# ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

X-29

ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

М.Н. Хачатурян

1862

ПОЛНЫЕ СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ НЕЙТРОНОВ С НУКЛОНАМИ И ЯДРАМИ В ИНТЕРВАЛЕ ЭНЕРГИЙ ОТ 2,6 ДО 8,3 ГЭВ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель доктор физико-математических наук

И.В. Чувило

Дубна 1964

## М.Н. Хачатурян

1862

## ПОЛНЫЕ СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ НЕЙТРОНОВ С НУКЛОНАМИ И ЯДРАМИ В ИНТЕРВАЛЕ ЭНЕРГИЙ ОТ 2,6 ДО 8,3 ГЭВ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

> Научный руководитель доктор физико-математических наук

> > И.В. Чувило

| Объедлийналай | пистенут |
|---------------|----------|
| CHERTER ROLL  | одований |
| L BHERLO      | AHA I    |

Дубна 1964

Знание полных сечений взаимодействия элементарных частиц с нуклонами и ядрами имеет фундаментальное значение для понимания структуры элементарных частиц и природы сил взаимодействия между ними.

Развитие ускорительной техники за последние годы дало возможность получить значительную информацию по полным сечениям взаимодействия л -мезонов. к \_ мезонов и протонов с протонами в широком диапазоне энергий. Имеющиеся до последнего времени работы по эффективным сечениям взаимодействия нейтронов с нуклонами и ядрами в основном относятся к области энергий порядка сотен миллионов электрон вольт /1,2,3/. Очевидно, что указанные работы не могли дать сколько-нибудь полной картины поведения эффективных сечений взаимодействия нейтронов с нуклонами и ядрами в области высоких энергий и тем более дать возможность провести какое-либо сравнение с данными по эффективным сечениям взаимодействия между другими элемэнтарными частицами. Возникающие здесь вопросы представляют интерес в связи с проверкой различных теоретических гипотез об асимптотическом поведении сечений в области высоких энергий и др. Целью реферируемой диссертации было восполнить пробел по полным сечениям взаимодействия нейтронов с нуклонами и ядрами в интервале энергий от 2,6 до 8,3 Гэв и осветить ряд вопросов, на которые современная теория не может дать сколько-нибудь удовлетворительного ответа. К наиболее важным из них относятся вопросы, связанные с определением абсолютных значений полных сечений взаимодействия нейтронов с протонами и, следовательно, разностей соответствующих сечений взаимодействия нейтронов с протонами и протонов с протонами, характер поведения полных сечений взаимодействия нейтронов с протонами в указанном интервале энергий, абсолютные величины поправок на экранирование нейтрона протоном в ядре дейтрона при высоких энергиях, полные и неупругие сечения взаимодействия нейтронов с различными ядрами и др.

Результаты, изложенные в диссертации, докладывались на XI международной конференции по физике частиц высоких энергий и опубликованы в работах /4-11/. Описанные в диссертации исследования были выполнены на выведенном под углом 0° пучке нейтронов, генерируемых протонами на бериллиевой мишени, внутри вакуумной камеры синхрофазотрона Лаборатории высоких энергий.

Диссертация состоит из четырех глав. В первой главе излагается описание опытов по формированию пучка нейтронов, измерению его состава и интенсивности.

В этой же главе дается описание детектора нейтронов. Детекция нейтронов вы-

соких энергий представляет собой сложную экспериментальную задачу. В настоящей диссертации для детекции нейтронов с энергией в несколько миллиардов электронвольт впервые используется черенковский гамма-спектрометр полного поглошения из свянцового стекла размерами  $50 \times 50 \times 50 \times 50$  см<sup>3</sup>. В тех взаимодействиях, в которых энергия налетающего нейтрона полностью передается  $\pi^{\circ}$  -мезонам, число черенковских фотонов, излученных частицами электронно-фотонного ливня, должно быть пропорционально энергии налетающей частицы. Для определения энергетических порогов гамма-спектрометра и оценки средних эффективных энергий нейтронов спектрометр был прокалиброван на пучке моноэнергетических электронов в интервале энергий 0,5 - 3,0 Гэв.

Для оценки средней эффективной энергии нейтронов под углом 0<sup>0</sup>, образующихся при взаимодействии протонов, энергия которых равна 3,3; 4,6; 6,5; 7,9 и 9,5 Гэв с бериллиевой мишенью используется спектр нейтронов, полученный для протонов с энергией 6,2; 2,2 и 9,0 Гэв<sup>/12,13/</sup>. Численным интегрированием кривых были найдены средние эффективные энергии  $E_{gh}$ , граничные значения эффективных спектров  $E_{min}$  и величины полуширины кривых на полувысоте  $\delta$ .

Эти данные приводятся в таблице 1.

Таблица 1

| Ep   | , Гэв | 3,3          | 4,6          | 6,5          | 7,9           | 9,5           |
|------|-------|--------------|--------------|--------------|---------------|---------------|
| Еэф  | Гэв   | 2,6          | 3,9          | 5,5          | 6,9           | 8,3           |
| Emin | Гэв   | I,8          | 2,9          | 4,2          | 5,5           | 6,7           |
| Emax | Гэв   | 3,3          | 4,6          | 6,5          | 7,9           | 9,5           |
| Eπ   | Гэв   | 2,2          | 3,4          | 4,9          | 6,2           | 7 <b>,</b> 6  |
| δ    | Гэв   | <u>+</u> 0,5 | <u>+</u> 0,6 | <u>+</u> 0,7 | <u>+</u> 0,75 | <b>±0,</b> 85 |

Во второй главе описываются измерения полных сечений взаимодействия нейтронов с эффективной энергией 2,6; 3,9; 5,5; 6,9 и 8,3 Гэв с протонами: геометрия и постановка опыта, методика измерений и обработка данных, поправки и возможные систематические ошибки.

Полные сечения взаимодействия нейтронов с протонами измерялись разностным методом по ослаблению пучка нейтронов в мишенях из полиэтилена и углерода. Гео-

4

метрия опыта, которая определялась расстоянием между мишенью и конвертором, удовлетворяла условиям "хорошей геометрии" (  $\theta/2 = 0,228^{\circ}$ ).

Полученные в эксперименте величины полных сечений взаимодействия нейтронов с протонами приведены в таблице 2. Указанные в таблице ошибки являются статистическими.

| Энер | гия нейтронов<br>Гав | 2,6          | 3,9          | 5,5          | 6,9          | 8,3          |
|------|----------------------|--------------|--------------|--------------|--------------|--------------|
| σ;   | , мо                 | 38,I         | 43,4         | 41,2         | 39,3         | 40,8         |
| Δσ   | , мб                 | <u>+</u> 2,6 | <u>+</u> I,6 | <u>+</u> I,6 | <u>+</u> 1,7 | <u>+</u> 1,9 |

Экспериментальные данные по полным сечениям взаимодействия нейтронов с протонами приведены на рис. 1. Для сравнения на том же рисунке приведены данные по полным сечениям взаимодействия протонов с протонами. Из рис. 1 видно, что полное сечение  $\sigma_{t}$  (пр) в интервале энергий от 1,4 до 8,3 Гэв изменяется мало, а в интервале энергий от 5,5 до 8,3 Гэв полные сечения пр и рр взаимодействий в пределах экспериментальных ошибок совпадают. По-видимому,  $\sigma_{p} = \sigma_{p}$  и при более высоких энергиях взаимодействующих нуклонов. Используя изотоническую инвариантность, можно получить следующее выражение для сечения нуклон-нуклонного взаимодействия в состоянии с T = 0:  $\sigma \cdot (T=0) = 2 \sigma_{pp} - \sigma_{pp}$ . Найденные таким способом сечения  $\sigma(T=0)$  и  $\sigma(T=1)$  в зависимости от энергии взаимодействующих нуклонов приведены на рис. 2. Приведенные данные указывают на то, что при энергиях, превышающих 6 Гэв, сечения нуклон-нуклонного взаимодействия в пределах ошибок эксперимента не зависят от величины изотопического спина нуклон-нуклонной системы.

В работе <sup>/14/</sup> Удгаонкаром были получены соотношения, которые позволяют получить выражения, определяющие зависимость  $\sigma_i$  (np) от энергии в предасимптотической области. Ограничиваясь вкладами вакуумного, квазивакуумного  $\omega$  и  $\rho$  полюсов,  $\sigma_i$  (np) можно представить в виде

$$\sigma(np) = \frac{k E + l E^{q} - n E^{\omega} + t E^{\rho}}{(E^{2} - M^{2})^{\frac{1}{2}}},$$

где Е – полная энергия нейтрона в л.с.к.; М – масса нуклона; q,  $\omega$  и  $\rho$  – эначения квазивакуумной,  $\omega$  в  $\rho$  траекторий при t=0; k,  $\ell$ , в и t – функция вычетов соответствующих полюсов.

Таблица З

| Enp | , Гэв | 2,6  | 3,9  | 5,5  | 6,9  | 8,3  |
|-----|-------|------|------|------|------|------|
| σ.  | , мб  | 43,0 | 41,6 | 40,0 | 39,8 | 39,3 |

Сравнивая табл. 2 и 3, можно видеть, что экспериментально измеренные и вычислениые на основании полюсов Редже величины сечений в интервале энергий 3,9 - 8,3 Гэв довольно хорошо согласуются друг с другом.

В третьей главе описываются измерения полных сечений взаимодействия нейтронов с нейтронами. Измерения производились разностным методом с помощью мишеней из обычной и тяжелой воды в условиях "хорошей геометрии" (  $\theta/2 = 0,228^{\circ}$ ). Полученные из эксперимента величины полных сечений взаимодействия нейтронов с нейтронами при средней эффективной энергии 5,5 и 8,3 Гэв приведены в табл. 4. Указаиные ошибки являются статистическими. В величины сечений ие включена поправка на экранировку нейтрона протоном в дейтроне.

Таблица 4

| σ(nn) |     |              |       | σ(pp)   |     |     |  |
|-------|-----|--------------|-------|---------|-----|-----|--|
| Е,    | Гэв | 5,5          | 8,3   | Е, Гэв  | 5,0 | 9,0 |  |
| σ, ,  | мб  | 34,8         | 31,5  | 🦏 мб    | 42  | 40  |  |
| Δσ ,  | мб  | <u>+</u> I,6 | ± 1,7 | Δσ , ΜΟ | ± 1 | ± I |  |

Величину поправки на экранирование можио оценить из известных экспериментальных величин для  $\sigma_{pp}$  и  $\sigma'_{nn}$ , измеренных при одной и той же энергии. Здесь  $\sigma'$  сечение взаимодействия нейтронов с нейтронами без учета поправки на экранирование в дейтроне.

Из условия зарядовой симметрии ядерных сил (если пренебречь электромагнитными взаимодействиями) следует, что  $\sigma_{pp}$  должно быть равно  $\sigma_{nn}$ . Отсюда получаем: δσ

$$\sigma = \sigma - \sigma' = \sigma - \sigma'$$

Предполагая, что в интервале энергий от 5,5 до 8,3 Гэв бо = const для среднего эначения δσ имеем:

$$\delta \sigma = (7,8 + 2) \text{ мб.}$$

Используя измеренные в настоящей работе величины  $\sigma'_{nn}$  и  $\sigma_{np}$  при одной и той

же энергии, можно определить полные сечения взаимодействия нейтронов с дейтронами. Воспользовавшись данными таблиц 2 и 4, получаем:

соответственио для нейтронов с эффективной энергией 5,5 и 8,3 Гэв. Эти данные в пределах экспериментальных ошибок совпадают с  $\sigma$  (pd) (соответственно 78 и 76 мб).

В четвертой главе описываются измерения полных и неупругих сечений взаимодействия нейтронов с ядрами. Сечение  $\sigma(\theta)$  , измеренное для угла  $\theta$  , можно связать с сечением поглощения и сечением упругого рассеяния од с помощью соотношения:

$$\sigma(\theta) = \sigma_{\mathbf{r}} + [1 - \mathbf{F}(\theta)] \sigma_{\mathbf{d}} = \sigma_{\mathbf{r}} + \mathbf{F}'(\theta) \sigma_{\mathbf{d}}.$$

В эксперименте измеряются полное сечение  $\sigma_i$ , сечение поглощения  $\sigma_i$  и  $\sigma_i(\theta)$ . Зная σ(θ) для различных углов θ и для нескольких значений угла hetaвычислив соответствующие значения F(heta), можно определить  $\sigma_{1}$  и  $\sigma_{2}$ , где  $\sigma_{\rm d}$  - сечение дифракционного рассеяния. Вычисленные описанным выше путем  $\sigma_{\rm t}$  , σ, σ и их ошибки для ядер С , Al , Cu , Sn и Рь приведены в таблице 5.

|         | Таб       | ×          |                 |
|---------|-----------|------------|-----------------|
| Элемент | σ., μδ    | σμδ        | σ. μδ           |
| Рь      | 2833 ± 98 | I692 ± 22  | II4I ± 101      |
| Sn      | 1966 ± 83 | I 353 ± 48 | 6I3 <b>±</b> 96 |
| Cu      | I408 ± 72 | 624 ± 35   | 784 🕇 79        |
| Al      | 6I2 ± 30  | 396 ± 17   | 216 ± 34        |
| C ·     | 336 ± 12  | 188 ± 6    | I48 ± I3        |

В этой же главе проведен анализ экспериментальных данных на основании оптической модели. Получены следующие величины для средних значений параметров оптической модели и радиусов ядер:

> $K = (0,48 + 0,03).10^{13} \text{ cm}^{-1}$  $K_1 = (0,12 + 0,04).10^{13} \text{ cm}^{-1}$  $r_0 = (1,26 + 0,02). A^{1/3}.10^{-13} \text{ cm}.$

Константа к, связана также с величиной ядерного потенциала V . Из релятивистского соотношения  $k_1 = \frac{V}{h c \beta}$ 

#### Краткие выводы

В той же главе проведен анализ экспериментальных данных по сечениям взаимодействия нейтронов с ядрами на основе обобщенной дифракционной модели, развитой Глэссгольдом и Грайдером в работе<sup>/16/</sup>. В этой модели для описания взаимодействия нейтронов с ядрами используются четыре параметра. В случае постоянной фазы этими параметрами являются:

1. L (>>1) - число парциальных волн, испытывающих сильное поглощение.

2.  $\beta(0 \le \beta \le 1)$  - непрозрачность для малых эначений  $\ell$ , где  $\ell$  - угловой момент.

3. 2  $\Delta$  (1  $\leq \Delta \leq L$ ) - интервал значений  $\ell$ , в котором  $\beta$  изменяется от  $\beta$  до 0.

а - фаза расходящейся волны.

Рассматривая экспериментальные данные по рассеянию нейтронов ядрами в интервале энергий от 300 Мэв до 8,3 Гэв, можно видеть, что полные сечения взаимодействия нейтронов с ядрами в указанном интервале энергий изменяются довольно сильно. Последнее можно объяснить изменением одного из 3-х параметров, а именно  $\beta$ . Величины  $\beta$ , вычисленные на основании экспериментальных данных, приведены в таблице 6.

| Таблица б |      |               |      |      |      |  |
|-----------|------|---------------|------|------|------|--|
| е, Гэв    | 0,30 | 0 <b>,</b> 70 | I,40 | 5,0  | 8,3  |  |
| РЬ        | 0,97 | 0,99          | 1,00 | 0,94 | 0,98 |  |
| Cu        | 0,93 | 0,97          | 0,99 | 0,94 | 0,99 |  |
| Al        | 0,88 | 0,95          | 0,97 | 0,93 | 0,94 |  |
| С         | 0,82 | 0,89          | 0,94 | 0,89 | 0,93 |  |

На рис. З приведены эксеприментальные величины эффективных сечений взаимодействия нейтронов с ядрами углерода, алюминия, меди и свинца в интервале энергий от 0,3 до 8,3 Гэв. Кривые для полных сечений взаимодействия (сплошная кривая) и для неупругих сечений взаимодействия (штрихованная кривая) нейтронов с ядрами представляют собой теоретические кривые. При вычислениях были использованы данные таблицы 6 и следующие значения параметров обобщенной дифракционной модели:  $L = 1,26.10^{-13}$  k. A<sup>1/3</sup> см;  $\Delta = 0,61.10^{-13}$  k. см и a = 0.

8

1. В настоящей работе показано, что полное сечение взаимодействия нейтронов с протонами в интервале энергий от 2,6 до 8,3 Гэв практически постоянно.

2. Отличие между сечениями  $\sigma_t$  (пр) и  $\sigma_t$  (рр) при энергиях 5,5; 6,9 и 8,3 Гэв находится в пределах экспериментальных ошибок.

3. Анализ поведения полных сечений  $\sigma_t$  (пр),  $\sigma_t$  (рр) и  $\sigma_t$  (рр) показывает, что  $\sigma_t$  (рр) и  $\sigma_t$  (рр) приближаются к асимптотическому значению, равному  $\sigma_A = 40$  мб сверху, в то время как  $\sigma_t$  (пр) стремится к асимптотическому значению снизу.

Указанное поведение было предсказано Удгаснкаром /14/

4. При энергиях, превышающих 5,5 Гэв, взаимодействие не зависит от изотопического состояния NN -системы.

5. Получены величины полных сечений взаимодействия нейтронов с нейтронами при энергии 5,5 и 8,3 Гэв. Определено среднее значение поправки на экранирование нейтрона протоном в дейтроне, равное 7,8 + 2 мб.

6. Из известных σ<sub>nn</sub>, и σ<sub>np</sub>, измеренных в настоящей работе при энергии
 5,5 Гэв и 8,3 Гэв, определены полные сечения взаимодействия нейтронов с дейтронами.
 σ(nd) в пределах экспериментальных ошибок совпадают с σ(pd).

7. Измерены полные и неупругие сечения взаимодействия нейтронов с энергией 8,3 Гэв с ядрами углерода, алюминия, меди, олова и свинца. Полученные данные указывают на то, что полные сечения взаимодействия нейтронов с ядрами достигают максимума при энергии 1,4 Гэв и имеют почти постоянное значение в интервале энергий по 5 до 8,3 Гэв. Неупругие сечения взаимодействия нейтронов с ядрами в интервале энергий от 0,3 до 8,3 Гэв слабо зависят от энергии.

8. Получены средние значения параметров оптической модели:

$$K = (0,48 \pm 0,03) \cdot 10^{13} \text{ cm}^{-1}$$
  

$$K_1 = (0,12 \pm 0,04) \cdot 10^{13} \text{ cm}^{-1}$$

и средняя величина ядерного потенциала V = 24 + 8 Мэв.

9. Дан анализ экспериментальных данных по рассеянию нейтронов на ядрах на основе обобщенной дифракционной модели. Найдены значения параметра непрозрачности  $\beta = 1 - \eta$  ( $\ell$ ) для пяти ядер. Определены радиусы ядер, равные  $L = Rk = \frac{1}{5} \frac{1}{4} \frac{3}{k} \frac{10^{-13}}{10^{-13}}$  Из анализа данных для  $t_0$  получен а величина, равная  $t_0 = (1,26+0,02) \cdot 10^{-13}$  см.

#### Литература

- 1. T. Coor, D.Hill, W.F.Hornyak, L.W.Smith and G.Snow. Phys. Rev., <u>98</u>, 1369 (1955).
- 2. I.H.Atkinson, W.N.Hess, V.Perez-Mendez and R.Wallace. Phys. Rev., <u>123</u>, 1850 (1951)
- 3. J.Friedes et al., Bull. Am. Phys. Soc., 9, 94 (1964).
- 4. Л. Ождяни, В.С. Пантуев, М.Н. Хачатурян, И.В. Чувило, ЖЭТФ 42, 392 (1962).
- 5. В.С. Пантуев, М.Н. Хачатурян. ЖЭТФ 42, 909 (1962).
- 6. М.Н. Хачатурян, В.С. Пантуев, ЖЭТФ 44, 1411 (1963).
- 7. M.Khachaturian, V.Pantuev. Phys. Lett., 7, 80 (1963).
- 8. Г. Коккони. Доклад на Международной конференции по физике высоких энергий в Женеве, стр. 883 (1962).
- 9. М.Н. Хачатурян, В.С. Пантуев. ПТЭ 6, 29 (1963).
- 10. Л. Ождяни, В.С. Пантуев, М.Н. Хачатурян. ПТЭ 2, 173 (1961).

11. В.С. Пантуев, М.Н. Хачатурян, И.В. Чувило. Препринт ОИЯИ, Р-1725 (1964).

- 12. F.Holmquist, UCRL-8559 (1958).
- 13. F.Fowler et al. Phys. Rev., 95, 1026 (1954).
- 14. M.Udgaonkar. Phys. Rev. Lett., 8, 142 (1962).
- 15. В.И. Никаноров. ЖЭТФ 44, 2184 (1963).
- 16. A.Glassgold and K.Greider. Phys. Rev. Lett., 2, 169 (1959).

Рукопись поступила в издательский отдел 29 октября 1964 г.



Кинетическая энергия (Гэв)









Рис. 3.