K-93

Дубна

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Section of

27 11.65

1956

В.С. Курбатов, Г.А. Ососков

ПРИМЕНЕНИЕ МЕТОДА МОНТЕ-КАРЛО К АНАЛИЗУ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ В МНОГОЧАСТИЧНЫХ РАСПАДАХ

Su

2965

В.С. Курбатов, Г.А. Ососков

ПРИМЕНЕНИЕ МЕТОДА МОНТЕ-КАРЛО К АНАЛИЗУ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ В МНОГОЧАСТИЧНЫХ РАСПАДАХ

Экспериментальные данные о многочастичных распадах состоят из гистограмм, дающих нам сведения об энергетических и угловых распределениях вторичных частиц.

Анализ экспериментальных данных обычно имеет целью проверку теоретических моделей распада. При этом необходим учет особенностей эксперимента: геометрия камеры, эффективность просмотра снимков и т.д.

Аналитические подсчеты различных распределений с учетом геометрии камеры и других особенностей опыта приводят к вычислению многократных интегралов с числом переменных 6-10 и более в очень сложных пределах. Поэтому при решении подобных задач тралиционным стало применение метода статистических испытаний (Монте-Карло)^{/1/}.

В настоящей работе излагается методика расчетов энергетических и угловых распределений в многочастичных распадах. Такого рода изложение удобнее всего вести на конкретном примере, в качестве которого взято исследование трехчастичных лептоняых распадов К⁺-мезонов.

Выбор примера не случаен, так как трехчастичные распады более вероятны и исследуются гораздо чаще, чем распады с большим числом вторичных частиц, котя в принципе изложенная методика допускает несложное обобщение на случай большего числа частиц.

Точно так же сравнительная простота условий эксперимента (по сравнению, например, с камерой Вильсона, где встают вопросы идентификации распадов и учета неоднородного магнитного поля) позволяет упростить изложение сути метода моделирования, поняв которую нетрудно продумать детализацию и возможные усложнения моделирования.

Как известно²², гамильтониан слабого взаимодействия в общем случае содержит векторный (V), скалярный (S) и «тензорный (T) члены. Экспериментальное определение варианта слабого взаимодействия³ может быть произведено при изучении трехчастичных лептонных распадов К -мезонов.

$$K_{u_8} \rightarrow \mu^+ + \pi^0 + \nu$$

$$K_{u_8} \rightarrow e^+ + \pi^0 + \nu .$$
(1)
(1)

Для решения вопроса о варианте слабого взаимодействия в данной задаче можно использовать следующие энергетические и угловые распределения:

1. энергетический спектр µ -мезонов из (1);

2. распределение углов разлета у -квантов от π^0 -мезона в (1) и (2) каналах распада;

энергетический спектр п⁰ -мезонов в (1).

4. распределение углов γ -квант-лептон $(\gamma, \mu^+), (\gamma e^+).$

Для анализа необходимо теоретические распределения 1-4, рассчитанные соответственно для V, S и T -вариавтов взаимодействия, исправить с учетом геометрии опыта и сравнить с экспериментальными гистограммами тех же распределений.

Распады к⁺-мезонов детектировались в 30-литровой ксеноновой пузырьковой камере ОИЯИ. Эффективная область камеры, в которой производилось детектирование событий, представляла собой объем, ограниченный шестью плоскостями (неправильную усеченную пирамиду):

$$A = B + C + C + D = 0 \quad (i = 1, 6). \tag{3}$$

Значения коэффициентов A₁, B₁, C₁ и D₁ приведены в таблице 1. Для регистрации распада $K_{u_3}(K_{e_3})$ необходима остановка в камере $\mu^+(e^+)$ и конверсия в камере хотя бы одного γ -кванта в том же акте распада.

11.

Геометрия камеры может существенно повлиять на вид распределений 1-4. Использование метода Монте-Карло для учета этого влияния потребует введения ряда обозначений и масштабов, чтобы избежать переполнения при расчетах на ЭВМ. m_k, m_u, m_π - массы соответственно К⁺-, μ⁺ - и π⁰ - мезонов,

к и и Е_и, Е_л - энергин и - и и - мезонов;

- μ - π + π^0 -мезонов соответственно, т.е.

$$W_{\mu} = \frac{m_{k}^{2} + m_{\mu}^{2} - m_{\pi}^{2}}{2m_{k}}, \quad W_{\pi} = \frac{m_{k}^{2} + m_{\pi}^{2} - m_{\mu}^{2}}{2m_{k}}. \quad (4)$$

Обозначим также константы

$$\mathbf{a} = \frac{\mathbf{m}_{\mu}}{\mathbf{m}_{k}}, \quad \mathbf{b} = \frac{\mathbf{m}_{\mu}}{\mathbf{W}_{\mu}}, \quad \mathbf{c} = \frac{\mathbf{m}_{k}}{\mathbf{W}_{\mu}}, \quad \mathbf{d} = \frac{\mathbf{m}_{\pi}}{\mathbf{W}_{\mu}}, \quad \ell = \frac{\mathbf{W}_{\pi}}{\mathbf{W}_{\mu}} \quad (5)$$

и переменные величины (энергии μ – и π –мезонов в относительных единицах)

$$\xi = \frac{E_{\mu}}{W_{\mu}}, \quad \eta = \frac{E_{\pi}}{W_{\mu}} \quad (6)$$

С помощью известной методики ^{/5/} могут быть получены формулы совместной плотности вероятности распределения энергий $\mu^+ - \mu \pi^0$ -мезонов для V - , S - и T - вериантов взаимодействия соответственно.

V -вариант:

$$P_{V}(\xi,\eta,\epsilon) = \frac{1}{I \cdot V(\epsilon)} \sum_{k=0}^{2} f_{k}(\xi,\eta) \cdot i\epsilon^{k} .$$
(7)

Здесь $e = \frac{f_{-}}{f_{+}}$ - отношение формфакторов, входящих в гамильтониан слабого взаимодействия (1), коэффициенты $f_k(\xi, \eta)$ имеют вид (см. обозначения (5,6)).

$$f_{0}(\xi, \eta) = \left[(8\xi - 4ab)(c - \xi - \eta) - c(\ell - \eta)(4 - a^{2}) \right],$$

$$f_{1}(\xi, \eta) = 2ab(2c - 2\xi - \eta - \ell)$$

$$f_{2}(\xi, \eta) = ab(\ell - \eta).,$$
(7a)

Нормяровочный множитель I_v (с) определяется интегрированием

1

$$I_{V}(\varepsilon) = \int_{\min}^{\xi_{\max}} \eta_{\max} \eta_{\max} \frac{\eta_{\max}}{\varepsilon} \varepsilon \cdot f_{k}(\xi, \eta) d\eta,$$

$$\int_{\min}^{\xi_{\min}} \eta_{\min} \eta_{\min} \eta_{\min} (\xi)$$
(76)

где:

$$\xi_{\min} = b, \xi_{\max} =$$

$$\eta_{\min}(\xi) = \frac{(c - \xi - \sqrt{\xi^2 - b^2})^2}{2(c - \xi - \sqrt{\xi^2 - b^2})^2}$$
(8)

$$\eta_{\max}(\xi) = \frac{\left(c - \xi + \sqrt{\xi^2 - b^2}\right)^2 + d^2}{2\left(c - \xi + \sqrt{\xi^2 - b^2}\right)^2}$$
(9)

S -вариант:

$$P_{g}(\xi,\eta) = \frac{1}{I_{g}}(\ell - \eta), \qquad (10)$$

Нормирующий множитель I в оказывается равным

$$I_{s} = \int_{b}^{1} \frac{\eta_{max}(\xi)}{\eta_{max}(\xi)} d\eta .$$
(11)

Т - варжант:

$$P_{T}(\xi,\eta) = \frac{1}{I_{T}} \sum_{k=0}^{3} g_{k}(\xi) \cdot g^{k}(\xi,\eta) = \frac{p'(\xi,\eta)}{I_{T}}, \quad (12)$$

где

$$g(\xi, \eta) = (c - \xi - \eta)$$

$$g_0(\xi) = (\xi^2 - b^2)(1 - \xi)$$

$$g_1(\xi) = (b^2 + \xi^2 - 2\xi)$$

$$g_2(\xi) = \xi + (1 - 2ab)$$

$$g_2(\xi) = -1.$$

Нормирующий множитель I т получается интегрированием $P'(\xi, \eta)$, по η в пределах (8)-(9) в по ξ от b до 1.

В последующих расчетах нам постоянно придется решать задачу об определении потенциальной длины пробега частицы, т.е. расстояния от точки распада до ближайшей стенки камеры по направлению полета частицы, причем направление задается углами θ и ϕ в системе, связанной с точкой распада К⁺ мезона, а координаты точки распада и уравнения стенок камеры – в основной системе, связанной с камерой. Поэтому было бы полезно иметь блок расчета потенциальных длин в виде компактной математической формулы, позволяющий автоматизировать пересчет от одной системы координат к другой.

Предварительно сделаем небольшое математическое отступление. Пусть имеется левая система координат x, y, z. Поворотом осей x и y на угол ϕ в плоскости x0y получим новые оси x_1 , y_1 . Наклонив ось z на угол θ , получим ось z_1 . Если в системе координат x_1 , y_1 , z_1 имеется вектор $A(\ell_1, m_1, n_1)$, то его координаты (ℓ , m, n) в системе (x, y, z) получаются из (ℓ_1, m_1, n_1) с помощью преобразования поворота, т.е. ум-ножением строки (ℓ_1, m_1, n_1) на матрицу поворота

$$\mathbb{M}(\theta,\phi) = \begin{pmatrix} \cos\theta\cos\phi & -\cos\theta\sin\phi & \sin\theta \\ & \sin\phi & \cos\phi & 0 \\ & -\sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\ \end{pmatrix}$$
(13)

Если проязвести последовательно "k"- поворотов, так что система координат $(x_{\gamma+1}, y_{\gamma+1}, z_{\gamma+1})$ получается из системы $(x_{\gamma}, y_{\gamma}, z_{\gamma})$ $(\gamma = 1, k)$ поворотом на углы $\theta_{\gamma+1}$, $\phi_{\gamma+1}$, то компоненты вектора \vec{A} (l_k, m_k, n_k) , заданные в системе (x_k, y_k, z_k) , позволяют определить компоненты того же вектора в системе $(x_{\gamma}, y_{\gamma}, z_{\gamma})$ по фор-муле

$$\begin{pmatrix} \ell_{\gamma}, \mathfrak{m}_{\gamma}, \mathfrak{n}_{\gamma} \end{pmatrix} = \begin{pmatrix} \ell_{k}, \mathfrak{m}_{k}, \mathfrak{n}_{k} \end{pmatrix} \prod_{j=k}^{\gamma+1} \mathbb{M} \left(\theta_{j}, \phi_{j} \right) .$$

$$\begin{pmatrix} \gamma = 1, 2, \dots, \kappa-1 \end{pmatrix}.$$

Возврашаясь к задаче определения потенциальной длины, полагаем, что система (x , y , z) имеет центр в точке распада (x₀ , y₀ , x₀), а оск, параллельные осям основной системы координат, т.е. системы, в которой уравнения шести плоскостей стенок камеры имеют вид (3), причем коэффициенты уравнений плоскостей, задавные в таблице I, таковы, что направляющие векторы всех шести плоскостей "смотрят" внутрь камеры.

Примем за ось $0x_1$ направление полета вторичной частицы, т.е. в системе (x_1 , y_1 , z_1) единичный вектор Å будат иметь компоненты (0, 0, 1). Тогда, очевидно, в системе (x, y, z) его компоненты будут равны элементам третьей строки матрицы М (θ , ϕ). Соответственно частица К -го поколения, будет лететь по прямой, направляющие косинусы которой будут равны элементам третьей строки матрицы

$$M_{k} = \prod_{j=k}^{1} M(\theta_{j}, \phi_{j}).$$
 (14)

Потенциальная длина по определению является длиной вектора L₁, выходящего из точки распада x₀, y₀, z₀ в направлении полета частицы и упирающегося своим концом в ближайшую из плоскостей стенок камеры (пусть ее номер будет i). Благодаря специальному выбору направляющих векторов этих плоскостей угол между вектором L₁ и направляющим вектором i --ой плоскости будет тупым, т.е. будет отрицательным скалярное произведение

$$Q_1 = A_1 \cdot i + B_1 + C_1 +$$

Здесь (l, m, n) по-прежнему, являются компонентами единичного вектора, направленного вдоль L, и определяются как элементы третьей строки матрицы поворота (13).

Обозначим через R величину

$$\mathbf{R}_{i} = \mathbf{A}_{i} \mathbf{x}_{0} + \mathbf{B}_{i} \mathbf{y}_{0} + \mathbf{C}_{i} \mathbf{z}_{0} + \mathbf{D}_{i}$$
 (18)

Расстояные от точки распада (x_0 , y_0 , z_0) до і -ой плоскости будет равно MR₁ ($M = (A_1^2 + B_1^2 + C_1^2)^{-1/2}$) -нормирующей множитель і -ой плоскости), а косинус угла между векторами L_1 , и (A_1 , B_1 , C_1) будет равен MQ₁.

Отсюда получаем искомое выражение для длины вектора L

$$\ell_i = |L_i| = |\frac{R_i}{Q_i}| -$$

Алгоритм для определения |L₁| по уравнениям плоскостей, заданным таблицей 1, точке распада в направлению (ℓ , m , p) таков: вычисляем по (15) величины Q₁ (i = 1,6), отбираем те номера i -, для которых Q₁ < 0 , и вычисляем R₁ - согласно (16). Потенциальная дляна

$$\ell = \min_{i=1}^{n} \left| \frac{R_{i-}}{Q_{i-}} \right| - (17)$$

Теперь можно перейти к решению задачи о расчете энергетического спектра μ^+ мезона с учетом геометрии камеры.

Пусть произошло N распадов K⁺-мезонов и в N₁ из них энергия родившихся μ^+ -мезонов заключена в интервале (ξ , $\xi + \Delta \xi$). Отношение $\frac{N_1}{N}$ без учета геометрии опыта при достаточно большом N будет приблизительно равно P_µ(\mathfrak{f}) $\Delta \xi$, где энергетическая плотность распределения μ^+ мезонов может быть получена при интегрировании совместной плотности (7), (10) или (12) в зависимости от варианта взаимодействия по переменной η в пределах (8)-(9).

При учете геометрии эксперимента будут регистрироваться только те события, в которых μ⁺ -мезон останавдивается в камере с конверсией в камере хотя бы одного у -кванта. Очевидно, что число таких событий N₂ будет меньше, чем N₁,

т.е. N₂/N₁ < 1 . При достаточно большом N₁ величина

$$P_{\mu}(\xi) = \frac{N_2}{N_1}$$

даст нам искомый энергетический спектр и -мезонов, учитывающий геометрию опыта.

Отношение $\frac{N_2}{N_1}$ можно найти путем многократного моделирования на электронной вычислительной машине (ЭВМ) процесса распада К⁺-мезонов с учетом всех условий эксперимента (метод Монте-Карло). Последовательно перебирая энергии μ^{+} мезонов с некоторым шагом $\Delta \xi$, находим для каждого значения энергии отношение N_2/N_1 .

Слова "все условия эксперимента" включают в себя и учет разброса точек распада первичных К -мезонов.

Можно было бы на основании экспериментальной статистики построить трехмерную функцию распределения точек распада, в соответствии с которой и разыгрывать их в дальнейшем. Этот путь усложняется тем, что неизвестен даже вид теоретической функции распределения, не говоря уже о трудностях моделирования его на ЭВМ.

Был исподьзован более простой и близкий к условиям эксперимента путь: в таблипу записывались (с обеспечением случайности записи) координаты реальных точек распада, и затем в процессе счета последовательно выбирались из нее. Метод позволял максимально использовать экспериментальную информацию о распределении точек распада.

Далее излагается процесс моделирования. Буквами a_1 , a_2 обозначаются последовательные случайные числа, независимо выбранные из множества чисел, равномерно распределенных на отрезке $(0,1)^{X/}$.

Программа А

1. Из интервала энергий (b ,1) с заданным шагом $\Delta \xi = \frac{1-b}{a}$ выбирается очередное значение энергии $\xi_k = b + k \cdot \Delta \xi$ (k = 1, n) и по таблице 2 находится средний пробег L , соответствующий энергии ξ_k .

2. Из таблицы $3^{XX/}$ выбираются координаты очередной точки распада X_{01} , Y_{01} , Z_{D1} .

 Разыгрывается направление вылета μ⁺ -мезона. С учетом изотропности направлений вылета в пространстве разыгрывается cos θ₁ и φ₁

х/ При реализации излагаемой модели на ЭВМ пользуются так называемыми псевдослучайными числами (см. по этому поводу/4/).

xx/ Таблица 3 и аналогичная ей таблица 4 не приводятся в настоящей работе ввилу их громоздкости.

$$\cos \theta_1 = 2a_1 - 1$$
$$\phi_1 = 2\pi a_2 .$$

Прибавляется единица к счетчику числа испытаний N 1 .

4. Обращаемся к блоку расчета потенциальной длины и получаем ℓ_{μ} . Блок работает с помощью вышеприведенного алгоритма, основанного на формулах (15)-(17).

5. Сравнивается L_µ с l_µ. Если L_µ > l_µ (т.е. мезон уходит из камеры), то возвращаемся к пункту З. В противном случае – переход к следующему пункту 6.

6. С помощью таблицы условной функции распределения $F_k(\eta)$ разыгрывается η_{kl} энергия π^0 -мезона^{X/}. Таблица функции F (η) с шагом $\Delta \eta$ вычисляется по формуле

$$F_{k}(\eta) = F(\eta | \xi = \xi_{k}) = \frac{1}{P_{\mu}(\xi)} \int_{\eta_{\mu}(\xi_{k})}^{\eta} P(\xi, y) dy,$$
(18)

η в таблице принимает значения $\eta_{ki} = \eta_{min} (\xi_k) + i \Delta \eta$, двухмерная плотность P(ξ , η) задается формулами (7), (10) или (12) для вариантов V, S или T соответственно, $\eta_{min} (\xi)$ дается формулой (9), плотность P_μ (ξ_k) определена выше. Способ розыгрыша: энергия π^0 -мезона равна η_{ki} , если

$$F(\eta_{k_1}) < a_3 < F_k(\eta_{k_1+1}).$$

7. Определяется направление π⁰ -мезона относительно направления μ⁻-мезона, т.е. углы θ₂ и φ₂. Формула для совθ₂ находится из законов сохранения импульса и энергии:

$$\cos \theta = \frac{n^2 - 2c \cdot \xi_k - 2\eta_{k_1} (c - \xi_k)}{2\sqrt{\xi_k^2 - b^2} \cdot \sqrt{\eta_{k_2}^2 - d^2}}$$
(19)

Здесь обозначено $n^2 = C^2 + b^2 + d^2$. (20)

х/ С целью экономии времени расчета на ЭВМ таблицу (18) разумиее вычислять перед пунктом 2 – сразу же после выбора энергии Азимутальный угол ϕ_2 распределен равномерно

По формулам (13) и (14) рассчитывается матрица поворота

$$\mathbf{M}_{2} = \mathbf{M}(\theta_{2}, \phi_{2}) \cdot \mathbf{M}(\theta_{1}, \phi_{1}).$$

8. Разыгрывается энергия у (здесь и в дальнейшем через у и у обозначены два у -кванта, на которые распадается п⁰-мезон).

Из /7/ известно, что энергетическое распределение у -квантов является равномерным с постоянной плотностью, равной ($\eta^2 - d^2$) // . Отсюда получаем выражение:

$$E_{\gamma_1} = \frac{\eta_{k_1} + (2\alpha_3 - 1)\sqrt{\eta_{k_1}^2 - d^2}}{2} .$$
(21)

После этого по формуле (см. /8/)

$$L = 5,1916 + \frac{0,57091}{E_{\gamma}} - \frac{0,02268}{E_{\gamma}^2} + \frac{0,0004031}{E_{\gamma}^8}$$
(22)

находим L у1 -длину конверсии у1.

9. Направление У1 находится из законов сохранения

$$\cos \theta_{s} = \frac{d^{2} - 2\eta_{k_{1}} \cdot E_{\gamma_{1}}}{2E_{\gamma_{1}} \cdot (\sqrt{\eta_{k_{1}}^{2} - d^{s}})} ,$$

10. Находим матрицу поворота от основной системы координат к системе, связан-

$$M_{8} = M(\theta_{8}, \phi_{8}) \cdot M_{2},$$

и обратившись к блоку потенциальных длин, определяем ру1.

11. Рассчитывается вероятность конверсии у в пределах камеры

$$P_1 = 1 - \exp(-\ell_{\gamma_1} / \mathbb{L}_{\gamma_2}).$$

12. Вычисляется энергия у

$$E_{\gamma_2} = \eta_k - E_{\gamma_1}$$

и по формуле (22) определяется длина конверсии

18. Из кинематики распада "-мезона находится направление у₂ относитель-

HO
$$\gamma_1$$

$$\cos\theta_4 = 1 - \frac{d^2}{2E_{\gamma_1} \cdot E_{\gamma_2}} \cdot \phi_4 = \pi$$

14. По формулам (13) и (14) рассчитывается матрица поворота M₄ = M (θ₄, φ₄) M₃,
 и с помощью бложа потенциальных длин определяется ℓ_{γ₆}.

Вычислиется вероятность конверсии у в камере

$$P_{2} = 1 - \exp\left(-\frac{\ell\gamma_{3}}{L\gamma_{2}}\right).$$

С помощью формулы полной вероятности определяется вероятность конверсии в камере котя бы одного у -кванта

$$P_{12} = P_1 + P_2 - P_1 \cdot P_2 \cdot (23)$$

Мы должны найти число N₂ случаев остановки μ^+ -мезона в камере при условии конверсии котя бы одного у -кванта. При большом N₁ - общем числе появления μ^+ -мезонов, имеющих энергию ξ_k , в K_{μ}^+ распаде число N₂ приблизительно равно вероитности P₁₂ взятой столько раз, сколько раз мы регистрировали μ^+ -мезон в камере. Поэтому последний пункт нашего расчета для выбранной точки распада.

18. В сумматоре Σ суммируем веронтность P₁₂, (помня, что на пункт 18 мы попадаем только через пункт 5, т.е. при условии регистрации μ⁺ - мезона в камере).

Накопив достаточную статистику N испытаний при данной точке распада, переходим к пункту 2, т.е. выбираем следующую точку распада и снова повторяем расчет. Поребрав все точки распада, в сумматоре Σ мы получим искомое число N₂ и находим отношение N₂/N₁ для данного интервала энергии μ^+ -мезона (ξ_k , $\xi_k + \Delta \xi$). Перебирая все ξ_k в общем интервале (b, 1), получим поправку на условия эксперимента для всего спектра энергий μ^+ -мезона.

IL

Как было сказано вначале, для решения вопроса о варианте взаимодействия, кроме распределения 1, можно использовать также и распределение 2 - 3 - 4.

Ниже будут даны пояснения к программе В , позволяющей методом Монте-Карпо рассчитать поправки, учитывающие условия эксперимента, к теоретическому распределению 2. Сама программа В полностью изложена в Приложении. Программа поз-

Используемая в программе В совместная плотность респределения $\phi(\eta, x)$ энергии π^{0} -мезона в косинуса угла разлета γ -квантов получается как произведение плотности распределения $P_{\pi}(\eta)$ энергии π^{0} -мезона на условную плотность распределения $\psi(x)$ косинуса угла разлета.

 $P_{\pi}(\eta)$ получается внтегрированием двумерной плотности $P(\xi, \eta)$, давной для V, S и T вариантов формулами (7), (10), (12) соответственно, по переменной ξ в пределах

$$\xi_{\min}(\eta) = \frac{(c - \eta - \sqrt{\eta^2 - d^2})^2 + b^2}{2(c - \eta - \sqrt{\eta^2 - d^2})}$$
(24)

до

$$\xi_{max}(\eta) = \frac{(c-\eta+:\sqrt{\eta^2-d^2})^2+b^2}{2(c-\eta+:\sqrt{\eta^2-d^2})} .$$
(25)

Вывод формулы $\psi(x)$ приведен в . С точностью до нормировки

$$\psi(\mathbf{x}) = (\eta^2 - d^2)^{-\frac{1}{2}} (\frac{1 - \mathbf{x}}{2})^2 [\eta^2 (\frac{1 - \mathbf{x}}{2}) - d^2]_{-\frac{1}{2}}^{-\frac{1}{2}}.$$
 (26)

Таким образом:

$$\phi(\eta, \mathbf{x}) = \frac{1}{I} P_{\mathbf{rr}}(\eta) \cdot \psi(\mathbf{x}), \qquad (27)$$

где нормирующий множитель получается интегрированием

$$I = \int_{-\infty}^{x_{max}} \frac{\eta_{max}(x)}{f_{i}} P_{i\pi}(\eta) + i\psi(x)d_{i\mu}, \qquad (28)$$

$$\eta_{\max} = \ell_{1} .$$

$$\eta_{\min} = d\sqrt{\frac{2}{1-x}};$$

$$x_{\max} = 1 - \frac{2d^{2}}{\ell^{2}};$$

$$x_{\min} = -1.$$
(29)

Интегрирование по ξ при получении $P_{\pi}(\eta)$ означало, что мы не интересуемся фактом остановки μ^{+} -мезона в камере. При необходимости программа В может быть несколько усложнена с целью учета этого факта.

Программа В повторяет некоторые пункты программы А, в этих случаях даются ссылки на соответствующую формулу программы А.

Примером успешного применения изложенной методики вычисления поправок к теоретическим распределениям для учета условий эксперимента может служить работа ^{/9/}, доложенная на XII конференции по физике высоких энергий в Дубне в 1964 г.

В работе ^{/9/} излагались результаты сравнения экспериментальных гистограмм с соответствующими распределениями, подсчитанными по программе А.

III.

В упомянутой работе⁹ (равно как и в¹⁰) сделан вывод о справедливости V -варианта в слабых взаимодействиях. В связи с этим возникает проблема определения отношения формфакторов $\epsilon = \frac{f_{-}}{f_{+}}$, входящих в гамильтониан слабого взаимодействия. Предполагается, что формфакторы f_{-} ч f_{+} постоянны, т.е. не зависят от энергии π^{0} -мезона.

Для решения задачи естественно применить широко известный в статистике метод максимального правдоподобия ^{/11/}. Суть метода состоит в нахождении значения параметра є , при котором достигает максимума функция правдоподобия L , являющаяся совместной плотностью вероятности энергий μ⁺ -мезонов во всех наблюдавшихся случаях распада К⁺ -мезонов.

Отметим, что этот метод уже использовался для решения аналогичной проблемы в недавно появившейся работе /12/. Однако там не приводится методика вычисления функции правдоподобия с учетом условий эксперимента (которые существенно отличаются от наших).

Назовем событием случай распада $K_{\mu_3}^+$ с остановкой μ^+ -мезона в камере и конверсией хотя бы одного у -кванта. Пусть мы имеем результаты наблюдения п событий. Событие с номером і характеризуется энергией μ^+ -мезона $\xi = \xi_1$, его направлением и фактом конверсии хотя бы одного у -кванта. Для определения условной плотности распределения W (ξ , ϵ .) энергии μ^+ -мезона в і -м событии мы должны преобразовать двумерную теоретическую плотность распределения (7) так, чтобы учесть условия эксперимента. Такой учет сводится к интегрированию плотности (7), умноженной на вероятность конверсии хотя бы одного у -кванта по остальным переменным: η , направлению и энергии у и последующей пере-

Поскольку функция (7) является отношением двух многочленов второй степени относительно ϵ , то тот же вид будет иметь и W₁ (ξ , ϵ)

$$W_{1} \cdot (\epsilon_{0}, \epsilon_{0}^{2}) = \frac{V_{0}(\xi) + V_{1}(\xi) \cdot \epsilon_{0}^{2} + V_{2}(\xi) \cdot \epsilon_{0}^{2}}{V_{0}^{2} + (V_{1}^{2} \cdot \epsilon_{0}^{2} + V_{2}^{2} \cdot \epsilon_{0}^{2}) \cdot \epsilon_{0}^{2}}$$
(80)

где знаменатель получается в результате нормировки, т.е.

$$V_{k}^{\prime} = \frac{\xi_{1 \max}}{\xi_{\min}} \left(\xi \right) d\xi \qquad (k = 0, 1, 2)$$
(31)

Таким образом, логарифм функции максимального правдоподобия будет иметь вид

$$\ln L(\xi_1, \xi_2, \dots, \xi_n, \epsilon) = \sum_{i=1}^n \ln W_i(\xi_i, \epsilon).$$
(32)

Как взвестно^{/11/}, наилучшей оценкой параметра є при заданных ξ_1 , ξ_2 , ..., ξ_n будет величина $\hat{\epsilon}$, даюшая максимум функции (32). Обычный метод поиска $\hat{\epsilon}$ путем решения уравнения $\frac{\partial L}{\partial \epsilon} = 0$ практически неприменим в силу сложности этого уравнения. Поэтому было предложено определять максимальное значение L непосредственно, вычисляя функцию (32) многократно при различных ϵ .

Вычисление L , как это следует из формул (30)- (32), сводится к вычислению функций $V_k(\xi)(K=0,1,2)$ в любой точке ξ из отрезка (ξ_{\min} , ξ_{\max}).

Это вычисление было проведено методом Монте-Карло в излагаемой ниже прог-

Кроме известных таблиц 1-9, в программе С используется таблица 4, где собрана экспериментальная информация обо всех п событиях. Для каждого события с номером і в таблице 4 указано семь чисел: X_{0i} , Y_{0i} , Z_{0i} ; X_{3i} , Y_{2i} , Z_{3i} , ξ_{i} . Первые три из них - координаты точки распада К^{+:} -мезона, вторые три- координаты точки на треке μ -мезона и, наконец, ξ_{i} - энергия μ^{+} -мезона.

1. Из таблицы № 4^{x/} выбирается очередная точка " і ", т.е. семь чисел Х_{рі}, Y_{01} , Z_{01} ; X_{21} , Y_{21} , Z_{21} ; ξ_1 .

$$\ell_{1} = \frac{X_{21} - X_{01}}{p_{1}}$$

$$m_{1} = \frac{Y_{21} - Y_{01}}{p_{1}}$$

$$p_{1} = \sqrt{(X_{21} - X_{01})^{2} + (Y_{21} - Y_{01})^{2} + (Z_{21} - Z_{01})^{2}}$$

$$n_{1} = \frac{Z_{21} - Z_{01}}{r_{1}}$$

3. Обращаясь к блоку определения потенциальных длин, находим l_µ - потенциальную длину, соответствующую направлению μ -мезона. При расчете M (θ , , ф) надо учесть, что

$$\cos\theta_1 = n_1$$

$$\cos \phi_1 = -i \frac{\ell_1}{\sqrt{1 - n_1^2}}$$
; $\sin \phi_1 = \frac{m_1}{\sqrt{1 - n_1^2}}$.

4. Из таблицы № 2 по потенциальной длине ℓ_и находится ξ_{max 1} - максимальная энергия + - мезона, который может быть зарегистрирован в камере по направлению (0,, , , ,). (В случае, если при интерполяции получится ξ_{max} > 1, полагаем

5. По формулам (8) и (9) рассчитываем

$$\eta_{\min}(\xi)$$
 μ $\eta_{\max}(\xi)$, rge $\xi_{\min} < \xi \leq \xi_{\max_i}$

6. Разыгрываем энергию π^0 -мезона равномерно в интервале $(\eta_{\min}(\xi), \eta_{\max}(\xi))$

$$\eta_1 = a_1 [\eta_{\max}(\xi) - \eta_{\min}(\xi)] + \eta_{\min}(\xi)$$

и добавляем единицу в счетчик числа испытаний N 1. (Напомним, что га, по-прежнему означает очередное случайное число из интервала (0,1)).

- 7. По формуле (19) рассчитываем сов θ (ξ, η,).
- Разыгрываем азимутальный угол ф 2 = 2 па 2.
- 8. Расчитываем матрицу $M_2 = M(\theta_2, \phi_2) \cdot M(\theta_1, \phi_1).$
- 9. По формуле (21) разыгрываем энергию у1 :

$$E_{\gamma} = E_{\gamma} (\alpha_8).$$

х/ См. примечание на стр. 9.

10. По формуле (22) находим длену конверсии Ly,.

11. Определяем направление у1 :

$$\cos \theta_{3} = \frac{d^{2} - 2\eta_{1} \cdot iE\gamma_{1}}{2E_{\gamma_{1}} \cdot i\sqrt{\eta_{1}^{2} - id^{2}}}$$

По аналогии с пунктами 10-15 программы А рассчитываем вероятность Р₁₂
 Используя формулы (7а), находим произведения

$$f_0(\xi, \eta_1) \cdot P_{12}, f_1(\xi, \eta_1) \cdot P_{12}, f_2(\xi, \eta_1) \cdot P_{12}$$

и суммируем их в сумматорах Σ_1 , Σ_2 , Σ_3 соответственно.

14. Сравниваем содержимое счетчика № с заданным числом испытаний № (число № выбирается из соображений точности расчета и возможного времени счета на ЭВМ). Если № к о возвращаемся к пункту 6 этой программы. Если № к переходим к следующему пункту 15.

15. Вычисляем величины $V_0(\xi)$, $V_1(\xi)$ в $V_2(\xi)$

$$V_{k}(\xi) = \frac{1}{N} \left[\eta_{\max}(\xi) - \eta_{\min}(\xi) \right] \cdot \Sigma_{k+1}(\kappa = 0, 1, 2).$$

16. Вычисляем V'_k по формуле (31). Для этого необходимо повторить расчет с различными ξ с пункта 5 по 16 столько раз, сколько требуется для интегрирования (31). Далее переходим к пункту 1, т.е. выбираем следующее событие. После вычисления коэффициентов V_k (ξ₁) и V'_k мы можем для ряда значений параметра с по формуле (30) и (32) построить график функции ℓ_n L.

Необходимо отметить, что в этой программе используется не вся информация, по-

Из эксперимента с $K_{\mu_{g}}^{+}$ - распадами при условии конверсии одного у -кванта мы получаем информацию о следующих величинах: направление вылета μ^{+} -мезона относительно системы координат камеры (углы $\theta \cdot u \phi$); энергия μ^{+} -мезона (ξ); угол между направлениями у -кванта и μ^{+} -мезона; расстояние, на котором конвертирует у -квант. В программе С не используются последние две величины. Чтобы учесть всю информацию, необходимо воспользоваться данными работы^{/13}, где дается вывод распределения углов разлета у -квант-лептон. Четырехмерная функция плотности вероятности, получениая с помощью изложенной там методики, умножается на функцию плотности вероятности конверсии у -кванта

$$P_{\gamma}(\ell) = \frac{1}{L_{\gamma}} \exp\left(-\ell/L_{\gamma}\right)$$

и интегрируется по всем ненаблюдавшимся переменным. Логическая структура счета почти не изменяется в этом случае. Может представить интерес вопрос о времени, необходимом для расчетов на ЭВМ по изложенной методике.

На расчет по программе А одного варианта (V, S или T) при использования 100 точек распада К⁺ -мезона и двадцати значений энергии μ⁺ -мезона требуется 5 часов машинного времени на трехадресной ЭВМ, имеющей скорость 20 тыс. операций в сек.

Для вычислений по программе С при в = 120 на построение графика L(с) на 100 значений с требуется 3,5 часа,

В заключение мы котим выразить благодарность И.В. Чувило, который обратил наше внимание на задачу о максимальном правдоподобии и В.И. Кочкину, проделавшему конкретные расчеты на ЭВМ.

ПРИЛОЖЕНИЕ

Программа В

1. По формуле (28) рассчитывается величина I . Пределы интегрирования даны в (29).

2. Из интервала (x_{min} , x_{max}) выбирается очередное значение x_k = x_{min} + k· Δx

$$\Delta x = \frac{x_{mex} - x_{min}}{n}$$

3. Строится таблица распределения: η

Δ

$$F_{k}(\eta) = F(\eta / \mathbf{x} = \mathbf{x}_{k}) = \frac{1}{P(\mathbf{x}_{k})} \int_{\min}^{\eta} \phi(\mathbf{y}, \mathbf{x}) d\mathbf{y}_{k}$$

где

$$P(\mathbf{x}_{k}) = \int_{1}^{\eta_{\max}(\mathbf{x}_{k})} \phi(\mathbf{y}_{k}, \mathbf{x}_{k}) d\mathbf{y}$$
$$\eta_{\min}(\mathbf{x}_{k})$$

$$\eta = \frac{\eta_{\max} - \eta_{\min}}{m}$$

$$\eta_{i} = \eta_{\min} \left(\mathbf{x}_{k} \right) + i \Delta \eta_{i}$$

с шагом

4. Выбирается очередная точка распада X₀₁ , Y₀₁ , Z₀₁ вз таблицы 3. 5. Разыгрывается энергия " -мезона по алгоритму: F.

если

$$(\eta_k) \leq \alpha_1 < F_k(\eta_{k+1}),$$

TO SHEPTHS PABHA $\eta_{ki} = \eta_{min} (x_k) + i \Delta \eta$.

8. По формуле (21) разыгрывается эмергия у1

$$E_{\gamma_1} = E_{\gamma_1}(a_2, \eta_{ki}).$$

7. Вычисляется энергия у 2

 $E_{\gamma_0} = \eta_{ki} - E_{\gamma_1}$

8. По формуле (22) находим $L_{\gamma_1} = L_{\gamma_2}$.

9. Разыгрываем направление у : :

$$\cos\theta_1 = 2a_3 = 1$$

$$\varphi_1 = 2\pi \alpha_4$$
.

10. Обращаясь к блоку определения потенциальных длин, находим ly, и рассчитываем:

$$P_1 = 1 - \exp(-l_{\gamma_1}/L_{\gamma_1}).$$

11. Направление У2 :

Рассиятываем $M_2 = M(\theta_2, \phi_2) \cdot M(\theta_1, \phi_1)$ и определяем потенциальную длину вуз ...

12. Рассчитываем $P_2 = 1 - \exp(-\ell_{\gamma_2}/L_{\gamma_2})$ и $P_1 \cdot P_2$.

13. Суммируем величину Р₁. Р₂ с содержимым сумматора Σ₁, прибавляя при этом единицу в счетчик числа циклов No 2.

14. Сравниваем N2 с N.

Если N₂ < N уходим на п. 5 Если N > N - " - на п. 4

15. После перебора N $_1$ точек X $_{0i}$, Y $_{0i}$, Z $_{0i}$ рассчитываем величину

$$P_k = \frac{f(x_k)}{T \cdot N \cdot N_1} \sum_{i=1}^{n}$$

выводим ее на печать и идем на новое значение и , т.е. на п. 2

A	B ₁	C _i	Di					
0	0	1	0					
0	0	-1	-15,3					
0	- 1	0,3922	-21,5					
0	1	0,3922	-21,5					
- 1	0	0,2614	-20					
1	0	0,2614	0					
	A ₁ 0 0 0 0 0 - 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_i B_i C_i D_i 0 0 1 0 0 0 -1 -15,3 0 -1 0,3922 -21,5 0 1 0,3922 -21,5 -1 0 0,2614 -20 1 0 0,2614 0				

Таблица 1

Таблица 2

ξ	L	Ę	L	ξ	L
0,440 0,474 0,478 0,482 0,487 0,492	0 0,48 0,53 0,65 0,78 0,92	0,546 0,557 0,569 0,58I 0,593 0,605	3,08 3,67 4,29 4,94 5,62 6,32	0,816 0,864 0,910 I,027	2 I,99 25,95 29,96 40,35
0,496 0,501 0,506 0,511 0,515 0,525 0,534	I,07 I,22 I,39 I,56 I,74 2,12 2,53	0,618 0,628 0,651 0,675 0,698 0,722 0,769	7,05 7,81 9,37 11,02 12,73 14,50 18,17		

- Н.П. Бусленко, Ю.А. Шрейдер. Метод статистических испытаний, Физматгиз, Москва, 1961.
- 2. R.P.Feynman, M.Gell-mann, Phys. Rev., 109, 193 (1958).
- 3. S.W.Mac Dowell. Notas de Fisica, v. VIII, N=6 (Brasil).
- Г.А. Ососков. Методика моделирования случайных числе на электронных цифровых машинах, "Вопросы радиоэлектроники". Серия XII -общетехническая, 1959, вып. 13.

5. Л.Б. Окунь. Слабое взаимодействие элементарных частип. Физматгиз, Москва, 1963.

6. П.С. Моденов. Аналитическая геометрия. Изд-во МГУ, 1955.

7. Л.Д. Ландау и Е.М. Лифшиц. Теория поля, Физматгиз, 1960.

8. F.S.Shaklee, The doctor thesis, The University of Michigan May, 1964.

9. Материалы XII-й конференции по физике высоких энергий, Дубна, 1964.

10. G.L. Jensen, The doctor thesis. The University of Michigan, 1964

11. Г. Крамер, Математические методы статистики. ИИЛ, 1948.

- 12. F.H.Groves at al., Phys. Rev., 135, 1269 (1964).
- В.С. Курбатов, Э.И. Мальцев, А.Н. Маслаков, А.А. Стручков, А.И. Шкловская. Об одном методе анализа распадов с образованием п^о -мезона. Препринт ОИЯИ 1956 (1965).

Рукопись поступила в издательский отдел 16 января 1965 г.