейтронов, образования изотопов и ядерных фрагментов, подпорогового рождения η , K^{\pm} -мезонов и антипротонов, рождения лептонных пар и т. д. в ядерных реакция при промежуточных энергиях $E_{Aab} < 2$ АГэВ (ЛЯП-ОИЯИ, ГСИ-Дармштадт).

Хорошая точность описания экспериментальных данных сделала МКГС привлекательной для различных практических приложений, связанных с получением новых изотопов, созданием интенсивных нейтронных источников, трансмутацией ядерных отходов и получением энергии в бридерных реакторах.

Таким образом, в диссертации развит новый эффективный подход к исследованию динамики релятивистских ядерных столкновений. Этот подход позволяет проводить детальные расчеты взаимодействующих ядерных систем в широком диапазоне энергий, включая столкновения массивных ядер при рекордно достижимых энергиях ускорителей.

Апробация работы и публикации. Результаты, описанные в диссертации, неоднократно докладывались и обсуждались на специализированных семинарах по релятивистской адронной и ядерной физике в ЛВЭ, ЛТФ, ЛЯП и ЛВТА ОИЯИ, а также на семинарах в других отечественных и зарубежных ядерных центрах: ИФВЭ (Протвино), НИИЯФ МГУ (Москва), ПИЯФ (Гатчина), ИЯИ (Троицк), ЦЕРН (Женева, Швейцария), БНЛ (Брукхевен, США), ГСИ (Дармштадт, Германия), ЛТФ (Орсэ, Франция) и других. Эти результаты докладывались и обсуждались на физических факультетах Московского и Санкт-Петербургского университетов, в университетах Франкфурта, Гейдельберга и Ростока (Германия), Осло и Бергена (Норвегия), Сантьяго де Компостела (Испания), Нанта (Франция) и других. Результаты, описываемые в диссертации, также докладывались и обсуждались на международных конференциях, симпозиумах и собраниях физических обществ: "Международного семинара по проблемам физики высоких энергий" (Дубна, Россия - 1988), "Уравнение состояния ядерной материи" (Марсана, Италия - 1989), "Кварковая Материя" (Гатлинбург, США - 1991 и Борланге, Швеция - 1993", "Ядерная динамика" (Ки-вест, США - 1991), "Исследование плотной ядерной материи с помощью жестких процессов" (Сиэтл, США - 1991), "Ядро-ядерные взаимодействия" (Каназава, Япония - 1991), "Физика тяжелых ионов: сегодня и завтра" (Бриони, Югославия - 1991", "Корреляции и множественное рождение" (Марбург, Германия - 1991), "Физика тяжелых ионов" (Будапешт, Венгрия - 1992), "Многочастичная динамика" (Сантьяго де Компостела, Испания - 1992, Аспен, США - 1994), "Ядерная физика в северо-западной Европе" (Эдинбург, Шотландия - 1992), "Физика тяжелых ионов на AGS" (Кембридже, США - 1993), "Горячая и плотная ядерная материя" (Бодрум, Турция - 1994), "Странность и кварк-глюонная плазма" (Крета, Греция - 1994), "Странность-96" (Будапешт, Венгрия - 1996).

Результаты, описанные в диссертации, опубликованы в 30 работах, список которых приводится в конце автореферата.

Структура диссертации. Диссертация состоит из введения, четырех глав, заключения и списка публикаций и использованной литературы.

СОДЕРЖАНИЕ РАБОТЫ

Введение: Обосновывается актуальность и раскрывается содержание темы диссертации, сформулирована цель работы и представлен план диссертации, а также указан список работ, специализированных семинаров и международных конференций, где опубликованы и обсуждались результаты, приведенные в диссертации.

Первая глава: Модель кварк-глюонных струн для эксклюзивного описания адронных и ядерных взаимодействий при ультрарелятивистских энергиях.

§1.1 Введение. В этом параграфе вводятся необходимые понятия, а также рассмотрены различные аспекты теории сильных взаимодействий, которые были использованы при построении численной (Монте-Карло) МКГС для эксклюзивного описания неупругих столкновений адронов и ядер при ультра-релятивистских энергиях.

В параграфе 1.2 рассмотрена созданная МКГС для эксклюзивного описания неупругих адронных взаимодействий при ультра-релятивистских

энергиях. Эта модель соответствует выбору специального класса диаграмм топологического разложения в КХД [8], а именно, выбору цилиндрических диаграмм, топология которых определяется числом границ b = 2 и числом ручек h = 0, 1, 2, Для определения вероятности образования *n* пар кварк-глюонных струн в неупругом рассеянии адронов с энергией в их системе центра масс \sqrt{s} и с прицельным параметром b используется реджнонная эйкональная модель [7]. Описан выбор импульсных распределений валентных и морских кварков, асимптотики которых определяются из анализа двухреджионных диаграмм для вычисления адронных инклюзивных сечений [9]. Рассмотрена предложенная процедура получения случайных чисел-значений импульсов кварков в соответствии с этим выбором. Рассмотрено моделирование образования частиц при распаде кварк-глюонных струн. Предложенная процедура моделирования распада кварк-глюонных струн использует рекурсивную каскадную модель, впервые примененную Филдом и Фейнманом для описания фрагментации отдельных кварков [12], и асимптотики функций фрагментации лидирующих кварков, которые найдены из анализа трехреджионных диаграмм для вычисления адронных инклюзивных сечений [10]. Приведены значения параметров, использующиеся при расчетах распада кварк-глюонных струн.

В параграфе 1.3 приведено обобщение МКГС на случай эксклюзивного описания неупругих ядерных взаимодействий при ультра-релятивистских энергиях. Сформулирована численная (Монте-Карло) процедура, которая дает возможность определить число нуклонов-участников и возбужденных кварк-глюонных струн при неупругом столкновении ядер. Эта процедура также позволяет рассчитывать сечения неупругих ядро-ядерных столкновений. Приведены примеры расчетов различных распределений кратности взаимодействия нуклонов и неупругих сечений взаимодействия ядер.

В параграфе 1.4 рассмотрена численная реализация партонной формулировки МКГС и обсуждается пространственно-временная картина рождения частиц в неупругих столкновениях адронов и ядер. Предполагается, что взаимодействие между ядрами с числом нуклонов A + Bсводится к взаимодействию между отдельными партонами. При этом амплитуда упругого рассеяния вперед при фиксированном прицельном параметре b дается выражением:

$$iA(b) = \sum_{N,M} w_N^{(A)} w_M^{(B)} < \prod_{i=1}^N \prod_{k=1}^M (1+ia_{ik}) >_{N,M}$$
(1)

Скобки < ... > N.M обозначают усреднение по конфигурациям с числом N(M) партонов в снаряде (мишени), что определяется интегрированием по долям начального импульса уносимых партонами x; и прицельным параметрам партонов b_i с весовыми функциями распределения партонов $\rho_{MN}^{A,B}(b, x_i, b_i)$. Амплитуда a_{ik} описывает взаимодействие *i*-го партона мишени с k-партоном снаряда и зависит от их энергии в системе центра масс и относительного прицельного параметра. Используя амплитуду (1) и пренебрегая многократными партонными взаимодействиями, можно получить вероятность взаимодействия с определенным числом неупругих партонных столкновений, что позволяет построить численную модель для ядерных взаимодействий. При этом вероятности партонных конфигураций $w_{N,M}^{(A,B)}$, амплитуда a_{ik} и функции распределения партонов выражаются через померонные параметры [13]. Приведены параметры модели, которые выбраны из сравнения расчетной и экспериментальной энергетических зависимостей сечения неупругого взаимодействия нуклонов.

В модели сделано предположение, что адроны образуются путем возбуждения и распада так называемых "уо-уо" струн [5], и разработана численная динамическая модель распада этих струн. При условии, что разрывы "уо-уо" струны с массой M_S и коэффициентом натяжения κ приводят к рождению адронов с энергиями E_j и продольными импульсами p_{z_j} , можно найти соответственно времена и продольные координаты точек рождения адронов:

$$t_i = \frac{1}{2k} [M_S - 2\sum_{j=1}^i p_{z_j}], x_i = \frac{1}{2k} [M_S - 2\sum_{j=1}^i E_j].$$
(2)

Индекс i = 1, 2, 3, ... нумерует точки разрывов струны.

В параграфе 1.5 приведено сравнение результатов моделирования с помощью МКГС ультра-релятивистских адронных и ядерных взаимодействий с экспериментальными данными. Проведенный при двух энергиях столкновения: $\sqrt{s} = 19.4$ АГэв и $\sqrt{s} = 200$ АГэВ - сравнительный анализ (анти)протон-протонных, протон-ядерных и ядро-ядерных неупругих взаимодействий показал, что МКГС дает разумное описание

8

различных экспериментальных характеристик этих реакций. К несомненным достоинствам модели относится то, что расчеты столкновений даже тяжелых ядер не требуют больших затрат компьютерных ресурсов. Это делает модель полезной и эффективной при изучении условий проведения экспериментов. Здесь также рассмотрены результаты модельных расчетов столкновений ядер золота с целью выработки программ экспериментальных исследований на ускорителе SPS-ЦЕРН и строящемся ядерном коллайдере RHIC-БНЛ (США). Тем не менее данная версия МКГС является слишком упрощенной, чтобы претендовать на детальное количественное описание адронных и ядерных реакций в этой области энергий и требует дальнейшего развития.

В параграфе 1.6 описывается формализм и метод расчета многочастичных бозе-эйнштейновских корреляционных функций в рамках МКГС и других моделей-генераторов искусственных событий ядерных столкновений. Идея метода состоит в предварительном вычислении функции F_{ij} (фурье-образ функции источника частиц) для двух тождественных бозонов i и j:

$$F_{ij} = \left\langle \exp(iq_{ij}r_k) \right\rangle_{\vec{p}_{ij}}.$$
 (3)

В выражении (3) скобки означают усреднение, которое должно быть сделано, используя точки фазового пространства $\{k_k, r_k\}$, полученные в рамках классической модели-источника эмиссии тождественных бозонов, и удовлетворяющих условию $\vec{k}_k \in \{\vec{p}_{ij} - \Delta \vec{p}/2, \vec{p}_{ij} + \Delta \vec{p}/2\}$. Величины $\vec{p}_{ij} = \frac{1}{2}(\vec{k}_i + \vec{k}_j)$ и $q_{ij} = k_i - k_j$ определяются соответственно через 3- и 4-импульсы частиц *i* и *j*. Знание функции F_{ij} дает возможность построить *n*-частичные корреляционные функции и кумулянты $K_n(\vec{p}_1, \vec{p}_2, ..., \vec{p}_n)$. Необходимый для учета эффектов интерференции статистический вес события с *n* тождественными бозонами может быть вычислен с помощью рекуррентных соотношений:

$$\omega(n) = \sum_{j=0}^{n-1} C_j^{n-1} K_{j+1} \omega(n-j-1), \qquad (4)$$

где C_j^{n-1} -биномиальные коэффициенты, K_{j+1} - проинтегрированные по импульсам частиц кумулянты порядка j+1 и $\omega(0) = \omega(1) = 1$, $\omega(n) = 0$ для n < 0.

Здесь описан формализм учета влияний взаимодействий в конечном состоянии, в частности, кулоновского взаимодействия на корреляционные функции. Приводятся результаты расчетов с помощью МКГС 2- и 3частичных корреляционных функций π^+ -мезонов для центральных столкновениях ядер серы при энергии $E_{Aab} = 200$ АГэВ, а также рассматриваются примеры расчетов влияния многочастичных бозеэйнштейновских корреляций на распределения по множественности нейтральных пионов и их одночастичные и двухчастичные спектры.

§1.7 Выводы. Кратко описаны достоинства, недостатки и пути дальнейшего совершенствования разработанной МКГС.

Вторая глава: Исследование механизмов и описание рождения частиц в адронных взаимодействиях при высоких энергиях.

§2.1 Введение. Обсуждается возможность построения МКГС для эксклюзивного описания взаимодействий адронов в очень широкой области энергий от порога рождения пионов и до энергий, достижимых в коллайдерных экспериментах. Идея такого расширения состоит в привлечении дополнительных диаграмм топологического разложения, представляющих новые механизмы рождения частиц, что позволяет не только расширить область применимости модели, но и улучшить качество описания экспериментальных данных.

В параграфе 2.2 описано включение в МКГС механизма образования жестких адронных струй в адронных и ядерных взаимодействиях при ультра-релятивистских энергиях. Образование жестких адронных струй в МКГС обусловлено взаимодействием глюонов с большой передачей импульса $Q^2 > 1(\Gamma \mathfrak{I} \mathfrak{G}/c)^2$. Вклад жестких глюон-глюонных столкновений в сечение неупругого взаимодействия адронов рассчитывается в рамках реджионной эйкональной модели с обменом жесткими померонами [16]. Моделирование жесткого столкновения глюонов основывается на вычисленном в рамках пертурбативной КХД инклюзивном сечении образования двух жестких струй. Для моделирования излучения глюонов и кварков рассеянным виртуальным глюоном или кварком (антикварком) используется алгоритм, предложенный в работе [17]. Предложена процедура адронизации кварков (антикварков) и глюонов посредством образования и распада бесцветных адронных кластеров. Приведены результаты расчетов pp- и pp-столкновений при коллайдерных энергиях и, в частности, показано, что включение жестких столкновений глюонов в МКГС даст возможность описать экспериментальные зависимости среднего поперечного импульса легких адронов от множественности заряженных частиц при различных начальных энергиях.

В параграфе 2.3 приведены результаты применения МКГС для изучения особенностей рождения частиц при коллайдерных энергиях. Показано, что модель воспроизводит основные черты множественного рождения частиц при этих энергиях. В частности, МКГС описывает экспериментальные распределения по множественности заряженных частиц, нарушение КНО-скейлинга и энергетические зависимости экспериментальных средних множественностей частиц разного сорта. Модель также в состоянии воспроизвести длиннодействующие корреляции между средними множественностями заряженных частиц, измеренными в передней и задней полусферах. МКГС объясняет рост "плато" в быстротном распределении заряженных частиц и поведение средних поперечных импульсов для частиц разного сорта ростом начальной энергии. Предсказания модели согласуются с измеренными заряженных частиц.

В этом параграфе также продемонстрированы возможности МКГС описывать процессы одновершинной дифракционной диссоциации при высоких энергиях.

В параграфе 2.4 обсуждаются и сравниваются с экспериментальными данными результаты моделирования пион-нуклонных и каон-нуклонных неупругих взаимодействий при $E_{xab} = 250$ ГэВ. Для сравнительного анализа характеристик частиц, рожденных в мезон-нуклонных столкновениях, приведены результаты моделирования неупругих *pp*столкновений. В этом параграфе рассмотрен учет в МКГС предасимптотических механизмов [18] рождения частиц, связанных с планарными диаграммами и диаграммами неразвитого цилиндра в топологическом разложении. Показано, что модель довольно успешно воспроизводит различные экспериментальные распределения частиц для всех трех реакций.

В параграфе 2.5 рассмотрена созданная численная (Монте-Карло) модель для описания аннигиляции антибарионов на барионах при высоких энергиях и проведен сравнительный анализ неупругих $\bar{p}p$ - и ppстолкновений. В результате моделирования и сравнения с данными экспериментов распределений множественности заряженных частиц, инклюзивных спектров пионов и других характеристик рожденных мезонов установлено, что при высоких энергиях отсутствует единый механизм *pp*-аннигиляции. Вклад в сечение этого процесса дают диаграммы с образованием одной, двух, трех и более кварк-глюонных струн, сечения которых имеют различные зависимости от начальной энергии [18]. Найдены относительные вклады этих диаграмм в сечение процесса *pp*-аннигиляции. Установлено, что структурные функции кварков в нуклонах в процессе *pp*-аннигиляции, когда в нуклоне разрушается дикварк, несимметричны.

Проведенный в рамках МКГС сравнительный анализ экспериментальных данных, полученных в $\bar{p}p$ - и pp-столкновениях при начальных импульсах от 12 до 100 ГэВ/с, показал, что МКГС довольно успешно воспроизводит основные свойства этих взаимодействий. В результате моделирования установлено, что различия в спектрах мезонов в pp- и $\bar{p}p$ -взаимодействиях в основном связаны с механизмами $\bar{p}p$ аннигиляции. Различия спектров барионов обусловлены вкладами планарной (дает вклад только в $\bar{p}p$) и двухчастичной (дает вклад только в pp) предасимптотических диаграмм [18].

В параграфе 2.6 рассмотрена модификация МКГС для эксклюзивного описания взаимодействия адронов при промежуточных энергиях $\sqrt{s} < 3-5$ ГэВ. Приведены примеры описания моделью зависимостей от начальных импульсов парциальных сечений рождения частиц в pp-, $\bar{p}p$ -, $\pi^{\pm}p$ - и $K^{\pm}p$ -столкновениях.

Вклады отдельных механизмов рождения частиц в сечение неупругого взаимодействия адронов при этих энергиях были найдены из описания парциальных сечений рождения стабильных нестранных частиц. При этом вычисленные сечения рождения странных частиц и резонансов являются предсказаниями модели, которые согласуются с экспериментальными данными.

Здесь также приводятся параметризации сечений резонансных процессов $\pi N \to \Delta$ и $\pi \pi \to \rho$. Рассмотрено вычисление в модели однопионного обмена [14] полных и дифференциальных сечений для реакций поглощения Δ -резонансов нуклонами: $\Delta + N \to NN$. Описан расчет этих сечений с применением принципа детального баланса к экспериментальным дифференциальным сечениям обратных реакций.

§2.7 Выводы. Подведены итоги исследований механизмов рождения частиц в адронных взаимодействиях при высоких энергиях. Проведено сравнение МКГС - генератора искусственных событий неупругих столкновений адронов и ядер с дуальной партонной моделью [9] и

12

VENUS-моделью [15].

Третья глава: Кинетическая версия МКГС для описания эволюции адрон-ядерных и ядро-ядерных взаимодействий при релятивистских и ультра-релятивистских энергиях.

§3.1 Введение. Кратко рассматривается кинетических подход к описанию эволюции релятивистских ядерных столкновений и приведены примеры различных кинетических моделей. Рассмотрены численные методы решения кинетических уравнений и построения наблюдаемых и ненаблюдаемых величин-характеристик ядерной реакции, используя одночастичные функции распределения адронов. Обсуждаются вопросы перехода релятивистской системы в равновесное состояние.

В параграфе 3.2 сформулирована и обсуждается связанная система уравнений кинетической версии МКГС. Эти уравнения описывают эволюцию релятивистских ядерных взаимодействий в терминах одночастичных функций распределения адронов и имеют следующую структуру:

$$p_{\mu}\partial_{\mu}f_i(x,p) = \sum_j C_{coll}(f_i, f_j) + \sum_k R_{k \to i}(f_k), \qquad (5)$$

где $f_i(x, p)$ -одночастичная функция распределения частиц сорта *i*. В уравнении (5) предполагается, что образование адрона сорта *i* с 4импульсом $p = (\vec{p}, E)$ и 4-координатой $x = (\vec{x}, t)$ либо в результате двухчастичного столкновения, которому отвечает первый член в правой части уравнения, либо в результате распада резонанса, что описывается вторым членом в правой части уравнения. Они сформулированы для отдельных групп адронов: нуклонов-спектаторов из ядра-снаряда, нуклонов-спектаторов из ядра-мишени и адронов-участников, включающих стабильные адроны и резонансы. Модель рассматривает более 70 различных видов адронов. Столкновительные члены уравнений содержат взаимодействие между всеми группами адронов, а также распад резонансов. В этих уравнениях учтено, что образование адронов происходит в течении времени их формирования.

В параграфе 3.3 подробно изложена численная (Монте-Карло) процедура нахождения решений связанной системы кинетических уравнений. Описано моделирование начальных состояний сталкивающихся ядер. Рассмотрен критерий столкновения адронов и приведен выбор полных, упругих и других сечений взаимодействия адронов. Рассмотрено моделирование упругого рассеяния адронов (моделирование неупругих адронных столкновений описано в предыдущей главе) и распада резонансов. Описан учет принципа Паули для нуклонов, образующихся в результате взаимодействия частиц и распадов Δ -резонансов. Обсужден выбор одного из основных параметров модели - собственного времени формирования адронов.

В параграфе 3.4 обсуждаются результаты изучения влияния вторичных перерассеяний адронов на наблюдаемые характеристики частиц, рожденных в ультра-релятивистских ядерных взаимодействиях. При расчетах, приведенных в этом параграфе, собственное время формирования адронов рассматривалось как свободный параметр. Было найдено, что для успешного описания большой совокупности экспериментальных данных в протон-ядерных и ядро-ядерных столкновениях, которые получены при доступных максимальных энергиях $E_{Aab} = 200 \text{ A}\Gamma$ -эВ, необходимо ввести два значения величины собственного времени формирования адронов: $\tau_{lid} = 0 \text{ Фм/с и } \tau_M = 1 \text{ Фм/с соответственно для лидирующих адронов, содержащих валентные кварки начальных адронов, и для вновь рожденных адронов.$

Показано, что в области быстрот фрагментации ядер мишени и снаряда наблюдаемые характеристики адронов в существенной степени определяются столкновениями между рожденными адронами и нуклонами-спектаторами, которые были названы процессом холодного каскадирования. Горячее каскадирование, отвечающее взаимодействию между рожденными частицами, влияет на наблюдаемые характеристики только в центральной области быстрот. Это влияние не столь ярко выражено как влияние холодного каскадирования. Однако оно может менять импульсные распределения адронов и их состав, поэтому горячее каскадирование может приводить систему в тепловое или химическое равновесие, что будет исследоваться в четвертой главе. Горячее каскадирование происходит в основном за пределами невозмущенных ядер. Это позволяет понять, почему поперечный размер эффективного источника пионов может быть больше размера бомбардирующего ядра, что обнаружено в экспериментах на ускорителе SPS-LIEPH.

В параграфе 3.5 приведено детальное сравнение предсказаний кинетической версии МКГС с экспериментальными данными. При проведении представленных здесь расчетов не использовались эмпирически выбранные значения параметра собственного времени формирования адронов, так как МКГС для моделирования неупругих адронных столкновений дает возможность определить координаты и времена рождения вторичных адронов (смотри параграф 1.4). Хорошее описание экспериментальных данных достигается, если предположить, что лидирующие адроны могут в течение времени их формирования взаимодействовать с другими адронами, но с сечениями равными сечениям взаимодействия аддитивных валентных кварков $\sigma_{qh}(s)$ (часть полного сечения взаимодействия адронов $\sigma_{hh}(s)$, определяемая числом этих кварков).

Из сравнения с экспериментальными данными следует, что модель дает хорошее описание различных характеристик протонов, заряженных пионов и каонов, рождающихся в протон-ядерных и ядро-ядерных столкновениях при энергии ускорителя AGS-БНЛ ($E_{Aa\delta} = 14.6 \text{ A}\Gamma$ эВ). Найдено, что перерассеяние адронов и, в частности, взаимодействие мезонных резонансов может усилить относительный выход положительно заряженных каонов в центральных Si + Au столкновениях по сравнению с их относительным выходом в p + Be взаимодействиях.

Показано, что модель также успешно воспроизводит большую совокупность экспериментальных данных по рождению частиц в ядерных столкновениях при энергии ускорителя SPS-ЦЕРН ($E_{Aa\delta} = 200$ АГэВ). В частности, модель успешно воспроизводит множественности, быстротные распределения и распределения по поперечному импульсу положительно и отрицательно заряженных частиц в протон-ядерных взаимодействиях. Модель хорошо описывает распределения по быстроте и поперечному импульсу нейтральных странных частиц в p + Sстолкновениях. Моделью воспроизводятся быстротные распределения и распределения по поперечной массе (поперечному импульсу) протонов и отрицательно заряженных частиц (в основном пионов) в центральных взаимодействиях ядер серы.

В параграфе 3.6 обсуждается исследование с помощью кинетической версии МКГС пространственно-временных характеристик источников рождения частиц в центральных столкновениях ядер серы и ядер золота при начальных импульсах $p_{Aa\delta} = 11.6$ АГэВ/с. Проведен анализ условий "размораживания" частиц, т. е. когда и где частицы потеряли связь с системой других частиц. Приведены рассчитанные и параметризованные распределения источников эмиссии частиц в продольных (z) и поперечных направлениях (x, y). В частности, при больших $r_T = \sqrt{x^2 + y^2} > R$, где *R*-радиус ядра, пространственные распределения

ния точек эмиссии пионов фитируются суммой гауссовой и экспоненциальной функций

$$\frac{1}{r_T} \frac{dN(r_T)}{dr_T} = C_1 \exp\left(-r_T^2/2R_G^2\right) + C_2 \exp\left(-r_T/R_H\right)$$
(6)

с радиусом $R_G = 2$ (3.45) Фм и величиной $C_1 = 47$ (192) Φ_M^{-2} для S + S (Au + Au) столкновений. Параметр наклона в экспоненциальном распределении $R_H = 6.4$ (7.0) Фм с выбором $C_2 = 1.0$ (16) Φ_M^{-2} для S + S (Au + Au) определяет радиус гало, образованного от распада долгоживущих резонансов. Гало начинается при $r_T = 7$ Фм и 12 Фм соответственно для S + S и Au + Au. Показано, что даже для тяжелой системы Au + Au область испускания частиц является протяженной как в пространстве, так и во времени, что противоречит предположениям, используемым в гидродинамических моделях, о резком "размораживании" частиц. Так, пионы и каоны испускаются непрерывно в ходе всей эволюции системы, в то время как для нуклонов и лямбда барионов имеет место их подавление на ранней стадии реакции. Найдено, что имеет место "очередность" испускания: сначала испускаются каоны, затем гипероны и наконец нуклоны.

§3.7 Выводы. Кратко сформулированы основные черты кинетической версии МКГС и подведены итоги сравнения результатов расчета с экспериментальными данными. Проведено сопоставление этой модели с RQMD-моделью [11].

Четвертая глава: Применение кинетической версии МКГС для изучения динамики ультра-релятивистских столкновений массивных ядер.

§4.1 Введение. Кратко рассмотрены уравнения состояния и условия фазового перехода равновесной ядерной материи в кварк-глюонную плазму. Приведен пример вычисления уравнения состояния ядерной материи с помощью кинетической модели [19]. Рассмотрены способы оценки тормозной способности ядер и плотности энергии, достигаемой в ядерных столкновениях. Обсуждаются измерения коллективных потоков ядерного вещества в релятивистских ядерных столкновениях с целью получения информации о свойствах плотной ядерной материи. Рассматриваются эффекты усиления рождения странных частиц в этих столкновениях, которые могут сигнализировать о переходе адронной материи в кварк-глюонную фазу.

В параграфе 4.2 описаны результаты изучения динамики взаимодей-

ствия ядер золота при энергии ускорителя AGS-БНЛ. Здесь и далее обсуждаются расчеты, проведенные в системе равных скоростей сталкивающихся ядер, которая является также системой центра масс для симметричных ядер. Показано, что для центральных столкновений ядер золота при энергии $E_{aab} = 10.6$ АГэВ кинетическая версия МКГС достаточно хорошо описывает экспериментальные данные об образовании протонов. В частности, она воспроизводит "колоколообразную" форму быстротного распределения и предсказывает практически одинаковый с экспериментальным обратный наклон спектра протонов (около 200 МэВ) по поперечной кинетической энергии.

Пионы, рожденные в модели из различных источников, образуют вогнутую форму поперечного спектра, которая была найдена экспериментально для отрицательно заряженных пионов. Как показывают расчеты, основным источником образования пионов с малыми поперечными импульсами является распад Δ -резонансов, в то время как пионы от распада векторных мезонов уносят значительно больший поперечный импульс.

Подробно рассмотрена кинетика адронных реакций с образованием и поглощением Δ -резонансов и указано на возможное образование долгоживущей резонансной или Δ материи. Под которой понимается состояние ядерного вещества, когда длительное ($\approx 6 \ \Phi_M/c$) время по сравнению с временем жизни свободных Δ -резонансов значительная часть (до 30%) барионов находятся в Δ состояниях с плотностью, превышающей нормальную ядерную плотность в объеме $\approx 100 - 150 \ Pmu M^3$. В модели (смотри рис. 4.2.1) образование долгоживущей Δ материи является результатом огромного числа последовательных возбуждений и распадов Δ -резонансов в различных адронных реакциях, скорости которых могут превышать 60 реакций за 1 $\ \Phi_M/c$. В силу большого значения сечения наиболее важным для регенерации Δ -резонансов является процесс $\pi N \rightarrow \Delta$.

Помимо измерения распределений по поперечному импульсу пионов в области малых импульсом и различных интервалах быстрот, которые наиболее чувствительны к образованию и поглощению Δ резонансов, предлагается изучать характеристики тяжелых частиц, в частности, антипротонов, так как реакции с участием Δ -резонансов могут усиливать их рождение (смотри также [20]).

Из расчетов эволюции плотности барионов следует, что она может в

4÷5 раз превышать нормальную барионную плотность $n_0 \approx 0.14 \Phi M^{-3}$. Рассчитанная мезонная плотность также высока и достигает значения n_0 . Рассчитанная плотность энергии в течение 2 $\Phi M/c$ превышает критическую (для фазового перехода в кварк-глюонную плазму) плотность энергии приблизительно равную $3\Gamma \partial B/\Phi M^3$.

Рис. 4.2.1: Среднее число барионов, рожденных в центральных (b = 1 Фм) ядро-ядерных столкновениях при 10.6 АГэВ как функция времени. Черные точки и черные треугольники представляют соответственно полное число барионов и дельт, рожденных в центральных Au+Au столкновениях. Открытые треугольники представляют среднее число дельт, рожденных в центральных столкновениях Au+Au, в случае, когда сечение пион-нуклонного взаимодействия бралось равным нулю. Открытые и черные ромбики представляют число рожденных дельт (деленное на 10) соответственно в центральных Si + Au и Si + Si столкновениях. Прямые линии - результат фитирования распределений от t = 6 Фм/с до последних точек.

В силу большой скорости адронных столкновений при $t \leq 6 \, \Phi_{\rm M}/c$ кажется, что система может достичь химического равновесия, однако сравнение равновесной и рассчитанной плотностей мезонов противоречит этому предположению. Как показывают расчеты, "сброс" начальной энергии происходит очень быстро, за время $t \leq 4 \, \Phi_{\rm M}/c$ от первого адронного столкновения. Затем в основном идут упругие реакции, которые эффективны в течение $\approx 13 \, \Phi_{\rm M}/c$ и могут обеспечить тепловое

равновесие при временах $12 - 14 \, \Phi_{\rm M}/c$, когда одномерное расширение системы сменяется изотропным. Сделана оценка температуры $T \approx 150$ МэВ этого состояния.

В параграфе 4.3 описаны результаты изучения динамики взаимодействия ядер при энергиях ускорителя SPS-ЦЕРН. Прежде всего обсуждаются расчеты быстротных распределений протонов для центральных столкновений ядер свинца при энергиях $E_{Aa\delta} = 160$ и 200 АГэВ, которые используются для оценки тормозной способность ядер. Данные расчеты, пример которых приведен на рис. 4.3.1, указывают на значительные потери начальных продольных импульсов нуклонов. Предварительные экспериментальные данные [21] подтверждают это предсказание модели.

Рис. 4.3.1: Предсказания МКГС для быстротных распределений протонов, рожденных в столкновения ядер свинца с прицельным параметром $b = 4 \, \Phi_{\rm M}$ (сплошная гистограмма и пунктирная гистограмма) и $b = 10 \, \Phi_{\rm M}$ (штрих-пунктирная гистограмма) при начальной энергии $E_{{}_{Aa\delta}} = 160 \, {}_{\rm A}$ ГэВ. Пунктирная гистограмма рассчитана в пренебрежении вторичными взаимодействиями.

Как и при энергиях AGS-БНЛ, значительная доля энергии пучка идет на рождение частиц. При энергиях SPS-ЦЕРН важную роль в объяснении тормозной способности ядер играют взаимодействия "несформированных" барионов, содержащих валентные кварки и дикварки начальных барионов, которым разрешено взаимодействовать соответ-

t,	$< ho_B>/ ho_0$	$<\epsilon_{tot}>,$	$<\epsilon_{lat}>,$	N _{coll}	N _{part}
Фм/с		ГэВ/Фм ³	ГэВ/Фм ³		
0.30	2.7	3.25	1.79	9.8	44
0.45	4.8	8.18	5.53	42	203
0.60	8.0	13.8	7.06	132	567
1.05	16.0	20.1	8.11	1090	2590
1.35	13.9	16.8	6.31	2340	3370
2.25	6.1	5.29	3.57	7770	3838
4.05	2.6	2.03	1.87	18900	4030

Таблица 4.3.1: Средняя барионная плотность $< \rho_B > /\rho_0$, плотность полной энергии $< \epsilon_{tot} >$, плотность скрытой энергии $< \epsilon_{lat} >$, число всех столкновений, N_{coll} и число всех участников N_{part} в центральном (b = 0.2 Фм) Pb + Pb взаимодействии при энергии $E_{Aab} = 160$ АГэВ, вычисленное в МКГС как функции времени t.

ственно с сечениями взаимодействия аддитивных валентных кварков в течение времен формирования.

Рассчитанные распределения по поперечному импульсу отрицательно заряженных частиц в этой реакции имеют четко выраженную двухкомпонентную структуру, появление которой, как и при более низких энергиях, связано с вкладами от распадов различных резонансов.

В этом параграфе представлены подробные расчеты эволюций барионных и энергетических плотностей в центральных столкновениях O + Au при энергиях $E_{Aa\delta} = 60$ АГэВ и $E_{Aa\delta} = 200$ АГэВ и центральных столкновениях Pb + Pb при энергии $E_{Aa\delta} = 200$ АГэВ. Показано, что локальная плотность полной энергии, достигаемая в центральных O+Au столкновениях при энергии 200 АГэВ, превышает значение критической плотности энергии ($3\Gamma \mathfrak{s} e/\Phi \mathfrak{m}^3$). Однако эта стадия взаимодействия является сильно неравновесной, а время прохождения ядерной системой этой стадии слишком коротким - менее 1 $\Phi m/c$. Как показывают расчеты ситуация с точки зрения фазового перехода улучшается в центральных S+S столкновениях и наиболее благоприятные условия для фазового перехода могут быть достигнуты в центральных столкновениях ядер свинца. Модель предсказывает (смотри таблицу 4.3.1), что на протяжении $\approx 2 \Phi m/c$ превышается критическая для фазового перехода барионная плотность ($\approx 5n_0$). При этом плотность полной

энергии, значительная часть (ϵ_{lat}) которой сосредоточена в несформированных адронах (в струнах или кусках струн), также очень высока.

В параграфе 4.4 приведены результаты вычислений поперечного потока барионов в столкновениях ядер свинца при различных энергиях. Обсуждаются возможности экспериментального обнаружения поперечного потока в реакции Pb + Pb при энергии $E_{Aab} = 160 \text{ АГэВ}$. Максимальная величина поперечного потока барионов, предсказываемая моделью для этой реакции при прицельном параметре b = 4 Фм, составила ≈ 50 МэВ/с (смотри рис. 4.4.1).

2.1

Рис. 4.4.1: Поперечный поток $< p_x > /A$ рассеянных протонов вычисленный в МКГС для реакции Pb + Pb при 160 АГэВ для прицельного параметра b = 4 Фм. Индексы P и T обозначают теоретические быстроты для ядер снаряда. Пунктирная линия показывает результаты расчетов без учета вторичных перерассеяний.

Здесь приведены результаты дополнительных расчетов поперечного потока барионов в рамках гидродинамической модели с двумя уравнениями состояния [22]. Гидродинамическая модель предсказывает значительно большие, чем МКГС, максимальные величины поперечного потока: 400 МэВ/с и 200 МэВ/с соответственно для адронного уравнения состояния и уравнения состояния кварк-глюонной плазмы. Как показали оценки возможности экспериментального определения плоскости ядерной реакции, предсказываемый МКГС, эффект потока находится на грани детектируемости и требует идентификации протонов

Реакция	$< K_{S}^{0} >$	$<\Lambda>$	$<\bar{\Lambda}>$
NA35 p + p	0.17 ± 0.01	0.095 ± 0.010	0.013 ± 0.004
$MK\Gamma C p + p$	0.21	0.15	0.015
NA35 p + S	0.28 ± 0.03	0.22 ± 0.02	0.028 ± 0.004
$MK\Gamma C p + S$	0.34	0.24	0.023
NA35 S + S	10.7 ± 2.0 ·	8.2 ± 0.9	1.50 ± 0.4
$MK\Gamma CS + S$	7.4	4.7	0.35
$MK\Gamma C Pb + Pb$	93.4	49.6	1.73

Таблица 4.5.1: Сравнение экстраполированных к полному фазовому объему множественностей нейтральных странных, полученных в эксперименте NA35 [24], с предсказаниями МКГС для p + p, p + S и центральных S + S и Pb + Pb столкновений

в большом телесном угле.

В параграфе 4.5 дан подробный анализ рождения нейтральных странных частиц в центральных ядерных столкновениях при энергии E_{Aab} = 200 АГэВ. С использованием МКГС были рассчитаны различные распределения Л- и Л-барионов и отрицательно заряженных частиц, рожденных в p+W и центральных столкновениях S+W, а также различные распределения этих частиц и нейтральных каонов в центральных S + S и Pb + Pb-столкновениях. Данные вычисления сравнивались соответственно с результатами экспериментов [23] и [24]. Было показано, что для реакции *p*+*W* МКГС хорошо воспроизводит относительный по отношению к рождению отрицательно заряженных частиц выход Л- и Л-барионов. Однако при приблизительно корректном описании наклонов поперечных спектров для реакций p + W и S + W модель почти в 2 раза недооценивает относительный выход Λ и $\bar{\Lambda}$ в центральных столкновениях S + W. При этом отношение $\Lambda/\bar{\Lambda}$ правильно воспроизводится моделью. В таблице 4.5.1 представлены средние множественности нейтральных странных частиц. Из таблицы 4.5.1 видно, что в центральных S + S столкновениях модель занижает по сравнению с экспериментальными множественности Л- и К-частиц примерно в 2 раза, а А-частиц примерно в 4 раза. В тоже время она правильно описывает формы экспериментальных распределений по быстроте и по поперечному импульсу для этих адронов. Неудача модели в объяснении множественностей нейтральных странных частиц при энергии ускорителя SPS-ЦЕРН может свидетельствовать о каких-то существенных изменениях в механизме рождения частиц.

В параграфе 4.6 описана разработанная динамическая численная модель распада взаимодействующих кварк-глюонных струн. Приведены, рассчитанные в рамках МКГС (использовалась версия описанная в параграфе 1.4), плотности кварк-глюонных струн для центральных p+p, S+S и Au + Au столкновений при ультра-релятивистских энергиях. В частности, она составляет 9.8 струн на ΦM^2 для центральных столкновений Au + Au при $E_{Aa6} = 200$ АГэВ. Кварк-глюонные струны сильно перекрываются не только в поперечной плоскости, но и по быстроте, что ставит под сомнение использование в МКГС независимого распада отдельных струн. Согласно предложенной картине взаимодействия струн рассматривались только парные взаимодействия обычных триплетных струн, что являлось причиной возбуждения триплетных струн (в основном между дикварками) или формированием секстетных и октетных струн, образованных цветовыми источниками в SU(3) представлениях соответствующих размерностей ([3]), ([6]) и ([8]).

Для постоянного цветного поля, которое создается двумя противоположными цветовыми зарядами \vec{Q} and $-\vec{Q}$ (стрелки обозначают 8векторы в SU(3)), вероятность родить пару партонов с цветовыми зарядами \vec{C} и $-\vec{C}$, ароматом f и массой M_f в единицу времени и на единицу длины струны, имеющей поперечную площадь A_t , определяется формулой:

$$w_f(\vec{Q}, \vec{C}) = (1/4)A_t(b\vec{Q}\vec{C})^2 \exp(-M_f^2/b\vec{Q}\vec{C}).$$
(7)

Параметр *b* связан с коэффициентом натяжения струны κ согласно выражению $\kappa = (1/2)\pi bQ^2$. Данная вероятность, которая использовалась при моделировании распада новых струн, определена по аналогии с выражением Швингера для вероятности родить e^+e^- пару в постоянном электрическом поле [25].

Как показали расчеты, взаимодействие струн должно приводить к наблюдаемым эффектам при рождении частиц в центральных ядроядерных соударениях. Здесь предсказывается подавление множественности образованных пионов, повышенный выход странных барионов и антибарионов и изменение величин длиннодействующих корреляций множественностей.

§4.7 Выводы. Подводится итог изучения с помощью кинетической версии МКГС динамики столкновений массивных ядер при энергиях

ускорителей AGS-БНЛ и SPS-ЦЕРН.

Заключение: Кратко сформулированы основные результаты, описанные в диссертации, рассмотрена их новизна и научно-практическая значимость.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ

1. Впервые создана модель кварк-глюонных струн для эксклюзивного описания релятивистских адронных столкновений.

Эта феноменологическая модель создана в рамках общего подхода к описанию адронных взаимодействий, основанного на идее топологического разложения в КХД, дополненной общепринятыми теоретическими концепциями такими, как реджевское поведение амплитуды рассеяния адронов, партонная структура адронов и модель релятивистской струны.

В данной модели механизмы взаимодействия адронов связываются с выбором определенных диаграмм топологического разложения.

- В рамках созданной модели проведены исследования механизмов:
 - множественного рождения адронов, включающих мезонные и барионные резонансы, странные и очарованные частицы, в pp-, , pp-, π[±]p- и K[±]p-взаимодействиях при высоких энергиях;
 - жесткого рассеяния и излучения глюонов при коллайдерных энергиях;
 - антипротон-протонной аннигиляции в областях импульса налетающей частицы 12-100 ГэВ/с и при этом впервые создана численная модель (как часть МКГС) для эксклюзивного описания барион-антибарионной аннигиляции при высоких энергиях;
 - дифракционной диссоциации сталкивающихся частиц при высоких энергиях.

С целью расширения области применимости МКГС и улучшения качества описания экспериментальных данных была предложена:

 модификация МКГС для описания взаимодействия адронов при промежуточных энергиях. На основе анализа большой совокупности экспериментальных данных показано, что разработанная МКГС дает наиболее полное среди аналогичных численных (Монте-Карло) моделей феноменологическое описание основных свойств неупругих мягких адронных взаимодействий при высоких энергиях, что является основой для широкого использования модели в качестве генератора искусственных событий, столкновения адронов.

2. Созданная МКГС обобщена на случай эксклюзивного описания столкновений адронов и ядер с ядерными мишенями при ультрарелятивистских энергиях.

В процессе обобщения МКГС и в процессе анализа экспериментальных данных в рамках этой модели впервые предложены:

- способ расчета неупругих сечений ядро-ядерных взаимодействий и распределений нуклонов-участников, основанный на численном методе Монте-Карло, который позволяет избегать приближений, используемых при вычислениях этих величин другими методами;
- численная партонная реализация этой модели, достоинствами которой является физическая наглядность пространственновременной картины ядерных взаимодействий;
- формализм и численный метод учета многочастичных бозеэйнштейновских корреляций в рамкам классических моделей - генераторов искусственных событий столкновений, которые дают возможность не только вычислять *n*-частичные корреляционные функции, но и рассчитывать методом статистического взвешивания влияние *n*-частичных корреляций на различные измеряемые величины;
- динамическая модель распада взаимодействующих струн, с использованием которой предсказано, что взаимодействие струн может приводить к ряду наблюдаемых эффектов в ядерных соударениях: усиленному рождению странных барионов и антибарионов, подавлению рождения пионов и изменению длиннодействующих корреляций множественностей заряженных частиц.

С помощью данной модели были проведены расчеты различных

характеристик ядерных реакций при начальных энергиях $E_{aab} \ge 200$ АГэВ с целью определения условий применимости модели, а также для выработки программы экспериментальных исследований на строящихся ядерных коллайдерах.

3. Впервые создана кинетическая версия МКГС для эксклюзивного описания столкновений адронов и ядер с ядерными мишенями при релятивистских и ультра-релятивистских энергиях.

В этой модели процесс ядерного взаимодействия описывается в терминах одночастичных функций распределения адронов. Предложенная версия МКГС позволяет проводить расчеты различных наблюдаемых характеристик рожденных частиц, исследовать эволюцию взаимодействия конечных ядерных систем и изучать свойства бесконечной ядерной материи.

В процессе разработки кинетической модели было получены следующие результаты:

- сформулирована система уравнений больцмановского типа для нахождения одночастичных функций распределения адронов, учитывающая время формирования адронов, а также процессы вторичных упругих и неупругих столкновений адронов и распада резонансов;
- разработаны численные методы решения данной системы уравнений и построения с помощью функций распределения различных характеристик ядерной реакции, включая неизмеряемые прямым образом плотности барионов, мезонов и других частиц, а также плотности энергии и энтропии;
- впервые изучено влияние вторичных перерассеяний адронов на измеряемые характеристики частиц, рожденных в протонядерных и ядро-ядерных неупругих столкновениях при энергии E_{Aa6} = 200 АГэВ;
- впервые рассчитаны функции распределения источников эмиссии частиц разного сорта в центральных соударениях ядер серы и ядер золота при энергии $E_{Aab} = 10.6$ АГэВ.

Проведенные сравнения различных модельных характеристик рожденных частиц с экспериментальными данными с целью уточнения параметров модели и определения се области применимости показали, что кинетическая версия МКГС успешно описывает большую совокупность экспериментальных данных для протон-ядерных и ядро-ядерных взаимодействиях в широкой области энергий $E_{Aab} = 10 - 200$ АГэВ.

4. В рамках созданной кинетической версии МКГС были проведены исследования эволюций систем сталкивающихся ядер при ультрарелятивистских энергиях.

При этом особое внимание уделялось проведению детальных расчетов эволюций ультра-релятивистских центральных столкновений массивных ядер золота и ядер свинца при доступных в настоящее время максимальных энергиях ускорителей.

При исследовании эволюций систем сталкивающихся ядер были получены следующие результаты:

- рассчитаны тормозная способность ядер, временные эволюции барионной и энергетической плотностей и исследован вопрос об установлении теплового равновесия в центральных столкновениях ядер золота при начальной энергии E_{Aa6} = 10.6 AГэB;
- впервые предсказана возможность образования "резонансной" или "дельта" материи в центральных столкновениях ядер золота при начальной энергии E_{Aa6} = 10.6 АГэВ;
- впервые предсказана значительная тормозная способность ядер свинца, которая подтверждена экспериментально, и рассчитаны временные эволюции барионной и энергетической плотностей в центральных столкновениях ядер кислорода и золота, ядер серы и ядер свинца при начальной энергии E_{Aa6} = 160 - 200 AΓэB;
- впервые даны предсказания существования поперечного потока барионов в реакции столкновений ядер свинца при E_{Aab} = 200 АГэВ и исследованы возможности его экспериментального наблюдения;
- впервые проведен подробный анализ экспериментально обнаруженного усиленного рождения нейтральных странных частиц в центральных ядерных столкновениях при энергии

 $E_{aab} = 200 \ A\Gamma$ эВ и установлена необходимость привлечения нетрадиционных механизмов (взаимодействие кварк-глюонных струн) для объяснения этого явления.

СПИСОК ПУБЛИКАЦИЙ

- А1. Амелин Н. С., Гудима К. К., Тонеев В. Д. Динамика взаимодействия релятивистских ядер. Труды IV международного семинара по проблемам физики высоких энергий. Дубна, июнь 1988 - т. 1 (Д 1,2 - 88 -652) Дубна, 1988, с. 389-400.
- A2. Amelin N. S., Gudima K. K., Toneev V. D. Ultrarelativistic Nucleus-Nucleus Collisions within the Independent Quark-Gluon Strings Model. In book: The Nuclear Equation of State, Part B, ed. by W. Greiner and H. Stocker, NATO ASI Series 216B, (Plenum, 1989) p. 473-486.
- АЗ. Амелин Н. С. Время формирования адронов в модели кваркглюонных струн. Краткие сообщения ОИЯИ, т. 3 [36], Дубна, 1989, с. 32-38.
- А4. Амелин Н. С., Бравина Л. В., Сарычева Л. И., Смирнова Л. Н. Антипротон- протонная аннигиляция при высоких энергиях в модели кварк-глюонных струн. - ЯФ, т.50, вып. 6, 1989, с. 1705-1713.
- A5. Amelin N. S., Bravina L. V. and Smirnova L. N. Antiproton-Proton Annihilation at 32 GeV/c and Nucleon Structure. JINR Rapid Communications, v. 1 [40], Dubna, 1990, p. 11-20.
- Аб. Амелин Н. С. и Бравина Л. В. Монте-карловская реализация модели кварк-глюонных струн для описания взаимодействия адронов при высоких энергиях. - ЯФ, т.51, вып. 1, 1990, с. 211-223.
- А7. Амелин Н. С., Гудима К. К. и Тонеев В. Д. Модель кваркглюонных струн и ультра-релятивистские столкновения тяжелых ионов. - ЯФ, т. 51, вып. 2, 1990, с. 512-523; Амелин Н. С. Моделирование столкновений ядер при высоких энергиях в рамках модели кварк-глюонных струн. - Дубна, 1986. - 14 с. (Сообщение/Объед. ин-т ядерн. исслед.: P2-86-802).
- А8. Амелин Н. С., Бравина Л. В., Сарычева Л. И., Смирнова Л. Н. Распределения по множественности и спектры заряженных частиц

в *pp*- и *p̄p*-взаимодействиях при импульсах 12-100 ГэВ/с в модели кварк-глюонных струн. - ЯФ, т. 51 вып. 3, 1990, с. 841-853.

- А9. Амелин Н. С., Гудима К. К. и Тонеев В. Д. Ультра-релятивистские ядро-ядерные столкновения в динамической модели независимых кварк-глюонных струн. - ЯФ, т. 51, вып. 6, 1990, с. 1730-1743.
- А10. Амелин Н. С., Гудима К. К., Сивоклоков С. Ю. и Тонеев В. Д. Дальнейшее развитие модели кварк-глюонных струн для описания столкновений с ядерной мишенью при высоких энергиях. - ЯФ, т. 52, вып. 1, 1990, с. 272-282.
- А11. Амелин Н. С., Бравина Л. В., Смирнова Л. Н. Инклюзивные характеристики π⁺p⁻, K⁺p⁻ и pp-взаимодействий при 250 ГэВ/с в модели кварк-глюонных струн. - ЯФ, т. 52, вып. 2, 1990, с. 567-572.
- A12. Toneev V. D., Amelin N. S., Gudima K. K. and Sivoklokov S. Yu. Dynamics of Relativistic Heavy-Ion Collisions. - Nucl. Phys. A519, 1990, p. 463c - 478c.
- A13. Amelin N. S, Csernai L. P., Staubo E. F. and Strottmann D. Collectivity, Energy Density and Baryon Density in Lead on Lead Collisions. - Phys. Lett. 261B, 1991, p. 352-356.
- A14. Amelin N. S., Staubo E. F., Csernai L. P., Toneev V. D., Gudima K. K. and Strottman D. Transverse Flow and Collectivity in Ultra-Relativistic Heavy Ion Collisions. - Phys. Rev. Lett. 67, 1991, p. 1523-1526.
- A15. Amelin N. S., Staubo E. F., Csernai L. P., Toneev V. D., Gudima K. K. Strangeness Production in Proton and Heavy Ion Collisions at 14.6 AGeV. - Phys. Rev. C44, 1991, p. 1541-1547.
- A16. Amelin N. S., Staubo E. F. and Csernai L. P. Comparative Analysis of Strangeness Production at AGS-BNL Energies and SPS Energies.
 Nucl. Phys. B24 (Proc. Suppl.), 1991, p. 269-272.
- A17. Amelin N. S., Staubo E. F., Csernai L. P. Semi-Hard Collisions in Monte-Carlo Quark Gluon String Model. - Phys. Rev. D46, 1992, p. 4873-4881.

- A18. Amelin N. S, Csernai L. P., Staubo E. F. and Strottmann D. Collectivity, Energy Density and Baryon Density in Lead on Lead Collisions. Nucl. Phys. A544, 1992, p. 463c-466c.
- A19. Amelin N. S., Braun M. A., Pajares C. Monte-Carlo String Fusion Model. Invited talk presented at the 22- International Symposium on Multiparticle Dynamics, Santiago de Compostela, Spain, 14-17 July, 1992 (World Scientific, 1993, ed. C. Pajares, p. 482-492).
- A20. Amelin N. S., Braun M. A., Pajares C. Interaction of Colour Strings and Particle Production at High Energies. Invited talk presented at the HIPAG'93 International Symposium, Cambridge, USA, 13-15 January, 1993 (In Proceedings, 1993, eds. G. S. F. Stephans, S. G. Steadman, W. L. Kchoe, p. 249-262).
- A21. Amelin N. S., Bravina L. V., Csernai L. P., Toneev V. D., Gudima K. K. and Sivoklokov S. Yu. Strangeness Production in Proton and Heavy Ion Collisions at 200 AGeV. - Phys. Rev. C47, 1993, p. 2299-2307.
- A22. Amelin N. S., Braun M. A. and Pajares C. String Fusion and Particle Production at High Energies. - Phys. Lett. B306, 1993, p. 312-318.
- A23. M. Hofmann, R. Mattiello, N. S. Amelin, M. Berenguer, A. Dumitru, A. Jahns, A. v. Keitz et al. Collective Effects and Nuclear stopping. -Nucl. Phys. A566, 1994 p. 15c-27c.
- A24. Bravina L. V., Amelin N. S., Csernai L. P., Levai P. and Strottmann D. Fluid Dynamics and Quark Gluon String Model - What We Can Expect for Au + Au Collisions at 11.6 AGeV/c? - Nucl. Phys. A566, 1994, p. 461c-464c.
- A25. Amelin N. S., Stöcker H., Greiner W., Armesto N., Braun M. A. and Pajares C. Monte Carlo Model for Multiparticle Production at Ultrarelativistic energies. In book: The NATO Advanced Study Institute on Hot and Dense Nuclear Matter, eds. W. Greiner, H. Stöcker and A. Gallmann, (Plenum Publishing, N. Y., 1994), p. 809-821.
- A26. Amelin N. S., Braun M. A. and Pajares C. String Fusion and Particle Production at High Energies: Monte-Carlo String Fusion Model. - Z. Phys. C63, 1994, p. 507-516.

- A27. Amelin N. S., Armesto N., Braun M. A., Ferreiro E. G. and Pajares
 C. Long and Short Range Correlations: A Signature of String Fusion.
 Phys. Rev. Lett. 73, 1994, p. 2813-2816.
- A28. Amelin N. S., Stöcker H., Greiner W., Armesto N., Braun M. A. and Pajares C. Monte Carlo Model for Multiparticle Production at Ultrarelativistic energies. - Phys. Rev. C52, 1995, p. 362-373.
- A29. Bravina L., Bondorf J. P., Mishustin I. N., Amelin N. S. and Csernai L. P. Freeze-out in Inelastic Heavy-Ion Collisions at AGS Energies. -Phys. Lett. B354, 1995, p. 196-201.
- A30. Amelin N. S. and Lednicky R. Multi-Boson Correlations and Classical Transport Models. - Heavy Ion Physics 4, 1996, p. 241-249.

Литература

- [1] Балдин А. М., ЭЧАЯ 8 (1977) 429.
- [2] Quark Gluon Plasma, Ed. R. Hwa, World Scientific 1990.
- [3] Gribov L. V., Levin E. M., Ryskin M. G., Phys. Rep. 100C (1983) 1;
 Levin E. M. and Ryskin M. G., Phys. Rep. 189C (1990) 167.
- [4] Geiger K., Phys. Rep. 258 (1995) 237.
- [5] Artru X., Phys. Rep. 97 (1983) 147.
- [6] Andersson B, Gustafson G, Ingelman G., Sjöstrand T., Phys. Rep. 97 (1983) 31.
- [7] Baker M., Ter-Martirosyan K. A., Phys. Rep. 28C (1976) 1.
- [8] Veneziano G., Nucl. Phys. B74 (1974) 365; Phys. Rep. 9 (1974) 199; Nucl. Phys. B117 (1976) 519.
- [9] Capella A., Sukhatme U., Tan C. I. and Tran Thanh Van J., Phys. Rep. 236 (1994) 225.
- [10] Кайдалов А. Б., Письма в ЖЭТФ 32 (1980) 494; В сб.: Элементарные частицы, Х Школа физики ИТЭФ. М.: Энергоатомиздат, 1983; Phys. Lett. 116В (1982) 459; ЯФ 45 (1987) 1452. Kaidalov A. B., Ter-Martirosyan K. A., Phys. Lett. 117В (1982) 247.

- [11] Sorge H., Stöcker H., Greiner W., Nucl. Phys. A498 (1989) 567c.
- [12] Feynman R. P., Field R. D., Nucl. Phys. B136 (1978) 1.
- [13] Абрамовский В. А., Гедалин Э. В., Гурвич Е. Г., Канчели О. В., Неупругие взаимодействия при высоких энергиях и хромодинамика, Тбилиси, 1986.
- [14] Machleidt R., Advances in nuclear physics, eds. J. Negele W. and Vogt E.(Plenum, New York, 1989).
- [15] Werner K., Phys. Rep. 232 (1993) 87.
- [16] Innocente V., Capella A., Tran Thanh Van, Phys. Lett. B213 (1988) 81.
- [17] Fox G. C., Wolfram S., Nucl. Phys. B168 (1980) 285.
- [18] Волковитский П. Э., ЯФ 44 (1986) 729.
- [19] Winkelmann L. A.,..., Amelin N. S. et al., In Proc. of 12-th Int. Conf. on Nucleus-Nucleus Collisions - Quark Matter'96, Heidelberg, Germany, 20-24 May, 1996 (will be published in Nucl. Phys. A).
- [20] Jahns A., ..., Amelin N. S. et al, Nucl. Phys. A566 (1994) 483c.
- [21] Margetis S. et al, Nucl. Phys. A590 (1995) 355c.
- [22] Amelin N. S. et al, Phys. Rev. Lett. 67-(1991) 1523.
- [23] Abatzis S. et al., Phys. Lett. B270 (1991) 123.
- [24] Bartke J. et al., Z. Phys. C48 (1990) 191; Stock R. et al., Nucl. Phys. A525 (1991) 211c; Ströbele H. et al., Nucl. Phys. A525 (1991) 59c.
- [25] Schwinger J., Phys. Rev. 82 (1951) 664.

Рукопись поступила в издательский отдел 28 апреля 1997 года,