19-2002-257

K-958

На правах рукописи

КУЦАЛО Полина Вячеславовна

ЭКСПЕРИМЕНТАЛЬНОЕ ОБОСНОВАНИЕ МИШЕННОЙ ТЕРАПИИ И ДИАГНОСТИКИ ПИГМЕНТНОЙ МЕЛАНОМЫ С ИСПОЛЬЗОВАНИЕМ α- И β-ИЗЛУЧАЮЩИХ РАДИОНУКЛИДОВ

Специальность: 03.00.01 — радиобиология

Автореферат диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в Отделении радиационных и радиобиологических исследований Объединенного института ядерных исследований, г.Дубна Научные руководители:

доктор биологических наук, профессор *Е.А. Красавин* кандидат биологических наук *Н.Л. Шмакова*

Официальные оппоненты:

доктор биологических наук, профессор И.И. Пелевина доктор биологических наук, профессор А.Г. Коноплянников Ведущая организация: Онкологический научный центр РФ

Защита состоится 19 декабря 2002 года в 15 ч 30 мин на заседании Диссертационного совета Д.501.001.65 в Московском государственном университете им. М.В. Ломоносова по адресу: 119899, Москва, Воробьевы горы, МГУ, биологический факультет, Диссертационный совет Д.501.001.65.

С диссертацией можно ознакомиться в библиотеке Биологического факультета МГУ. Отзывы просим присылать по адресу: 119899, Москва, Воробьевы горы, МГУ, биологический факультет, Диссертационный совет Д.501.001.65

Автореферат разослан « «ноября 2002 г.

Ученый секретарь диссертационного совета доктор биологических наук, профессор

О.Р. Кольс

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Одним из основных методов лечения злокачественных новообразований является лучевая терапия, основанная на дистанционном или. контактном облучении опухолей с помощью внешних источников излучения. Но несмотря на высокую эффективность, этот метод имеет ряд недостатков: неблагоприятное для клинического использования дозовое распределение большинства видов излучения; необходимость знания точной геометрии опухоли, что не всегда возможно, особенно при развитии метастатического процесса; присутствие нормальных клеточных элементов в опухолевой паренхиме, которые неизбежно подвергаются облучению при общем воздействии на опухоль. Таким образом, лучевая терапия, как правило, не обеспечивает достаточной избирательности в поражении раковых клеток, и оказывает цитотоксическое действие не только на опухолевые, но и на окружающие нормальные ткани. Альтернативой лучевой терапии является, так называемая, мишенная радионуклидная терапия (РНТ), основанная на избирательном воздействии на опухолевые клетки путем введения в организм меченных радионуклидами соединений и их доставке непосредственно к злокачественным клеткам. На этом же принципе основаны методы радионуклидной диагностики (РНД).

В настоящее время в РНТ и РНД используются в основном β-излучатели. В последние годы проявляется значительный интерес к применению также α-излучающих радионуклидов. Преимуществами α-излучателей являются короткий пробег α-частиц (60-65 мкм в ткани), что позволяет воздействовать непосредственно на мишенные клетки, и высокая линейная передача энергии (около 100 кэВ/мкм), которая соответствует максимальной биологической эффективности излучения (Красавин Е.А. и Козубек С., 1991). Эти свойства делают α-излучение оптимальным для РНТ асцитных и диссеминированных новообразований. В наших экспериментах использован малоисследованный на сегодняшний день изотоп, чистый α-излучатель²¹¹At.

Пигментная меланома является одним из наиболее сложных для терапии новообразований, что связано с ранним метастазированием и быстрой генерализацией опухолевого процесса. Образующиеся уже на ранних стадиях микрометастазы оказываются практически недоступными известным на

> BOSCALLEBONG ULCLATT MICHAE ECCLEDIES

сегодняшний день методам диагностики и терапии. Учитывая резкий рост числа заболеваний меланомой в последние годы и отсутствие эффективных способов терапии и диагностики пигментной меланомы, представляется актуальным поиск и разработка новых методов диагностики и лечения этого типа опухолей. РНТ и РНД представляются весьма перспективными для этой цели. Целенаправленная доставка радионуклидов к клеткам меланомы может осуществляться с помощью опухолеспецифичного носителя 3,7-диметиламино-феназотионин хлорида (метиленовый синий, MC), который характеризуется высокой связывающей способностью с пигментом меланином (Potts A.M., 1962). Использование αизлучателя ²¹¹Аt позволит осуществить мишенное воздействие на микрометастазы и диссеминированные клетки меланомы.

<u>Шель и основные задачи исследования.</u> Цель исследований заключалась в экспериментальном обосновании радионуклидной диагностики и мишенной радиотерапии пигментной меланомы человека с использованием MC, меченного изотопами ²¹¹At и ¹³¹I.

Для достижения указанной цели были поставлены следующие задачи:

- исследовать характер накопления ²¹¹At-MC и ²¹¹At в ионной форме клетками пигментной меланомы человека и непигментированными клетками *in vitro*;

- получить количественную оценку степени селективности цитотоксического действия *in vitro*²¹¹At-MC на клетки пигментной меланомы человека по сравнению с непигментированными клетками;

- исследовать характер накопления ¹³¹I-МС и Na¹³¹I клетками пигментной меланомы человека и непигментированными клетками *in vitro*;

- исследовать биораспределение ²¹¹At-MC и ¹³¹I-MC в организме мышей с имплантированной пигментной меланомой.

Положения, выносимые на защиту:

- результаты исследования кинетики накопления ²¹¹At-MC и ²¹¹At в ионной форме клетками пигментной меланомы человека и непигментированными клетками *in vitro*;

- результаты исследования кинетики накопления ¹³¹ и NaI клетками пигментной меланомы человека и непигментированными клетками *in vitro*;

результаты количественной оценки избирательности цитотоксического действия

²¹¹At-MC на клетки пигментной меланомы человека по сравнению с непигментированными клетками, а также с ²¹¹At в ионной форме *in vitro*;

- результаты исследования фармакокинетики ¹³¹I-MC на интактных животных и животных с трансплантированной пигментной меланомой;

 результаты исследования фармакокинетики ²¹¹At-MC на интактных животных и животных с трансплантированной пигментной меланомой.
 Научная новизна. В работе впервые:

- исследована возможность применения α-излучателя ²¹¹At в мишенной радиотерапии пигментной меланомы;

- исследован характер накопления MC, меченного изотопами ²¹¹At и ¹³¹I, а также ²¹¹At в ионной форме в клетках млекопитающих *in vitro*; показано, что ²¹¹At-MC и ¹³¹I-MC селективно накапливаются в клетках пигментной меланомы *in vitro* при незначительном накоплении в непигментированных клетках;

- получена точная количественная оценка степени селективности действия ²¹¹At-MC и ²¹¹At в ионной форме на клетки пигментной меланомы человека *in vitro*;

 по критерию выживаемости *in vitro* показано, что эффективность действия ²¹¹At-MC на клетки пигментной меланомы на порядок выше по сравнению с действием на непигментированные клетки;

- исследована фармакокинетика ²¹¹At-MC и ¹³¹I-MC *in vivo* на животных с имплантированной меланомой и интактных животных;

- показано значительное накопление ²¹¹At-MC и ¹³¹I-MC в пигментной меланоме *in vivo*, что свидетельствует о принципиальной возможности их использования в диагностике и терапии этого новообразования.

<u>Научно-практическая</u> значимость работы. Результаты проведенных исследований по действию ²¹¹At-MC и ¹³¹I-MC на клетки пигментной меланомы имеют высокое практическое значение. Полученные экспериментальные данные свидетельствуют об избирательности накопления радиоактивных препаратов на основе MC клетками пигментной меланомы человека *in vitro* и *in vivo*, а также высокой цитотоксичности ²¹¹At-MC. Это дает основание полагать, что в перспективе ²¹¹At-MC может быть рекомендован в качестве радиофармпрепарата для комплексной терапии пигментной меланомы человека с целью воздействия на диссеминированные опухолевые клетки и предотвращения процесса

метастазирования. МС, меченный изотопами йода, представляется эффективным препаратом для диагностики метастазов и терапии первичных очагов пигментной меланомы и ее метастазов.

Апробация работы. Основные результаты доложены на Межд. совещ. «Базовые установки ОИЯИ и ядерная биомедицина» (Дубна, 1997); 27th Annual Meeting of the British Nuclear Medicine Society (Brighton, England, 1999); 4 и 6 научных конф. Объединения молодых ученых и специалистов ОИЯИ (Дубна, 2000, 2002); Межд. конф. «Современные проблемы радиобиологии, радиоэкологии и эволюции» (Дубна, 2000); Межд. конф. «Современные проблемы радиобиологии, радиоэкологии и эволюции» (Дубна, 2000); Межд. конф. «Современные проблемы радиобиология, радиоэкологии и эволюции» (Дубна, 2000); Межд. конф. «Современные проблемы ядерной медицины и радиофармацевтики» и 2-ой съезд Общества ядерной медицины (Обнинск, 2000); Совещ. «Ядерная медицина в XXI веке: радионуклидные методы диагностики и лечения в клинической онкологии» (Дубна, 2001); V Workshop «Application of Lasers in Atomic Nuclei Research» (Роглап, Poland, 2001); Межд. симп. под эгидой ЮНЕСКО и 2-х Сисакяновских чтениях (Дубна, 2001); Russian-American Scientific Conf. «Radioimmunoimaging and Radioimmunnotherapy» (Москва, 2002); семинарах Отделения радиационных и радиобиологических исследований ОИЯИ (Дубна). *Публикации.* По теме диссертации опубликовано 12 работ.

<u>Структура работы</u>. Диссертационная работа изложена на страницах, состоит из 5 глав и выводов, содержит 8 таблиц, 7 рисунков. Список литературы включает 133 названий на русском и иностранных языках.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В экспериментах *in vitro* использовали клетки пигментной меланомы человека линии BRO и непигментированные фибробласты китайского хомячка линии V-79. Клетки культивировали при 37 °C в атмосфере 5 %-го CO₂ на средах следующего состава: RPMI1640 и Игла в соотношении 3:1 (клетки меланомы), среда Игла (фибробласты китайского хомячка); в обоих случаях добавляли фетальную сыворотку теленка (10 %), L-глютамин (1 %) и антибиотики.

Эксперименты *in vivo* проводили на мышах самках F1(CBA×C57BI) весом 16-18 г и белых беспородных крысах. Пигментную меланому линии B16, взятую у мыши на 9-11 день после трансплантации, прививали подкожно в боковую поверхность тела.

Щитовидную железу блокировали раствором КІ в течение 4-х дней до введения и всего времени после введения ¹³¹I-MC.

Изотоп ²¹¹Аt получен на ускорителе У-200 Лаборатории ядерных реакций ОИЯИ в ходе реакции ²⁰⁷Bi (α , 2n) ²¹¹At. Методика получения ²¹¹At описана Norseev Yu.V. and Shmakova N.L. (1995). Астатирование и йодирование MC осуществлялось методом электрофильного замещения (Шмакова Н.Л. *et al.*, 2001).

Для исследования накопления ²¹¹At-MC и ²¹¹At в ионной форме вводили в чашки, содержащие монослой клеток, через двое суток после посева. Клетки инкубировали с радионуклидом 1 - 5 ч, многократно промывали, снимали трипсином и отмывали трехкратным центрифугированием. Часть суспензии использовали для подсчета концентрации клеток, часть - для определения аккумулированной клетками активности. Для измерения активности использовали спектрометр ядерного излучения NK-225/A (Венгрия). Накопленную клетками активность нормировали на 10⁵ клеток. При определении кинетики накопления ¹³¹I-MC и Na¹³¹I клетками пигментной меланомы и китайского хомячка *in vitro* измерение активности осуществлялось непосредственно во флаконах при помощи автоматического спектрометра NK-350 («Gamma», Венгрия).

Эффективность воздействия ²¹¹At-MC и ²¹¹At в ионной форме *in vitro* оценивали по величине клоногенной способности (Puck T.T. *et al.*, 1956). Клетки, находящиеся в логарифмической стадии роста, подвергали ферментативной обработке, готовили суспензию одиночных клеток и рассевали на чашки Карреля для прикрепления. ²¹¹At-MC и ²¹¹At в ионной форме вводили в культуральную среду; клетки инкубировали в стандартных условиях в течение трех часов, многократно отмывали и оставляли в свежей питательной среде для формирования колоний. Образовавшиеся колонии фиксировали, окрашивали и подсчитывали колонии, содержащие более 50 клеток. Определяли фракцию выживших клеток.

Для изучения фармакокинетики ¹³¹I-MC и ²¹¹At-MC вводили в хвостовую вену интактным животным и мышам с привитой меланомой на 10-12-й день после трансплантации. Через разные промежутки времени животных декапитировали и измеряли активность, накопленную в основных органах и тканях. При исследовании биораспределения ¹³¹I-MC активности измерялась на автоматическом

5

спектрометре NK-350 («Gamma», Венгрия); при исследовании фармакокинетики ²¹¹Аt-MC - на пересчетной установке VA-D-30 (Германия).

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Накопление ²¹¹At-MC и ²¹¹At в ионной форме клетками пигментной меланомы человека и фибробластами китайского хомячка in vitro (рис. 1). Максимальное накопление ²¹¹At-MC в клетках пигментной меланомы (165 Бк/ 10⁵ клеток) достигается в первый час после введения соединения в среду, после чего дальнейшего увеличения активности не происходит. Накопление ²¹¹At-MC непигментированными клетками достигает максимума (72 Бк/ 10⁵ клеток) через 2 ч после введения соединения. Аккумуляция ионного ²¹¹Аt клетками обоих типов осуществляется одинаково и весьма незначительно по сравнению с²¹¹At-MC.

6

Накопление ¹³¹ I-MC и Na¹³¹ I клетками пигментной меланомы человека и фибробластами китайского хомячка in vitro (рис. 2). Максимум накопления ¹³¹I-МС пигментированными клетками (91,8 кБк/ чашку) достигается через 2 ч после введения, после чего зависимость накопленной активности от времени выходит на плато. В непигментированных клетках максимальное накопление активности (29,7 кБк/чашку) наблюдается через 3 ч после введения ¹³¹I-MC. Накопление Na¹³¹I обоими типами клеток практически не отличается от фонового значения.

Эффективность воздействия ²¹¹At-MC и ²¹¹At в нонной форме на клетки пигментной мелацомы человека in vitro. Дапные экспериментов по определению клоногенной способности клеток меланомы в зависимости от введенной активности представлены на рис. 3. Кривые выживаемости при облучении клеток α -излучением ²¹¹Аt имеют линейный характер – плечо, характерное для действия редкоионизирующих излучений и отражающее способность клеток к репарации, отсутствует. При действии на клетки меланомы ²¹¹ At-MC среднее значение $D_0 = 4.8 \pm 1.6$ кБк/мл; при действии ²¹¹ Аt в ионной форме $D_0 = 110.0 \pm 27.1$ кБк/мл.

Эффективность воздействия ²¹¹At-MC и ²¹¹At в ионной форме на фибробласты китайского хомячка in vitro (рис. 4). Средняя величина Do при действии ²¹¹At-MC для фибробластов китайского хомячка составляет 46,25 ± 13,99 кБк/мл; при действии ²¹¹ Аt в ионной форме - 94,25 ± 10,88 кБк/мл.

Фармакокинетика ¹³¹ I-MC. Накопление радиоактивности в опухолях начинается через 10-30 минут после введения и достигает максимума (в среднем 4,1 %/г) через 3-5 ч после введения (табл. 1, 2, рис. 5). Незначительное снижение активности в опухоли происходит к 24 ч, снижение в два раза - к 48 ч после введения ¹³¹ I-MC. В других органах к этому сроку наблюдается выведение активности до фонового уровня. Результаты, полученные при исследовании влияния срока хранения ¹³¹І-МС на его биораспределение, представлены в табл. 3.

8

Рис. 5. Распределение активности по органам и тканям мышей с перевитой меланомой B16 после внутривенного введения ¹³¹I-MC.

²¹¹At-MC. Фармакокинетика Наблюдается значительное сходство фармакокинетики вводимого соединения в органах и тканях интактных мышей (табл. 4) и мышей с перевитой пигментной меланомой (табл. 5). Накопление ²¹¹Аt-МС в опухоли достигает максимума (6,2 %/г) через 5 ч; снижение радиоактивности в меланоме в два раза наблюдается через 18 ч после введения.

11 - 11 - 11 - 11 - 12 - 12 - 12 - 12 -			Время после	введения		
Органы/ ткани	10 мин	30 мин	1 ч	3ч	5ч	24 ч
Кровь	4,96 ± 0,49	$4,21 \pm 0,30$	$3,38 \pm 0,30$	$1,75 \pm 0,20$	$1,44 \pm 0,18$	$0,69 \pm 0,14$
Глаза	$0,04 \pm 0,02$	$0,06 \pm 0,02$	$0,03 \pm 0,01$	Фон	Фон	Фон
Щитовидная железа	$0,72 \pm 0,29$	$0,76 \pm 0,21$	$1,25 \pm 0,35$	$4,23 \pm 1,81$	$5,66 \pm 1,80$	$3,54 \pm 2,148$
Печень	10,29 ± 1,69	9,76 ± 1,23	7,28 ± 1,32	$3,20 \pm 0,80$	$2,11 \pm 0,61$	$0,51 \pm 0,11$
Почки	$2,82 \pm 0,30$	$2,28 \pm 0,18$	$0,71 \pm 0,32$	$0,82 \pm 0,08$	$0,61 \pm 0,15$	$0,07 \pm 0,01$
Мочевой пузырь		$5,64 \pm 0,79$	$8,52 \pm 0,54$	$15,15 \pm 4,23$	21,31 ±0,37	-
Желудок	$2,43 \pm 0,30$	$6,28 \pm 1,58$	$4,04 \pm 0,64$	$5,75 \pm 1,85$	$13,34 \pm 6,67$	$0,71 \pm 0,39$
Тонкий кишечник	9,83 ± 3,36	$29,70 \pm 3,05$	$40,00 \pm 1,05$	45,37 ± 5,63	$24,10 \pm 5,30$	$1,25 \pm 0,49$
Толстый кишечник	$2,27 \pm 0,25$	$2,05 \pm 0,57$	$2,00 \pm 0,80$	$28,10 \pm 3,03$	48,81 ± 19,42	$20,72 \pm 2,52$
Мышечная ткань	50,87 ± 16,79	$21,60 \pm 4,97$	$19,80 \pm 2,48$	$0,53 \pm 0,10$	Следы	Следы
Кожа (%/г)	7,30 ± 0,55	$11,82 \pm 1,53$	9,58 ± 0,42	$4,22 \pm 0,42$	$2,08 \pm 0,67$	$0,76 \pm 0,15$
Скелет (%/г)	6,03 ± 1,38	$5,85 \pm 0,60$	4,64 ± 1,01	$1,08 \pm 0,22$	$1,00 \pm 0,65$	Следы
Выведение		² Denselver and the second secon				$63,50 \pm 18,03$

Таблица 1. Распределение активности по органам и тканям интактных лабораторных животных (белые беспородные крысы) без блокады щитовидной железы при внутривенном введении ¹³¹I-MC (% от введенной активности).

Таблица 2. Распределение активности по органам и тканям лабораторных мышей самок F1 (CBA×C57Bl) с перевитой меланомой B16 с блокадой щитовидной железы KI при внутривенном введении ¹³¹I-MC.

	Время после введения					
Органы/ ткани	30 мин	<u>ан 1</u> 14 год	3 4	5ч	24 ч	48 ч
Кровь (%)	$2,85 \pm 0,77$	$2,00 \pm 0,51$	1,96 ± 0,59	1,30 ± 0,33	$0,18 \pm 0,05$	Фон
Щитовидная железа (%/ г)	0,36 ± 0,10	0,37 ± 0,10	0,71 ± 0,21	0,85±0,22	1,25 ± 0,43	0,63 ± 0,26
Печень (%) (%/г)	$10,26 \pm 3,31 \\ 9,32 \pm 3,02$	$11,15 \pm 3,68$ $10,13 \pm 3,35$	9,25 ± 2,89 8,41 ± 2,53	$7,15 \pm 2,00 \\ 6,50 \pm 1,73$	$0,50 \pm 0,21$ $0,45 \pm 0,19$	$0,24 \pm 0,10$ $0,22 \pm 0,09$
Почки (%) (%/г)	$1,98 \pm 0,56$ 7,72 + 2,19	$1,11 \pm 0,23$ $4,33 \pm 0,90$	$\begin{array}{c} - 0,56 \pm 0,22 \\ 2,18 \pm 0,34 \end{array}$	$0,43 \pm 0,17$ $1,68 \pm 0,65$	$\begin{array}{c} 0,02 \pm 0,00 \\ 0,08 \pm 0,00 \end{array}$	$\begin{array}{c} 0,03 \pm 0,00 \\ 0,12 \pm 0,00 \end{array}$
Желудок (%)	$2,88 \pm 1,56$	$3,26 \pm 1,72$	3,10 ± 1,63	$2,70 \pm 1,42$	$0,18 \pm 0,10$	$0,03 \pm 0,02$
Тонкий кишечник (%)	29,70 ± 16,15	40,90 ± 22,47	43,00 ± 23,62	27,70 ± 15,22	0,90 ± 0,49	0,10±0,05
Толстый кишечник (%)	2,02 ± 1,26	$0,70 \pm 0,56$	7,60 ± 4,55	13,30 ± 9,31	1,20 ± 0,85	0,10 ± 0,06
Мышцы (%) (%/г)	$7,80 \pm 2,01$ $1,15 \pm 0,30$	$5,10 \pm 1,30$ $0,78 \pm 0,21$	5,20 ± 1,34 0,76 ± 0,24	$4,20 \pm 1,25 \\ 0,64 \pm 0,19$	Фон	Фон
Кожа (%) (%/г)	11,61 ± 2,3 5,31 ± 1,15	$4,20 \pm 1,11$ $2,10 \pm 0,55$	$4,80 \pm 1,38$ $2,42 \pm 0,70$	$2,70 \pm 0,72 \\ 1,35 \pm 0,36$	$0,90 \pm 0,33$ $0,45 \pm 0,17$	$\begin{array}{c} 0,16 \pm 0,06 \\ 0,08 \pm 0,03 \end{array}$
Мочевой пузырь (%)		14,10 ± 5,03	13,44 ± 5,38	26,70 ± 9,53		
Опухоль (%/г)	$2,90 \pm 1,10$	$2,93 \pm 1,58$	$5,00 \pm 2,70$	$4,40 \pm 2,10$	$2,50 \pm 1,34$	$1,70 \pm 0,92$
Выведение (%)	Set to here the	e estado - 1888			92,50 ± 18,93	95,40 ± 27,19

_

самок F1 (CBA×C57B1) с перевитой введенной ¹³¹І-МС (% от ч после внутривенного введения мышей и тканям лабораторных ŝ меланомой В16 без блокады щитовидной железы через Таблица 3. Распределение активности по органам активности).

Органы/ ткани Кровь Щитовидная железа, %/ г Печень Почки Точкий кишечник Толстый Кишечник Мышцы	$3 + \frac{3 + 3}{0,71 \pm 0,21}$ $0,71 \pm 0,21$ $0,08 \pm 0,02$ $4,20 \pm 1,07$ $0,33 \pm 0,09$ $1,40 \pm 0,70$ $24,80 \pm 12,50$ $24,60 \pm 15,20$ $8,10 \pm 2,25$	$\begin{array}{c} 1 \text{ cyr} \\ 1 \text{ cyr} \\ 1,41\pm 0,37 \\ 0,23\pm 0,06 \\ 6,77\pm 1,76 \\ 6,77\pm 1,76 \\ 0,69\pm 0,16 \\ 1,41\pm 0,52 \\ 31,10\pm 10,20 \\ 24,20\pm 8,30 \\ 24,20\pm 8,30 \\ 6,60\pm 2,00 \end{array}$	Срок после наготов 4 сут 2,06 ± 0,71 3,60 ± 0,05 3,60 ± 0,05 8,10 ± 2,16 0,92 ± 0,25 4,36 ± 2,71 23,80 ± 13,10 До 48,0 5,10 ± 1,36	ыления препарата 6 сут 2,47 ± 0,63 0,35 ± 0,12 0,35 ± 0,12 11,78 ± 3,02 11,05 ± 0,28 1,05 ± 0,28 1,05 ± 0,28 1,05 ± 0,28 1,23 ± 3,10 7,23 ± 3,10 7,23 ± 3,10 7,23 ± 3,10 7,23 ± 3,10 7,23 ± 1,32	8 cyr 8 cyr $3,43 \pm 0,92$ $0,57 \pm 0,18$ $10,38 \pm 3,85$ $0,66 \pm 0,17$ $4,58 \pm 1,95$ $32,64 \pm 11,10$ $31,73 \pm 13,20$ $1,26 \pm 0,28$	$\frac{11 \text{ cyr}}{2,67 \pm 0,73}$ $2,67 \pm 0,73$ $0,33 \pm 0,12$ $7,55 \pm 2,72$ $0,92 \pm 0,27$ $0,92 \pm 0,27$ $3,58 \pm 1,23$ $3,58 \pm 1,23$ $15,70 \pm 6,74$ $15,70 \pm 6,74$
Кожа	$1,96 \pm 0,58$	$3,50 \pm 1,05$	$1,92 \pm 0,71$	$5,23 \pm 1,72$	$5,86 \pm 1,54$	$4,12 \pm 1,85$
Опухоль, %/г	$3,60 \pm 1,10$	$4,15 \pm 1,20$	$3,70 \pm 2,00$		$4,87 \pm 1,92$	$5,00 \pm 2,05$
Мочевой пузырь	$11,50 \pm 4,50$	$16,10 \pm 5,21$	$9,50 \pm 3,41$	$21,85 \pm 6,66$	$19,21 \pm 5,73$	13,41 ± 4,75

Таблица 4. Распределение активности по органам и тканям интактных мышей самок F1 (CBA×C57B1) без блокады щитовидной железы при внутривенном введении ²¹¹ At-MC (% от введенной активности).

	Время после введения					
Органы/ткани	3ч	5ч	12 ч	18 ч		
Кровь	5,4 ± 2,8	$6,90 \pm 2,10$	6,35 ± 2,62	следы		
Щитов. железа	$4,70 \pm 1,90$	7,80 ± 1,20	5,07 ± 1,72	13,10 ± 3,63		
Печень	7,92 ± 1,45	7,90 ± 1,50	7,55 ± 1,51	$5,40 \pm 1,00$		
Почки	$2,27 \pm 0,82$	$2,00 \pm 0,45$	$1,25 \pm 0,34$	Следы		
Желудок	6,08 ± 1,56	$12,40 \pm 5,23$	$9,52 \pm 4,28$	7,85 ± 2,05		
Тонк.кишечник	7,96 ± 2,44	$7,25 \pm 1,45$	7,20 ± 1,80	7,07 ± 1,23		
Толст.кишечник	6,65 ± 1,75	6,44 ± 1,52	5,50 ± 1,75	4,92 ± 2,12		
Мышцы	Следы	Следы	Следы	Следы		
Кожа, %/ г	2,41 ± 2,64	3,37 ± 1,37	5,47 ± 1,80	$4,58 \pm 2,02$		
Мочевой	31,00 ± 9,00	27,83 ± 5,52				
пузырь	ter a ser a se					

Табл. 5. Распределение активности по органам и тканям мышей самок $F_1(CBAxBI)$ с перевитой опухолью меланома B16 после введения ²¹¹At-MC (% от введенной активности).

and the second	e de la composición d							
- A-	Время после ведения							
Органы/ткани	1ч	3'ч	5 ч	12 ч	18 ч			
Кровь	Следы	3,65 ± 0,15	Следы	$4,51 \pm 1,45$	Следы			
Щитовидная железа	0,90 ± 0,30	3,52 ± 1,08	3,56 ± 2,14	8,65 ± 1,65	11,35 ± 0,56			
Печень	8,75 ± 1,85	6,95 ± 0,75	7,71 ± 1,39	$6,64 \pm 0,52$	$7,30 \pm 0,40$			
Почки	$1,30 \pm 0,10$	1,57 ± 0,73	1,40 ± 0,20	$1,80 \pm 0,95$	$2,15 \pm 0,15$			
Желудок	8,15 ± 1,25	9,25 ± 3,95	13,24 ± 3,36	$6,45 \pm 1,50$	$9,15 \pm 1,90$			
Тонк.кишечник	$11,20 \pm 3,95$	8,80 ± 1,85	6,55 ± 2,65	5,92 ± 1,23	$6,32 \pm 0,88$			
Толст.кишечник	3,35 ± 0,25	6,43 ± 2,37	5,20 ± 2,00	$4,44 \pm 0,56$	4,95 ± 1,35			
Мышцы	Следы	Следы	Следы	Следы	Следы			
Кожа, %/ г	$2,\!60\pm0,\!32$	3,53 ± 1,12	3,93 ± 0,19	$7,33 \pm 0,14$	$5,77 \pm 2,15$			
Опухоль, %/г	$1,80 \pm 0,05$	$3,00 \pm 0,90$	6,20 ± 1,90	$2,80 \pm 0,75$	3,20 ± 0,87			
Скелет	Следы	Следы	Следы	Следы	Следы			
Глаза	-	Фон	Фон		-			
Мочевой	13,40 ± 2,00	18,20 ± 2,00	20,10 ± 3,00					
пузырь				1. A				

12

13

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В проведенных исследованиях получена количественная оценка степени селективности действия ²¹¹At-MC на клетки пигментной меланомы по сравнению с непигментированными клетками *in vitro*, а также сопоставлены закономерности биологического поведения радиоактивных соединений на основе MC *in vitro* и *in vivo*.

Исспедована кинетика накопления ²¹¹At-MC и ¹³¹I-MC в клетках пигментной меланомы и непигментированных клетках *in vitro*. Результаты свидетельствуют о сходном характере накопления ²¹¹At-MC и ¹³¹I-MC клетками обоих типов *in vitro*: наблюдается увеличение уровня накопленной активности в первые два часа после введения соединений, после чего дальнейшего увеличения аккумулированной активности не происходит (рис. 1, 2). Поскольку уровень накопления ²¹¹At-MC и ¹³¹I-MC в клетках пигментной меланомы *in vitro* в 3 раза выше, чем в непигментированных клетках, а ²¹¹At в ионной форме и Na¹³¹I аккумулируются клетками обоих типов одинаково и в незначительном количестве, можно сделать вывод о том, что высокий уровень селективности накопления ²¹¹At-MC и ¹³¹I-MC в пигментированных клетках достигается за счет молекулы-носителя MC.

Тот факт, что непигментированные клетки китайского хомячка, хотя и в значительно меньшей степени по сравнению с пигментированными клетками, включают ²¹¹At-MC, вероятно, объясняется тем, что MC, как соединение с небольшим молекулярным весом, легко проходит через плазматическую мембрану клеток. Таким образом, устанавливается равновесие между содержанием MC в среде и в непигментированных клетках, не включающих его в клеточные структуры или биохимические процессы. В то же время, проникая в клетки пигментной меланомы, MC образует устойчивый комплекс с меланином опухолевых клеток, нарушает равновесное состояние со средой, в результате чего наблюдается селективное накопление MC в пигментированных клетках меланомы. Предполагается, что основную роль в связывании MC с меланином играет образование заряд-переносящего комплекса (Potts A.M., 19646; Forrest I.S. *et al.*, 1966; Foster R. *et al.*, 1996), а также сил Ван-дер-Ваальса, которые возникают при соединении ароматических колец MC с меланином (Larsson B. and Tjalve H., 1979). Сопоставление полученных данных с работами Link E.M. and Lukewicz S. (1982), в которых показано селективное накопление клетками пигментной меланомы ³²S-MC, а также работами Link E.M. *et al.* (1989) по аккумуляции галогенизированных соединений на основе MC позволяет сделать заключение о том, что включение различных радионуклидов в молекулу MC не влияет на способность последнего аккумулироваться в меланинсодержащих клетках. Таким образом, MC может рассматриваться в качестве носителя для доставки различных радионуклидов к пигментированным клеткам.

Наблюдаемая кинетика накопления ²¹¹At-MC и ¹³¹I-MC позволяет заключить, что для изучения цитотоксического действия *in vitro* клетки достаточно инкубировать в среде с радиоактивным соединением в течение 2-3 ч.

На клетках пигментной меланомы человека показано, что летальный эффект ²¹¹At-MC in vitro B 23 pasa выше по сравнению с ²¹¹At в ионной форме (рис. 3), тогда как действие ²¹¹At-MC на непигментированные фибробласты китайского хомячка оказалось в среднем в два раза эффективнее по сравнению с ионной формой ²¹¹Аt (рис. 4). Сопоставление данных, полученных на двух типах клеток, свидетельствует о том, что ²¹¹At-MC in vitro оказывает на порядок более эффективное цитотоксическое действие на пигментированные клетки меланомы по сравнению с непигментированными клетками. Это свидетельствует о высокой степени селективности и цитотоксичности ²¹¹At-MC по отношению к пигментированным клеткам опухоли при незначительном повреждении непигментированных клеток. При этом целенаправленное радиационное воздействие на пигментированные клетки осуществляется за счет специфического взаимодействия МС с меланином опухолевых клеток. Таким образом, при взаимодействии ²¹¹At-MC с клетками пигментной меланомы благодаря избирательному накоплению MC и физическим параметрам α-излучения ²¹¹At в полной мере реализуется принцип мишенности. Необходимо подчеркнуть, что избирательная гибель пигментированных клеток опухоли происходит вследствие α -излучения ²¹¹At, а не действия самого MC, что следует из результатов прелварительных экспериментов, в ходе которых была выбрана концентрация МС, не влияющая на эффективность высева клеток, которая и служила предельно допустимой концентрацией в проводимых исследованиях.

14

На основании данных о высокой степени аккумуляции MC, меченного ²¹¹At и ¹³¹I пигментированными клетками *in vitro* можно ожидать, что эти же закономерности закономерности должны проявляться *in vivo* в виде быстрого селективного накопления ²¹¹At-MC и ¹³¹I-MC в пигментированных опухолях. Для проверки этого положения была изучена фармакокинетика этих соединений у мышей с перевитой меланомой.

Полученные данные свидетельствуют о сходном поведении ¹³¹ I-MC в организме интактных крыс и мышей с привитыми опухолями: быстрое накопление активности сразу после введения и практически полное ее выведение из большинства органов и тканей к 24 ч после введения ¹³¹I-MC (табл. 1. 2). Накопление ¹³¹ I-МС в опухоли достигает 2-3 %/г к первому часу после введения, что близко к накоплению ⁶⁷Ga, принятого в качестве стандарта, через 1-2 сугок после его ввеления. Максимум накопления (в среднем 4.1 %/г) наблюдается через 5 ч после введения. К 24 ч после введения соотношение накопленной активности в опухоли по отношению к нормальным тканям составляет: опухоль:кровь - 36, опухоль:мышцы - 47. опухоль:кожа - 7.8. Полученные данные коррелируют с результатами Link E.M. (1999) по исследованию фармакокинетики ¹³¹I-MC. в которых показано соотношение опухоль:нормальные ткани, равное 9. В наших экспериментах снижение радиоактивности в опухоли в два раза происходило к 48 ч. но оставалось на достаточно высоком уровне (рис. 5). При этом из всех остальных органов и тканей наблюдалось практически полное выведение активности. Таким образом, период с 24 до 48 ч после введения ¹³¹1-МС можно считать наиболее благоприятным для визуализации метастазов меланомы.

Анализ накопления ¹³¹I-МС в глазах экспериментальных животных показал близкий к фоновому значению уровень активности в течение всего времени наблюдения. Это означает, что вводимые концентрации соединения не могут привести к его выраженному накоплению в роговице, содержащей пигментированные клетки и, таким образом, служить причиной патологических изменений самого радиочувствительного компонента глаза – хрусталика. Это заключение подтверждается исследованиями Shaffer R.N. (1952) и Link E.M. *et al.* (1989). Характер изменения уровія активности в органах ЖКТ свидетельствует о преимущественной роли этих органов в выведении ¹³¹I-МС: максимальная активность после инъекции ¹³¹I-МС регистрировалась в желудке через 30 мин, в тонком кишечнике - через 1 ч, в толстом кишечнике - через 5 ч после введения. Значительные показатели накопленной активности в мочевом пузыре также свидетельствуют об активной роли мочевыделительной системы в выведении ¹³¹I-МС. Поскольку измерение активности как в органах ЖКТ, так и в мочевом пузыре производилось вместе с содержимым этих органов, предполагается значительное снижение уровня накопленной активности и, следовательно, дозы облучения этих органов при их очистке.

Исследование фармакокинетики препарата ¹³¹I-MC в разные сроки после его синтеза показало, что соединение не меняет своего биологического поведения в течении 11 суток после изготовления (табл. 2, 3). На основании этого можно сделать заключение о достаточной стабильности ¹³¹I-MC *in vivo* и его пригодности для диагностики и терапии пигментированных новообразований.

В экспериментах по исследованию фармакокинетики ²¹¹At-MC показано близкое κ ¹³¹I-MC биораспределение ²¹¹At-MC по основным тканям и органам (табл. 5, 6), что подтверждает сходство биохимических свойств ²¹¹At и ¹³¹I, отмечаемое рядом авторов (Hamilton J.G. *et al.*, 1954; Visser G.W.M. *et al.*, 1981; Vaidyanathan G. *et al.*, 1996; Тултаев А.В. и соавт., 2001).

На протяжении всего срока наблюдения после введения ²¹¹At-MC увеличивается аккумуляция активности в щитовидной железе. Как известно, ионный астат обладает сходной с ближайшем гомологом йодом тропностью к этому органу (Hamilton J. G. *et al.*, 1953, 1954; Visser G.W.M. *et al.*, 1981). Повышенный уровень накопления активности при введении астатированного MC, вероятно, является одним из свидетельств деастатинации ²¹¹At-MC *in vivo*. Кроме того, это подчеркивает необходимость блокады щитовидной железы при проведении дальнейших работ с ²¹¹At-MC.

Отмечается более медленное по сравнению с ¹³¹I-MC выведение ²¹¹At-MC, а также более активное накопление ²¹¹At-MC в органах ЖКТ на протяжении всего срока наблюдения. Высокие показатели накопленной активности в желудке и кишечнике говорят о преимущественной роли этих органов в выведении. Однако

хорошо известно, что гастроэнтероколиты и лучевые циститы, возникающие при ввелении радионуклидов с целью диагностики или терапии новообразований. не являются факторами, ограничивающими применение того или иного метода РНД или РНТ (Касаткин Ю.Н. и соавт., 1999). Учитывая, что основной вклад в облучение органов ЖКТ и мочевого пузыря вносит излучение радионуклидов, находящихся в содержимом этих органов, а также принимая во внимание короткий пробег а-частиц, для уменьшения дозовой нагрузки при введении радиоактивных соединений можно рекомендовать очищение желудка и мочевого пузыря. Сопоставление полученных результатов с данными Тултаева А.В. и соавт. (2001) о том, что ЖКТ является системой, в которой наблюдается наибольшая аккумуляция активности при введении хлорида ²¹¹At, позволяет сделать заключение о недостаточной стабильности используемого комплекса ²¹¹At-MC и его деастатинации in vivo. Visser G.W.M. et al. (1981) отмечают, что дегалогенизация in уго является распространенным и хорошо известным фактом для органических галоген-производных. Сложный характер связывания ²¹¹At с другими компонентами, по-видимому, объясняется большим размером атома, и является на сегодняшний день одним из основных препятствий на пути использования астатированных соединений в клинике (Wilbur D.S., 2001).

Накопление ²¹¹ Аt-MC в опухоли достигает максимума (6,4 %/г) к 5 ч после введения и остается на достаточно высоком уровне на протяжении 12 часов. Такой характер накопления ²¹¹ At-MC в пигментной меланоме свидетельствует о стабильности полученного комплекса *in vivo* по крайней мере в течение нескольких часов. На основании данных, полученных по летальному действию ²¹¹ At-MC на клетки меланомы *in vitro*, а также учитывая период полураспада ²¹¹ At (7,2 ч), можно полагать, что при использовании данного препарата в комплексной терапии пигментной меланомы этого времени должно быть достаточно для мишенного воздействия на диссеминированные опухолевые клетки в целях предотвращения процесса метастазирования.

Таким образом, в ходе проведенных экспериментов основные закономерности действия МС, меченного ²¹¹At и ¹³¹l, наблюдаемые на пигментированных и непигментированных клетках *in vitro*, подтвердились при введении этих соединений *in vivo*. *In vitro* и *in vivo* показана способность соединений на основе

MC селективно накапливаться в пигментированных клетках меланомы при минимальном накоплении в непигментированных пормальных тканях, что должно приводить к преимущественному повреждению опухолевых клеток.

выводы

1. Исследована кинетика накопления ²¹¹At-MC и ²¹¹At в ионной форме клетками меланомы человека и непигментированными фибробластами пигментной Максимум китайского хомячка in vitro. накопления активности пигментированными клетками достигается через 2-3 ч после введения соединений и в 3 раза превышает уровень накопления непигментированными клетками. Накопление ²¹¹ Аt в ионной форме *in vitro* происходит одинаково у клеток обоих типов. Максимальные значения накопленной активности при введении ²¹¹At в ионной форме на порядок ниже по сравнению с ²¹¹At-MC.

2. Исследована кинетика накопления ¹³¹I-МС и Na¹³¹I клетками пигментной меланомы человека и непигментированными фибробластами китайского хомячка *in vitro*. Характер накопления ¹³¹I-МС и Na¹³¹I в клетках обоих типов *in vitro* аналогичен накоплению ²¹¹At-МС и ²¹¹At в ионной форме. Максимум накопления ¹³¹I-МС в клетках пигментной меланомы достигается через 2 ч после введения и в 3 раза выше накопления этого соединения в непигментированных клетках. Накопление Na¹³¹I происходит в обоих типах клеток одинаково и в незначительной степени.

3. По критерию выживаемости клеток пигментной меланомы человека *in vitro* цитотоксическое действие ²¹¹At-MC на клетки пигментной меланомы более чем в 20 раз превышает эффективность ²¹¹At в ионной форме.

4. По критерию выживаемости фибробластов китайского хомячка *in vitro* эффективность действия ²¹¹At-MC на непигментированные клетки в среднем в 2 раза выше по сравнению с действие ²¹¹At в ионной форме.

5. Комплекс ²¹¹At-MC *in vitro* оказывает выраженное селективное действие на пигментированные опухолевые клетки по сравнению с непигментированными: эффективность цитотоксического действия ²¹¹At-MC на порядок превышает эффективность действия ²¹¹At-MC на непигментированные клетки.

18

6. Исследована фармакокинетика ¹³¹I-МС в организме мышей с трансплантированной пигментной меланомой и у интактных животных. Максимум накопления активности в опухоли достигается через 5 ч после внутривенного введения ¹³¹I-МС и в среднем составляет 4,1 %/ г. Уровень накопленной активности в опухоли остается практически постоянным на протяжении 24 ч, снижение радиоактивности в два раза наблюдается через 48 ч после введения. При этом ¹³¹I-МС практически полностью выводится из всех основных органов и тканей к концу первых суток после введения.

7. Фармакокинетика ¹³¹I-MC в организме мышей-опухоленосителей не меняется в течение 11 суток после его изготовления, что свидетельствует о стабильности препарата.

8. Изучена фармакокинетика ²¹¹At-MC в организме мышей с перевитой пигментной меланомой и интактных животных. Максимальное накопление ²¹¹At-MC в опухоли наблюдается через 5 ч после внутривенного введения соединения и составляет 6 %/ г. Уровень накопленной активности незначительно снижается к 12 ч после введения.

9. Биораспределение ²¹¹At-MC в организме животных отличается более медленным выведением соединения по сравнению с ¹³¹I-MC из большинства органов и тканей, более высоким уровнем активности, аккумулированной в органах ЖКТ и щитовидной железе, что, вероятно, является следствием недостаточно высокой стабильности исследуемого комплекса ²¹¹At-MC *in vivo*.

10. Полученные экспериментальные данные дают основание полагать, что МС, меченный изотопами йода, может быть использован в качестве эффективного препарата для диагностики и терапии пигментной меланомы и ее метастазов.²¹¹At в перспективе может рассматриваться в качестве эффективного адъюванта в комплексной терапии пигментной меланомы для мишенного воздействия на диссеминированные клетки и микрометастазы этого новообразования.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

 Shmakova N.L., Krasavin E.A., Norseev Yu.V., Fadeeva T.A., Kutsalo P.V.,²¹¹Atlabelled methylene blue for targeted therapy of disseminated melanoma: experimental approach // 27th Annual Meeting of the BNMS: Abstr., Nucl. Med. Commun., 1999, V. 20, p. 466.

Shmakova N.L., Govorun R.D., Krasavin E.A., Kozubek S., Kutsalo P.V., Lukashova E., Repin M.V., Abou-Zeid O.A., Fadeeva T.A., Radiobiological research with mammalian cells at JINR accelerators // Abstr. workshop on " Higher-order Structure of Cell Nuclei and Genetic Effects of Radiation", Nov 7-8, 2000, Valtice, Czech Republic, pp. 28-29.

3. Куцало П.В., Шмакова Н.Л., Фадеева Т.А., Норсеев Ю.В., Красавин Е.А., Избирательное действие²¹¹Аt в комплексе с метиленовым синим на клетки пигментной меланомы человека in vitro. // Тр. 4-ой Научной конференции молодых ученых и специалистов ОИЯИ, Дубна, 2000, С. 211.

4. Shmakova N.L., Fadeeva T.A., Norseev Ju.V., Krasavin E.A., Kutsalo P.V., Selective action of ²¹¹At-methylene blue on human melanoma cells in vitro // Abstr. of Int. Conf. «Modern problems of radiobiology, radiology and evolution», 2000, Dubna, p. 152.
5. Shmakova N.L., Fadeeva T.A., Norseev Ju.V., Krasavin E.A., Kutsalo P.V., Selective Action of ²¹¹At in Complex with Methylene Blue on Human Melanoma Cells in Vitro // Abstr. of Int. Conf. on Current Status of Nuclear Medicine and Radiopharmaceutics, Obninsk, Oct 23-27, 2000, p. 308-309.

6. Шмакова Н.Л., Норсеев Ю.В., Куцало П.В., Красавин Е.А., Кодина Г.Е., Корсунский В.Н., Гольтяпин Ю.В., Сорокин В.П., Экспериментальные подходы к мишенной радиотерапии пигментной меланомы человека. // Труды Международного симпозиума под эгидой ЮНЕСКО «Проблемы биохимиии, радиационной и космической биологии» и 2-х Сисакяновских чтений, Т. 1, Д19-2002-95, Дубна, 2001, С. 183-187.

Шмакова Н.Л., Норсеев Ю.В., Куцало П.В., Фадеева Т.А., Красавин Е.А.,
 Экспериментальные подходы к мишенной радиотерапии с использованием ²¹¹At. //
 ОИЯИ, Р19-2001-23, Дубна, 2001, 16 с.

8. Шмакова Н.Л., Норсеев Ю.В., Куцало П.В., Красавин Е.А., Фадеева Т.А., Кодина Г.Е., Корсунский В.Н., Гольтяпин Ю.В., Сорокин В.П., Возможности применения ²¹¹Ат и ¹³¹ в комплексе с метиленовым синим в мишенной радиотерапии пигментной меланомы. // Медицинская физика, 2001, № 11, С. 33-34. 9. Кушало П.В., Экспериментальные подходы к мишенной радиотерапии пигментной меланомы человека. // Тр. 6-ой Научной конференции молодых ученых и специалистов ОИЯИ, Дубна, 2002, С. 247-250. 10 Shmakova N.L., Norseev Ju.V., Kutsalo P.V., Fadeeva T.A., Krasavin E.A., Kodina G.E., Goltjapin Yu.V., Sorokin V.P., Slobodjnik I.I., Korsunskji V.N., Experimental Approach to the targeted therapy using ²¹¹At // Application of Lasers in Atomic Nuclei Research, Poznan, Poland, 2001, E15-2002-84, Dubna, 2002, pp.228-235. 11. Шмакова Н.Л., Куцало П.В., Норсеев Ю.В., Фадеева Т.А., Красавин Е.А., Кодина Г.Е., Гольтяпин Ю.В., Сорокин В.П., Слободяник И.И., Корсунский В.Н., Экспериментальные подходы к радионуклидной терапии и диагностике пигментной меланомы с использованием препаратов на основе метиленового синего. // Медицинская радиология и радиационная безопасность, 2002, 47. С. 5-13. 12. Yu.V. Goltyapin, T.A. Fadeeva, G.E. Kodina, V.N. Korsunsky, E.A. Krasavin, P.V. Kutsalo, Yu.V. Norseev, N.L. Shmakova, I.I. Slobodyanik, V.P. Sorokin, Prospects of aand β -emitters in complex with methylene blue application for diagnostic and therapy of human pigmented melanoma. // Abstr. of Russian-American Scientific Conf. «Radioimmunoimaging and Radioimunotherapy», 2002, Moscow, p. 18.

Получено 11 ноября 2002 г.