ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

C 346 K-471

Е.Н. Кладницкая

1983

ОБРАЗОВАНИЕ А -ГИПЕРОНОВ И К° - МЕЗОНОВ — - МЕЗОНАМИ НА ВОДОРОДЕ ПРИ ИМПУЛЬСАХ 7-8 ГЭВ /С

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель академик

В.И.Векслер

Дубна 1965

Е.Н. Кладницкая

<u>C 346</u> K-471

1983

ОБРАЗОВАНИЕ Л-ГИПЕРОНОВ И К°-МЕЗОНОВ п⁻-МЕЗОНАМИ НА ВОДОРОДЕ ПРИ ИМПУЛЬСАХ 7-8 ГЭВ/С

2530 Ro

Автореферат диссертации на соискание ученой стецени кандидата физико-математических наук

Научный руководитель - академик

В.И.Векслер

Объединенный институт пдерных всследоваена БИБЛИОТЕКА

Дубна 1965

Одним из интересных и важных вопросов физики высоких энергий является исследование свойств гиперонов и К -мезонов и механизма их образования. Изучение этих вопросов дает материал для выяснения структуры сталкивающихся частиц и сил, действующих между ними. Эти данные могут быть использованы для построения последовательной теории сильных взаимодействий.

Гипероны и К -мезоны /V -частицы/ были открыты при изучении взаимодействий космических лучей с веществом /1-4/. Однако широкие возможности для их исследования открылись лишь с созданием ускорителей на большие энергии и с появлением нового прибора для регистрации заряженных частиц - пузырьковой камеры. Первые работы по изучению V -частиц были посвящены определению их масс /5-7, времен жизни /6,7/, типов распада /6,7/.

В работах, выполненных на ускорителях до начала обобщенных в реферируемой диссертации исследований (1959 г.), были изучены свойства $\pi = p$ взаимодействий с образованием гиперонов и К -мезонов при сравнительно низких, околопороговых энергиях^{/8-12/}. Запуск синхрофазотрона Объединенного института ядерных исследований поэволил нам продвинуться в область значительно более высоких энергий.

Целью работ, обобщенных в диссертации, ^{/13-19/} было получение возможно более широкой информации о процессах образования $\Lambda K - и K\tilde{K}$ -пар в π -р соударениях при импульсах первичных частиц 7 - 8 Гэв/с. Для того, чтобы выяснить характерные особенности механизма генерации $\Lambda - и K$ - частиц изучались импульсные и угловые распределения Λ -гиперонов и К -мезонов, а также образующихся вместе с ними π -мезонов. Экспериментальные результаты сравнивались с некоторыми существующими моделями генерации частиц при высоких энергиях.

Диссертация состоит из введения и пяти глав.

Во введении дан краткий обзор результатов по изучению гиперонов и К -мезонов, опубликованных к началу описываемых в диссертации работ. Результаты более поздних исследований других авторов обсуждаются в пятой главе.

<u>В первой главе</u> описаны экспериментальная техника и методы обработки изучаемых событий.

В работе использовались фотографии, полученные на 24-литровой пропановой пузырьковой камере Лаборатории высоких энергий^{/20/}, помещенной в магнитное поле 13700 эрстед. Максимальная неоднородность магнитного поля составляла + 3%^{/21/}. Ка-

мера была облучена пучком π^- -мезонов с импульсами 7-8 Гэв/с^{/22/.} Всего было просмотрено 60000 фотографий. Эффективность двукратного просмотра для обнаружения π^- р взаямодействий с образованием Λ - и К°-частиц была равной 0,86 ± 0,05, трехкратного - 0,95 ± 0,02^{/23/}. Отобранные события измерялись на микроскопах УИМ-21 и обсчитывались на электронных счетных машинах. Дано подробное описание программ расчета геометрических и кинематических параметров событий /24-25/ и программы идентификации V° -частиц. Точность определения импульсов заряженных частиц в большинстве случаев составляла 10-12%, а среднеквадратичная ошибка в определеняи углов при длине треков более 5см была равна 34^{,/23/}. Λ -гипероны и К°мезоны идентифицировались по найденным геометрическим параметрам с помощью метода χ^2 . Для идентификации заряженных частиц использовались кинематические критерии, а в ряде случаев – данные по измерениям ионизации и энергии δ – электронов. π -р взаимодействия с образованием $\Lambda - \mu$ К°-частиц отбирались по обычным критериям^{/16/}. Количество отобранных событий приведено в таблице 1.

В конце главы приведены поправки на вероятность регистрации Л, К° -частиц и у -квантов в эффективном объеме камеры /16/.

<u>Вторая глава</u> посвящена определению сечений ^ЛК-, Ко[°]К[°]- и Ко[°]К пар в ^π-р взаимодействиях при импульсах 6,8 и 7,5 Гэв/с. Найденные значения сечений сведены в таблицу 2.

В этой же главе приводятся оценки числа Λ -гиперонов, образовавшихся вместе с K° – или K^{+} -мезонами, а также числа K° -мезонов, образовавшихся вместе с нейтральным или заряженными K -мезонами. Эти оценки сделаны по числу ΛK_{1}° – , $K_{1}^{\circ} K_{1}^{\circ}$ – пар и олиночных Λ – и K_{1}° -частиц, зарегистрированных в эффективном объеме камеры 177 . На основании полученных результатов делается вывод, что в пределах ошибок число ΛK° -пар равно числу ΛK^{+} -пар, а число пар $K^{\circ} \tilde{K}^{\circ}$ равно сумме $K^{\circ} K^{-}$ – и $K^{\circ} K^{+}$ – пар. Эти же данные позволяют оценить примесь K^{+} – и K^{-} -мезонов среди заряженных частиц в изучаемых π^{-} р взаимодействиях.

<u>В третьей главе</u> приведены результаты исследований по образованию ЛК -пар в реакциях типа

 $\pi^{-1} : p \to \Lambda(\Sigma^{\circ}) : K^{\circ} : m \pi, m = 0, 1..., (1)$ $\pi^{-1} : p \to \Lambda(\Sigma^{\circ}) : K^{+1} : n \pi, n = 1, 2... (2)$

при импульсах падающих пионов 7-8 Гэв/с.

 $\frac{n_{\pi} \pm 1}{n_{\pi^0}} = 1,76 \pm 0,11,$ $\frac{n_{\pi^0}}{n_{\pi^0}} = 1,26 \pm 0,14.$

Среднее число п^о-мезонов определено по числу у -квантов, зарегистрированных /19/ в камере ; эффективность регистрации у -квантов в среднем равна 10%.

В этой главе подробно исследованы также импульсные и угловые распределения Λ -гиперонов в системе центра масс^{/14-17/} и распределения их по четырехмерному переданному импульсу Δ ^{/18/} для звезд с различным числом заряженных частии, Угловые распределения Λ -гиперонов резко асимметричны, отношение числа Λ частиц, вылетающих вперед, к числу Λ -частиц, вылетающих назад, равно ≈ 0,20 (рис. 1).

Из импульсного спектра Λ -гиперонов в с.ц.м., показанного на рис. 2, видно, что относительно большой вклад в суммарный спектр дают Λ -гипероны с импульсами выше 1,3 Гэв/с. Как показал анализ, этот вклад обусловлен Λ -частицами из звезд с малой множественностью заряженных частиц (m_=0;2).

Характер распределения ^Λ -гиперонов по поперечному импульсу не зависит от числа заряженных частии, образовавшихся вместе с ними (рис. 3). Средние значения поперечных импульсов ^Λ -гиперонов для звезд с различным числом заряженных частиц практически одинаковы и составляют ~ 400 Мэв/с.

Четырехмерные импульсы Δ, переданные Λ-гиперону, распределены в широком интервале значений – от минимально возможных до 3 Гэв. Среднее значение Δ равно 1125 ±26 Мэв. Доля событий с малыми Δ уменьшается с увеличением числа заряженных частиц в звезде. Так, Δ ≤ 700 Мэв имеет половина Λ -гиперонов из нольлучевых звезд, 26% из двух- и только 15% Λ-гиперонов - из четырехлучевых звезд.

Исследованы также импульсные и угловые распределения К-^{/26,27/} и *п*-мезо-^{/14-17/}, образовавшихся вместе с Λ -гиперонами. В событиях малой множественности заряженных частип /n_s=0;2/К- мезоны в с.ц.м. вылетают преимущественно вперед. Отношение вперед-назад для К° -мезонов равно 2,1±0,5. Для четырехлучевых звезд распределение К -мезонов изотропно. Импульсные распределения *п*⁺-и *п*⁻-мезонов совпадают между собой. Средние значения импульсов пионов (= 480 Мэв/с) существенно меньше среднего импульса Λ (958 Мэв/с) - и К° (764 Мэв/с) - частип. Угловое распределение *п*⁻-мезонов в с.ц.м. асимметрично, они вылетают преимущественно вперед. Коэффициент асимметрии равен 1,50±0,15. Распределение *п*⁺ - мезонов в с.ц.м. симметрично относительно плоскости сов⁰*=0. Угловое распределение *п*° -мезонов совпадают и средние значения импульсов нейтральных и заряженных пионов.

мера была облучена пучком π^- -мезонов с импульсами 7-8 Гэв/с^{/22/.} Всего было просмотрево 60000 фотографий. Эффективность двукратного просмотра для обнаружения π^- р взаимодействий с образованием Λ – и К°-частиц была равной 0,86 ± 0,05, трехкратного – 0,95 ± 0,02^{/23/}. Отобранные события измерялись на микроскопах УИМ-21 и обсчитывались на электронных счетных машинах. Дано подробное описание программ расчета геометрических и кинематических параметров событий ^{/24-25/} и программы идентификации V° -частиц. Точность определения импульсов заряженных частиц в большинстве случаев составляла 10-12%, а среднеквадратичная ошибка в определения углов при длине треков более 5см была равна 34^{1/23/}. Λ -гипероны и К°мезоны идентифицировались по найденным геометрическим параметрам с помощью метода χ^2 . Для идентификации заряженных частиц использовались кинематические критерии, а в ряде случаев – данные по измерениям конизации и энергии δ – электронов. π -р взаимодействия с образованием $\Lambda - \mu$ К° -частиц отбирались по обычным критериям^{116/}, Количество отобранных событий приведено в таблице 1.

В конце главы приведены поправки на вероятность регистрации Л, К°-частиц и у -квантов в эффективном объеме камеры /16/.

<u>Вторая глава</u> посвящена определению сечений $\Lambda K - , K_1^{\circ} K_1^{\circ} - H K_{\circ}^{\circ} K$ $пар в <math>\pi$ -р взаимодействиях при импульсах 6,8 и 7,5 Гэв/с. Найденные значения сечений сведены в таблипу 2.

В этой же главе приводятся оценки числа Λ -гиперонов, образовавшихся вместе с К°- или К⁺-мезонами, а также числа К° -мезонов, образовавшихся вместе с нейтральным или заряженными К -мезонами. Эти опенки сделаны по числу ΛK_1° - , $K_1^{\circ} K_1^{\circ}$ - пар и одиночных Λ - и K_1° -частип, зарегистрированных в эффективном объеме камеры $^{/17/}$. На основании полученных результатов делается вывод, что в пределах ошибок число ΛK° -пар равно числу ΛK^{+} -пар, а число пар К° \tilde{K}° равно сумме $K^{\circ} K^{-}$ - и $K^{\circ} K^{+}$ - пар. Эти же данные позволяют оценить примесь K^{+} - и K^{-} -мезонов среди заряженных частиц в изучаемых π^{-} р взаямодействиях.

<u>В третьей главе</u> приведены результаты исследований по образованию ЛК -пар в реакциях типа

 $\pi^{-1} + p \rightarrow \Lambda(\Sigma^{\circ}) + K^{\circ} + m \pi , \quad m = 0, 1..., \quad (1)$ $\pi^{-1} + p \rightarrow \Lambda(\Sigma^{\circ}) + K^{+1} + n \pi , \quad n = 1, 2... \quad (2)$

при импульсах падающих пионов 7-8 Гэв/с.

Среднее число заряженных и нейтральных пионов, сопровождающих образование Л К -пар, оказалось равным

 $n_{\pi} \pm = 1,76 \pm 0,11,$ $\bar{n}_{\pi^0} = 1,26 \pm 0,14.$

Среднее число π° -мезонов определено по числу у -квантов, зарегистрированных в камере /19/; эффективность регистрации у -квантов в среднем равиа 10%.

В этой главе подробно исследованы также импульсные и угловые распределения Λ -гиперонов в системе центра масс $^{/14-17/}$ и распределения их по четырехмерному переданному импульсу Δ $^{/18/}$ для звезд с различным числом заряженных частиц. Угловые распределения Λ -гиперонов резко асимметричны, отношение числа Λ частиц, вылетающих вперед, к числу Λ -частиц, вылетающих назад, равно ~ 0,20 (рис. 1).

Из импульсного спектра Λ -гиперонов в с.ц.м., показанного на рис. 2, видно, что относительно большой вклад в суммарный спектр дают Λ -гипероны с импульсами выше 1,3 Гэв/с. Как показал анализ, этот вклад обусловлен Λ -частицами из звезд с малой множествеиностью заряженных частиц (n = 0;2).

Характер распределения Λ -гиперонов по поперечному импульсу не зависит от числа заряженных частиц, образовавшихся вместе с ними (рис. 3). Средние значения поперечных импульсов Λ -гиперонов для звезд с различным числом заряженных частиц практически одинаковы и составляют и 400 Мэв/с.

Четырехмерные импульсы Δ, переданные Λ-гиперону, распределены в широком интервале значений – от минимально возможных до 3 Гэв. Среднее значение Δ равно 1125 ±26 Мэв. Доля событий с малыми Δ уменьшается с увеличением числа заряженных частип в звезде. Так, Δ ≤ 700 Мэв имеет половина Λ -гиперонов из нольлучевых звезд, 26% из двух- и только 15% Λ-гиперонов - из четырехлучевых звезд.

Исследованы также импульсные и угловые распределения К-^{/26,27/} и п-мезонов^{/14-17/}, образовавшихся вместе с Λ -гиперонами. В событиях малой множественности заряженных частиц /n_s=0;2/К- мезоны в с.ц.м. вылетают преимущественно вперед. Отношение вперед-изаад для К° -мезонов равно 2,1±0,5. Для четырехлучевых звезд распределение К -мезонов изотропно. Импульсные распределения π^+ -и π^- -мезонов совпадают между собой. Средние значения импульсные распределения π^+ -и π^- -мезонов совпадают между собой. Средние значения импульсов пионов (= 480 Mэв/c) существенно меньше среднего импульса Λ (958 Мэв/с) – и К° (764 Мэв/с) – частип. Угловое распределение π^- -мезонов в с.ц.м. асимметрично, они вылетают преимущественно вперед. Коэффициент асимметрии равен 1,50±0,15. Распределение π^+ -мезонов в с.ц.м. симметрично относительно плоскости соз $\theta^*=0$. Угловое распределение π° -мезонов совпадает с соответствующим распределение π^- -мезонов; совпадают и средние значения импульсов нейтральных и заряженных пвонов.

На этом же статистическом материале изучалось образование резонансных состояний в системах $\Lambda K - \frac{128}{2}$, $\Lambda \pi - \frac{129}{K} K \pi - \frac{127,30}{\mu} \pi \pi - \frac{131}{4}$ -частиц. С учетом этих данных в лиссертации получены импульсные и угловые распределения Л -гиперонов. К-и п - мезонов, являющихся продуктами распада резонансных состояний АК (1700), (1385). К* (888) x) и р -мезона. Проанализировано влияние этих резонансов на импульсные и угловые распределения Л - , К-и л -частиц.

Средние значения параметров Л -гиперонов приведены в таблице З. В четвертой главе содержатся данные по образованию КоК -пар в реакциях типа

$$\pi^{-} + p \rightarrow K^{\circ} + : \tilde{K}^{\circ} + : N + : m \pi, \qquad m = 0, 1, 2... \qquad (3)$$

$$\pi^{-} + : p \rightarrow \tilde{K}^{\circ} + : K^{+} + : N + : m \pi, \qquad m = 1, 2... \qquad (4)$$

$$\pi^{-} + : p \rightarrow K^{\circ} + : K^{-} + : N + : m \pi, \qquad m = 0, 1, 2... \qquad (5)$$

Среднее число заряженных и нейтральных пионов на одно взаимодействие с образованием К -пары найдено равным

а +:=2,28 ± 0,81, п, π = 0,92 ± 0,13 . В этой же главе приводятся угловые и импульсные распределения К° -мезовов и заряженных частиц, образовавшихся вместе с К°К -парой /15,17/. Суммарное угловое распределение Ко-мезонов асимметрично; большая часть их вылетает вперед в с.ц.м. Асимметрия вперел-назал обусловлена Ко-мезонами из безлучевых и двухлучевых звезд (рис. 4). Импульсный спектр К° -мезонов довольно мяткий - около половины этих частиц имеют импульс, не превышающий 600 Мэв/с (рис. 5). Средний поперечный импульс К°-мезонов равен = 400 Мэв/с. Средние характеристики К°-мезонов приведены в таблице 4.

Для получения более полной картины "-р взаимодействий с образованием К°К пар изучались импульсные и угловые распределения пионов и неоднозначно идентифицированных частиц (т или Р), переведенных в с.п.м. как пионы и как протоны Угловые распределения и заряженных, и нейтральных пионов изотропны.

Рассматриваются также импульсные и угловые распределения идентифицированных протонов. Удалось идентифицировать только 20% протонов от полного числа протонов в реакциях (3-5). Представление об угловом распределении протонов из эвезд с различной множественностью заряженных частиц получено на основе анализа угловых распределений Ко- и п-мезонов для соответствующих событий. Протоны в с.н.м. вылетают

в большинстве случаев назад.

x) $K^* \rightarrow K^+ + \pi^-$

хх) Предполагалось, что в реакциях с рождением К°К - пар среднее число протонов равно среднему числу нейтронов.

Импульсные и угловые распределения К°-и п -мезонов, являющихся продуктами распада резонансных состояний К* (888) /30/, К* (730) /30/ и А1 (1050) /30/ повторяют соответствующие суммарные распределения К -мезонов и пионов.

В пятой главе анализируются результаты, изложенные в предшествующих главах диссертации.

Выделена группа событий с малым переданным импульсом (∆ ≤ 700 Мэв), в которой Л -гипероны практически сохраняют направление и импульс протона в с.ц.м. до его взаимолействия с "-мезоном. Характеристики таких Л -гиперонов сопоставляются с результатами расчетов по модели периферических взаимодействий в одномезонном полюсном приближении. По диаграмме і рис. 6 проводились расчеты в предположении, что обмен осуществляется К -или К*-мезонами. Если учесть резонансное К-л взаимодействие в верхней вершине диаграммы I , то можно получить согласие расчетных данных с экспериментальными для выбранной группы событий /17/.

Следует отметить, что в работах /32,33/ с помощью нескольких диаграмм, приведенных на рис. 6, описан <u>весь</u> полученный нами спектр Л -гиперонов. Авторы /33/ делают вывод, что основной вклад (≈ 50-70%) в спектр Л -гиперонов вносит диаграмма I, причем, как это было найдено в нами , высокоэнергетичная часть спектра полностью описывается этой диаграммой.

Импульсные и угловые распределения Л -гиперонов из оставшейся группы событий (Δ > 700 Мэв) сравнивались с распределениями, рассчитанными с помощью статистической модели. Оказалось, что статистическая модель не согласуется с экспериментальными данными.

В этой же главе экспериментальные данные, полученные нами, сопоставляются с результатами аналогичных экспериментов при других энергиях /34-39/. Делается заключение, что $\pi \cdot p$ взаимодействия как с образованием ΛK - так и с образованием КК -пар, имеют одинаковый характер в интервале импульсов – -мезонов от 4,65 до 18 Гэв/с.

Основные результаты и выводы диссертации

1. Определены сечения генерации АК -пар, К°К°1-и К°К -пар п--мезонами на водороде. Сечение образования КК - пар примерно в два раза больше сечения образования АК -пар.

2. Найдены средние множественности пионов в *п* - р взаимодействаях с рождением ЛК - и К[®]К -пар. Вместе с ЛК -парой и с К[®]К -парой в среднем образуется 3 л -мезона.

3. Изучены импульсные и угловые распределения Λ -гиперонов, К° - и π - мезонов в с.ц.м. как для всех событий, так и для событий с различной множественностью заряженных частип. Λ -гипероны вылетают в с.п.м. преимущественно назад. Эта асимметрия уравновешивается асимметрией противоположного знака К -и π⁻-мезонов. Угловое распределение π⁺-мезонов симметрично относительно плоскости соз θ*=0.

4. Изучены распределения по переданному импульсу Δ . Установлено, что около 30% π^- р соударений при импульсах 7-8 Гэв/с характеризуется относительно малым четырехмерным импульсом, передаваемым Λ -гиперону ($\Delta \leq 700$ Мэв). В этих событиях Λ -гипероны практически сохраняют и направление, и импульс протона до его взаимодействия с π^{-1} -мезоном.

5. Импульсные и угловые характеристики Λ -гиперонов из групп событий с $\Delta \stackrel{<}{-}$ 700 Мэв и $\Delta >$ 700 Мэв отличаются довольно сильно (см. таблицу 5), тогда как характеристики пионов мензе чувствительны к этому разбиению.

 6. Сделано заключение, что полученные экспериментальные результаты для групцы событий с ∆ ≤. 700 Мэв могут быть качественно описаны на основе модели неупругих взаимодействий в одномезонном полюсном приближении с учетом резонансного *π* - К взаимодействия.

7. Результаты расчетов по статистической модели не согласуются с экспериментальными данными ни для всех событий Δ > 700 Мэв, ни для части этих событий, которая дает изотропное угловое распределение Λ -гиперонов в с.п.м.

8. Исследованы импульсные и угловые распределения К°-мезонов от К°К-пар, а также импульсные и угловые распределения пионов и протонов, образовавшихся вместе с ними. Протоны в с.ц.м. вылетают в основном назад, а К°-мезоны - вперед. Угловые распределения 7 -мезонов изотропны.

9. Найдено, что примерно 15% п-р взаимодействий, приводящих к образованию К°К -пар, имеют Δ ≤ 600 Мэв и, по-видимому, могут быть описаны с помощью модели неупругих взаимодействий в одномезонном полюсном приближении.

 Определены средние поперечные импульсы Λ -гиперонов, К°-и п -мезонов. Оказалось, что средние поперечные импульсы Λ - и К -частиц одинаковы
(≈ 400 Мэв/с) и больше средних поперечных импульснов заряженных пионов (~ 320 Мэв/с). Основное содержание диссертации опубликовано в работах /13-19, 27, 29-31/.

	Таблица 1				
ns	^N ∧ к <u>°</u>	NA	N _{K°K°} 1 1	N _{K°} i	
0	17	53	8	59	
2	31	216	20	252	
4	9	, 90	3	123	
Bce ⁿ s	57	359	31	434	

Сечения	Табли образования АК, Ко	<u>па 2</u> К°-, К° Ќ- 1	пар
Р _{π-1} (Гэв/с)	<i>°</i> ,́к(мб)	σ _{ко ко} (мб)	^{б.} е к (мб)
6,8 ^{/14,16/}	0,8 <u>+</u> 0,25	_	1,2 <u>+</u> 0,3
7,5	0,98 <u>+</u> 0,11	0,2 <u>+</u> 0,05	1,51 <u>+</u> 0,24

က ø Ħ И 5 ю Та

	<u>А</u> Л Мэв)	8 ± 64	5 ± 32	3 ± 40	5 ± 26	
	÷	103	110	1253	112	
гиперонов	, ДД (л,чем)	412 ± 31	422 ± 15	388 ± 20	412 ± 11	
врактеристик Л.	р ₄ [А (Мэв/с)	-917 ± 83	-693 ± 36	-490 ± 51	-681 ± 29	
гических и угловых х	$\frac{\nabla}{\nabla} \theta^*$	-0,5814 ± 0,0701	-0,6184 ± 0,0317	-0,5019 ± 0,0543	-0,5840 ± 0,0261	
чения для энерге	Ť [∔] ^Λ (M∋B)	525 ± 38	358 ± 17	246 ± 21	361 ± 7	
Средние зна	P. ^A (M₃B/c)	1203 ± 51	963 <u>+</u> 25	781 ± 36	958 <u>+</u> 20	
•	с х	0	61	4	Bce ns	

Р* - импульс в с.ц.м.

с.п.м. T* - кинетическая энерги

с.ц.м. С.П.М. ф частицы θ* – угол вылета частицы
р*|| продольный импульс

с.ц.м. д вмпульс р – поперечный

-гиперонупереданный - VV

Таблица 4 Средние характеристики К° -мезонов от К° К- и ЛК°- пар _____ кс (Мэв/с) р. кс (Мэв/с) Р. ко (Мэв/с) n s От К⁰Ќ пар 908 <u>+</u> 45 502 <u>+</u> 68 491 <u>+</u> 19 0 645 <u>+</u> 24 161 <u>+</u> 28 402 <u>+</u> 12 2 502 <u>+</u> 20 374 <u>+</u> 18 8 <u>+</u> 30 4 657 <u>+</u> 18 185 <u>+</u>23 411 <u>+</u> 9 все п в От ЛК° пар 764 <u>+</u> 56 399 <u>+</u> 63 407 <u>+</u> 34 все п в

	Таблица 5		
•	∆ <mark><</mark> .700 Мэв/с	Δ_{Λ} > 700 Mэв/c	
р* (Мэв/с) Л (Мэв/с)	1550 <u>+</u> 76	781 <u>+</u> 19	
р⊥, (Мәв∕с) ∧	295 <u>+</u> 14	454 <u>+</u> 18	
$\cos \theta_{\Lambda}^{*}$	-0,974 <u>+</u> 0,006	-0,277 <u>+</u> 0,040	
Р* (Мав/с)	-1407 <u>+</u> 140	-401 <u>+</u> 20	
ⁿ s	1,8 <u>+</u> 0,2	2,3 <u>+</u> 0,2	
(Мэв/с) — (Мэв/с)	414 <u>+</u> 27	496 <u>+</u> 19	
Р* (Мэв/с) π-	190 <u>+</u> 32	85 <u>+</u> 24	
Р (Мэв/с)	282 <u>+</u> 20	340 <u>+</u> 13	
$\frac{h_{\pi}}{2}$	2,20 <u>+</u> 0,51	1,35 <u>+</u> 0,15	

10

Литература

- 1. G.D.Rochester and C.C. Butler. Nature, <u>160</u>, 855 (1947).
- R.Amenteros, K.H.Barker, C.C.Butler, A.Cachoe, A.H.Chapman. Nature, 167, 501 (1951).
- 3. A.Bonetti, R.Levi-Setti, M.Panetti, G.Tomassini. Nuovo Cimento, <u>10</u>, 345 (1953).
- 4. C.M.Tork, R.B.Leighton, E.K.Bjornerund. Phys. Rev., 90, 167 (1953).
- 5. R.W.Thompson, A.V.Buskirk, L.R.Etter, C.T.Karzmark, and R.H.Rediker. Phys. Rev., <u>90</u>, 1122 (1953).
- 6. Proc. of Six Annual Rochester Conference on High Energy, p. V-1, New York, 1956.
- 7. Proc. 1958 Annual Intern. Conf. on High Energy Physics at CERN, p. 270.
- 8. T.L.Brown, D.D.Glaser and M.L.Perl. Phys. Rev., 108, 1036 (1957).
- S. Crawford, T.M.Crestl, M.L.Good, K.Gottstein, E.M.Lyman, F.T.Solmitz, M.L.Stevenson and H.T.Ticho. Phys. Rev., <u>108</u>, 1102 (1957).
- 10. F.Eisler, R.Plano, A.Prodell et al. Phys. Rev., 108, 1353 (1957).
- 11. Eisler, F.R.Plano, A.Prodell et al. Nuovo Cimento, <u>10</u> 468 (1958).
- 12. T.D.Lee, T.Steinberger, G.Feinberg, P.L.Kabir and C.N.Yang. Phys. Rev., <u>106</u>, 1367 (1957).
- Девятая международная конференция по физике высоких энергий, р. 331 (1959). Сообщение Дин Да-дао.
- 14. V.A.Belyakov, Wang Tso-tslang, N.M.Viryasov, I.Vrana, Ding Da-tsao, M.S.Juravleva, V.G.Ivanov, Kim Hi In, E.N.Kladnitskaya, I.Klugov, A.A.Kuznetsov, A.Mihul, N.N.Melnikova, Nguen Dinh Tu, A.V.Nikitin, M.I.Soloviev, T.Hofmokl, Tshen Lin-yen, I.V.Chuvilo. Proc. 1960 Intern. Conf. on High Energy Physics at Rochester, p. 388, reported by M.I.DSoloviev.
- V.A.Belyakov, Wang Yung-chang, V.I.Veksler, N.M.Viryasov, I.Vrana, Du Yancai, Klm, Hi In, E.N.Kladnitskaja, A.A.Kuznetsov, A.Mihul., E.Mihul, Nguyen Dinh Tu, I.Patera, V.N.Penev, E.S.Sokolova, M.I.Soloviev, T.Hofmokl, Tshen Lin-yen, N.Schneeberger, Proc. 1962 Intern. Conf. on High Energy Physics at CERN, p. 252.
- 16. Ван Ган-чан, Ван Цу-цзен, В.И. Векслер, И.Врана, Дин Да-цао, В.Г. Иванов, Е.Н. Кладницкая, А.А.Кузнепов, Нгуен Дин Ты, А.В. Никитин, М.И. Соловьев, Чен Лин-янь. Препринт ОИЯИ, Д-594, Дубна, 1960; ЖЭТФ, 40, 464 (1961).
- В.А. Беляков, Ван Юн-чан, В.И. Векслер, Н.М. Вирясов, И.Врана, Ду Юань-пай, Ким Хи Ин, Е.Н. Кладницкая, А.А.Кузнецов, А.Михул, Э. Михул, Нгуен Дин Ты, И. Патера, В.Н. Пенев, Е.С. Соколова, М.И. Соловьев, Т. Хофмокль, Чен Лин-янь. Препринт ОИЯИ, Д-1105, Дубиа, 1962; ЖЭТФ, <u>44</u>, 431 (1963).
- В.И.Векслер, И.Врана, Е.Н.Кладницкая, А.А.Кузнецов, А.К. Михул, Э.К. Михул, Нгуен Дин Ты, В.Н. Пенев, М.И.Соловьев, Т.Хофмокль, Чен Лин-янь. Препринт ОИЯИ, Д-806, Дубна, 1961.

- В.А.Беляков, Ван Юн-чан, Н.М. Вирясов, Ду Юань-цай, Ким Хи Ин, Е.Н.Кладницкая, А.А.Кузнецов, Нгуен Дин Ты, В.Н. Пенев, Е.С. Соколова, М.И. Соловьев. Препринт ОИЯИ, Р-1138, Дубна, 1962; ЖЭТФ, <u>44</u>, 1474 (1963).
- 20. Ван Ган-чан, М.И.Соловьев, Ю.Н.Шкобин. ПТЭ, 1, 41 (1959).
- 21. Ван Ган-чан, Ван Цу-цзен, Дин Да-цао, Е.Н.Кладницкая, Нгуен Дин Ты, А.В.Никитин, М.И. Соловьев. ОИЯИ, Б-2-829, Дубна, 1958.
- 21. Wang Tso-tsiang, Ding Da-tsao, V.G.Ivanov, E.N.Kladnitskaya, Nguyen Dinh Tu, I.S.Sajtov, M.I.Soloviev, and M.D.Shafranov. Intern. Conf. on High Energy Accelerators and Instrumentation CERN (1959), p. 412.
- В.И.Векслер, Н.М.Вирясов, И.Врана, Ким Хи Ин, Е.Н.Кладницкая, А.А.Кузнепов, Нгуен Дин Ты, М.И.Соловьев, Т.Хофмокль. ОИЯИ, Б-2-1133, Дубна (1961); ЖЭТФ, <u>44</u>, 84 (1963).
- Ван Ган-чан, Ван Цу-дзен, Дин Да-дао, Е.Н. Кладницкая, М.И. Соловьев. Материалы совещания по камерам Вильсона, диффузионным и пузырьковым камерам. Р-284, вып. V, 101, Дубна, 1959.
- -25. Сообщение Е.Н.Кладницкой. Материалы совещения по методике пузырьковых камер. ОИЯИ, 796, 5, Дубна, 1961.
- Ван Юн-чан, В.И.Векслер, Ду Юань-пай, Е.Н.Кладницкая, А.А.Куанедов, А.Михул, Нгуен Дин Ты, В.Н.Пенев, Е.С.Соколова, М.И.Соловьев. ЖЭТФ, 43, 815 (1962).
- 27. В.А.Беляков, Н.М.Вирясов, Е.Н.Кладницкая, В.Н. Пенев, Е.С. Соколова, М.И. Соловьев. Преприят ОИЯИ, Р-1586, 1963.
- 28. V.A.Belyakov, Wang Yung-chang, V.I.Veksler, N.M.Viryasov, Du Yuan-cai, E.N.Kladnitskaya, Kim Hi In, A.A.Kuznetsov, A.Mihul, Nguyen Dinh Tu, V.N.Penev, E.S.Sokolova and M.I.Soloviev. Proc. 1962 Intern. Conf. on High Energy Physics at CERN, -p. 336; Преправт ОИЯИ, P-1019, Дубва, 1962.
- В.А. Беляков, В.И. Векслер, Н.М. Вирясов, Е.Н. Кладницкая, Г.И. Копылов, В.Н. Пенев, М.И. Соловьев. Препринт ОИЯИ, Р-1807, Дубна, 1964.
- В.А.Беляков, В.И.Векслер, Н.М.Вирясов, Е.Н.Кладницкая, Г.И.Копылов, В.Н.Пенев, М.И.Соловьев. Препринт ОИЯИ, Р-1808, Дубна, 1964.
- В.А.Беляков, В.И.Векслер, Н.М. Вирясов, Е.Н. Кладницкая, Г.И. Копылов, А.Михул, В.Н. Пенев, Е.С.Соколова, М.И.Соловьев. Препринт ОИЯИ, Р-1506, Дубна, 1964; ЖЭТФ, <u>46</u>, 1967 (1964).
- В.С.Барашенков, Д.И.Блохиндев, Э.К. Михул, И. Патера, Г.Л. Семашко. Препринт ОИЯИ, Р-1245, Дубна, 1962; ЖЭТФ, 45, 381 (1963).
- 33. V.S.Barashenkov and D.I.Blokhintsev, Proc. of the Intern. Conf. at Stanford University. 1963, p. 259.
- L.Bertanza, B.B.Culwick, R.W.Lai, I.S.Mitra, N.P.Samios, A.M.Thorndike, S.S.Yamamoto, R.M.Lea. Phys. Rev., <u>130</u>, 786 (1963).
- 35. Hotz UCRL -8715, Berkeley (1959).
- 36. H.H.Bingham, M.Bloch, D.Drijard et al. Proc. 1962 Intern. Conf. on High Energy Physics at CERN, p. 240.
- A.Bigi, S.Brandt, R.Carrara, W.A.Cooper, A.Marco, G.R.Macleod, Ch.Peyrou, R.Sosnowski, A.Wróblewski, Proc. 1962 Intern. Conf. on High Energy Physics at CERN, p. 247; Nuovo Cimento, <u>33</u>, 1249, 1265 (1964).

- T.Ferbel and H.Taft. Nuovo Cimento, 28, 1214 (1963). 38.
- 39. T.Bartke, R.Budde, W.D.Cooper, H.Filthuth et al. Proc. 1960 Intern. Conf. on High Energy Physics, at Rochester, p. 402; Nuovo Cimento, 24, 876 (1962).

Рукопись поступила в издательский отдел 2 февраля 1965 r.

Рис. 1. Угловые распределения Л -гиперонов в с.п.м. а) Для безлучевых звезд, б) для двухлучевых звезд, в) для четырехлучевых звезд, г) суммарное. Заштрихованные области относятся к случаям с ∆ ≤ 700 Мэв. Пунктирной линией обозначены распределения без поправки на вероятность регистрации Л -гиперонов в эффективном объеме камеры.

and the

Рис. 2. Импульсные распределения Л -гиперонов в с.ц.м.

а) Для безлучевых звезд, б) для двухлучевых звезд, в) для четырехлучевых звезд, г) суммарное. Кривые I, II и III - результаты расчета по одномезонной диаграмме I. Кривая I соответствует обмену К -мезоном, кривая II - обмену К* -мезоном. Учет Кπ (888)-резонанса дает вклад в область, указанную кривой III. Кривые IV - результаты расчета по статистической модели. Кривые IV нормированы на спектр Λ -гиперонов с Δ > 700 Мэв. Другие обозначения те же, что и на рис. 1

Рис. 3. Распределение поперечных импульсов ∧ -гиперонов. а) Для безлучевых звезд, б) для двухлучевых звезд, в) для четырехлучевых звезд, г) суммарное. Обозначения те же, что и на рис. 1.

. .

18

N eo NI a) 30 $T_{S}=0$ N = 135 20 <u>n.</u> n. = 251 ± 0,52 -1 -08-05-04-02 0 02 D4 លន៍ លិន ហ 2) 70 TIs=0,2,4; N = 697 S) 60 60 6) $\frac{\vec{n\kappa}^*}{\vec{n\kappa}^*} = \{61 \pm 0, 13$ TIs = 2 50 171s = 4 N = 150 N = 402 <u>nix</u>* nix* = 1,70±0,17 40 $\frac{\overrightarrow{n_{\kappa}}}{\overrightarrow{n_{\kappa}}} = 1,05 \pm 0,15$ 301 30 -20 20 10 -(0-q8-q6-q4-q2 0 q2 q4 q5 q8 q8 (0 Cos6* -10-08-06-04-02 0 02 04 05 05 10 Cost -40-08-06-04-02 0 02 04 08 08 40 Cos 8

Рис. 4. Угловые распределения К°-мезонов в с.п.м. а) Для безлучевых звезд, б) для пвухлучевых звезд, в) для четырехлучевых звезд, г) суммарное. Пунктирной линией обозначены распределения без поправки на вероятлость регистрации К°-мезо-нов в эффективном объеме камеры.

n = 0 N = 135 Pr = 908±1

2 Q S

