

Д.Рубио, Х.Эстевес, Х.Брухертзайфер

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ НИКЕЛЯ И КОБАЛЬТА В ЖЕЛЕЗИСТЫХ ЛАТЕРИТАХ РЕНТГЕНОФЛУОРЕСЦЕНТНЫМ МЕТОДОМ

Направлено в журнал "Заводская лаборатория"

При геологическом поиске и промышленной переработке железистых латеритов, содержащих Ni и Co, требуется проводить десятки тысяч элементных анализов в год. Широко используемые в настоящее время химические методы анализа Ni и Co не могут полностью удовлетворить современным требованиям по массовости и экспрессности анализов. Среди различных методов анализа ядерно-физические методы более перспективны с точки зрения решения подобной задачи ^{/1,2,3/}.

Цель данного исследования - разработать рентгенофлуоресцентную методику анализа Ni и Со в железистых латеритах с использованием Si(Li) -детектора.

Железистые латериты обычно содержат следующие элементы: Fe - от нескольких до 60%, Co - до 1%, Ni, Cr и Mn - до 3%, Al - до 15%, Si и Mg- до 20%. Методом рентгенофлуоресцентного анализа /РФА/ невозможно определить содержание Co в железистых латеритах, так как интенсивный пик К $_{\beta}$ -линии Fe с энергией E $_{K\beta}$ = 7,05 кэВ полностью перекрывает более слабый пик К $_{a}$ -линии Co /E $_{Ka}$ = 6,93 кэВ/. Определение Ni по пику К $_{a}$ -линии /E $_{Ka}$ = 7,48 кэВ/ в значительной степени затруднено, так как на этот пик налагается высокоэнергетическая часть пика К $_{\beta}$ линии Fe.Кроме того, влияние матричного эффекта сильно зависит от содержания Fe.

Для успешного решения поставленной задачи мы разработали быстрый и простой метод химического отделения Ni и Co от Fe и других мешающих элементов железистых латеритов.

ХИМИЧЕСКАЯ ПЕРЕРАБОТКА ПРОБ

Хелезистые латериты имеют разнообразный минералогический состав. Наряду с оливинами и другими силикатными минералами железистые латериты обычно содержат ферриты, хромиты и другие соединения.

С целью изучения химического поведения элементов в процессе растворения и разделения, пробы предварительно облучали нейтронами в реакторе ИБР-30 $^{\prime4}$ и тормозными гамма-квантами микротрона МТ-17 $^{\prime5'}$. При этом образовывались радиоактивные изотопы $^{60}\mathrm{Co}$, $^{59}\,\mathrm{Fe}$ и $^{57}\,\mathrm{Ni}$, гамма-спектры которых измерялись с помощью 4096-канального анализатора и $\mathrm{Ge}(\mathrm{Li})$ -детектора объемом 35 см 3 с разрешением ~3 кэв на линии $\mathrm{E}_{v}{=}662$ кэв.

1

Растворение проб железистых латеритов можно производить с помощью разных кислот или их смесей ^{/6/}. В нашей работе для растворения проб мы применяли несколько вариантов обработки. Наиболее полно Ni и Co растворялись концентрированной плавиковой кислотой: Ni более чем на 96%, Co более чем на 97%. При этом растворялся также и Fe /более чем на 85%/ при неполном растворении всей пробы.

Разделение Ni, Co, Fe и других элементов, близких по химическим свойствам, обычно производят путем анионного $^{/7\cdot10/}$ и катионного $^{/10\cdot14/}$ обмена. Для РФА никеля и кобальта удобнее, чтобы эти элементы сорбировались на ионообменнике, а железо оставалось в растворе, поэтому для разделения был выбран катионообменный метод в среде HF $^{/10,11,13,14/}$

Так как при растворении железистых латеритов получаются сложные по составу растворы, в данной работе мы сначала изучали возможность разделения указанных элементов при различных концентрациях HF. В качестве катионита мы использовали смолу WOFATIT KPS в H⁺- форме с 8% дивинилбензола и размером зерен 40-80 мкм. Для исследования поведения Ni, Co и Fe в процессе их разделения на ионообменнике через полиэтиленовые колонки / $\phi = 4x150$ мм²/, наполненные смолой, пропускали по 5 мл растворов, содержащих 60 Co, 57 Ni и 59 Fe и имеющих разные концентрации плавиковой кислоты /от 0,5 N до 10 N/.

Измерения распределения гамма-активных изотопов по колонке показали, что при концентрациях плавиковой кислоты ≥ 1 N железо полностью остается в растворе /не менее 98%/, а Ni и Co адсорбируются /не менее 98%/ в начале колонки на смоле весом не более 80 мг.

На основе проведенного исследования для серийной подготовки проб были выбраны следующие условия переработки: растворение образца весом 100 мг производится в 5 мл концентрированной плавиковой кислоты в течение 15 минут. Полученный раствор разбавляется до 100 мл и пропускается через катионит /колонка диаметром 6 мм, высотой 13 мм, количество смолы – 200 мг/ со скоростью 1,2 мл/мин. После прохождения раствора через колонку и промывки смолы 10 мл раствора 1N плавиковой кислоты смола высушивается и измеряется на установке для РФА.

АППАРАТУРА, УСЛОВИЯ ИЗМЕРЕНИЯ

В работе использовались 800-канальный анализатор фирмы "NOKIA" типа LP-4840 и Si(Li) -детектор с разрешением по К_{α} -линии Mn-240₅ эВ.

Содержание Fe, Ni и Co в используемых пробах было заранее определено химическим методом. Для дополнительного контроля Рис.1. Система держателя "источники 109 Cd – проба". 1 – Si(Li) -детектор, 2 – бериллиевое окно, 3 – свинцовая защита, 4 – держатель из оргстекла, 5 – источники 109 Cd / ϕ 3x3 мм²/, 6 – проба, 7 – облицовка из кадмия.

точности анализа были приготовлены пробы на основе применяемой смолы и стандартных растворов. Пробы Ni и Co в смоле весом 200 мг помещались в кассеты из оргстекла диаметром 13 мм, высотой 10 мм с лавсановым дном толщиной 10 мкм.

Для возбуждения характеристического излучения Ni и Co в работе применялись кольцевой источник ⁷¹ Ge^{/15/} или 5 источников ¹⁰⁹ Cd общей активностью 6 мКй. Разработанный нами держатель "источники ¹⁰⁹ Cd - проба" показан на <u>рис.1</u>. Он отличается компактностью, простотой конструкции и обеспечивает высокую эффективность возбуждения элементов пробы и регистрации характеристического излучения. Держатель сконструирован из доступных материалов: оргстекла, свинца, кадмия /кадмий можно заменить тонкими фольгами из Cu и Al/. Расстояние от пробы до окна детектора - 11 мм. Оптимальная активность источников ¹⁰⁹Cd для данной работы находится в пределах 5-10 мКи.

Измерение проб смолы производилось в "ненасыщенном" слое толщиной 0,11 г/см² /"насыщенный" слой пробы в данной геометрии составлял 0,23 г/см²/. Так как эффективный атомный номер смолы практически постоянен для всех образцов, не представляло особой трудности соблюдать постоянную геометрию измерения. Содержания Ni и Со рассчитывали по формуле

 $C_{Ni,Co} = \frac{I_{II}}{I_{III}} \cdot \frac{t_1}{t_2} \cdot C_{II},$

где С₃- содержание Ni и Со в стандартной пробе /Z/, I_{II} и I_{II} и I_{II} - количество импульсов в пиках соответственно стандартной и анализируемой пробы, t₁ и t₂ - время измерения стандартной и анализируемой пробы. Ошибки определения содержания С_{Ni,Co} были найдены по формуле $\pm \frac{s}{C_{Ni,Co}} - 100\%$,где s - среднее квадратическое отклонение и С_{Ni,Co} - среднее арифметическое содержания Ni и Co в пробе.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно описанной выше методике химической подготовки проб были приготовлены 34 пробы из 17 исходных образцов. Образцы были подобраны так, чтобы содержание Fe, Ni и Co в них изменялось в широком диапазоне концентрации: для Fe - от 6 до 52%, для Ni - от 0,23 до 1,44%, для Co - от 0,01 до 0,22%.

Полученные данные РФА Ni и Co приведены в таблице. Для сравнения указаны результаты химического анализа Ni, Co и Fe. Как видно из таблицы, полученные данные хорошо совпадают с результатами химического анализа и вполне удовлетво-

Таблица

llроба	Содержание Ni (%)		Содержание Со(%)		Содержание Fe (%)
	PØA	XA*	PQA	ХА *	XA *
I	I,02±0,04	1,04	0,I64±0,008	0,162	49,8
2	1,24±0,02	1,20	0,237±0,009	0,220	52,2
3	1,51±0,02	I,44	0,085±0,00 5	0,086	46,3
4	I,45 ±0,0 2	I,35	0,102±0,010	0,094	49,5
5	0,95±0,0I	0,93	0,056±0,003	0,061	19,3
6	0,89±0,01	0,94	0,072±0,006	0,079	5 0, Ź
7	0,56±0,01	0,55	0,049±0,005	0,048	48,8
8	0,88±0,0I	0,80	0,056 [±] 0,003	0,053	48,9
9	1,11±0,02	I.02	0,043±0,003	0,043	5I,7
10	0,83±0,01	0,77	0,035±0,003	0,038	49,3
II	0,69±0,0I	0,63	0,029±0,003	0,030	43,9
12	0,76±0,0I	0,69	0,027±0,003	0,028	44,0
13	0,36±0,0I	-0,38	0,021±0,002	0,023	43,8
I 4	0,24±0,01	0,23	0,012±0,001	0,013	6,76
15	0,63±0,01	0,62	0,021±0,001	0,019	9,92
16	1,10±0,02	1,06	100,0±e00,0	0,010	52,0
17	0,66±0,01	0,66	9,011±0,002	010,0	6 , I4

Результаты РФА Ni и Co

r

å

1

1

импульсы

4000

3000

1500

500

<u>Рис.2</u>. Корреляционная зависимость результатов рентгенофлуоресцентного и химического анализа: а – для определения никеля, б – для определения кобальта.

* - химический анализ

4

5

ряют требованиям по точности и чувствительности анализов. Из таблицы и рис.2 следует, что существует хорошая корреляция между результатами рентгенофлуоресцентных и химических анализов никеля /t = 0.998; b= 0.946; a = 0.003/ и кобальта / r = = 0.995; b = 0.939 и a= 0.02/.

Достигнуты пороги чувтвительности /по критерию $3\sqrt{I_{\rm фон}}$ / для Ni - 0,0032% и для Co - 0,0045% при 3-минутном измерении и навесках исходного образца 100 мг. При увеличении времени измерения и навесок исходного образца можно улучшить пороги чувствительности на порядок и больше.

Расхождение результатов /по отношению к химическим анализам/ при 5-минутном измерении для Ni не превышает 10% при содержании Ni более 0,1%; для Со не превышает 18% при содержании Со более 0,01%.

На <u>рис.3</u> показаны спектры пробы 2 /см. таблицу/, снятые до и после химической обработки образца. Пик Fe практически не виден в смоле. Пики Mn , Co и Ni хорошо выделяются. Особенно хорошо виден эффект поглощения характеристического излучения Ni в матрице необработанной пробы.

Спектры пробы, приготовленной из чистых реактивов с содержанием Ni и Co по 0,001%, сняты при использовании кольцевого источника ⁷¹Ge и источников ¹⁰⁹Cd /для возбуждения характеристического излучения/ и показаны на <u>рис.4</u>. Вес исходного образца составлял 1 г. При 20-минутном измерении и возбуждении пробы ⁷¹Ge достигнуты пороги чувствительности анализа для Ni и Co величиной 10⁻⁴ %. При возбуждении пробы источниками ¹⁰⁹Cd порог чувствительности анализа Ni и Co получается в 2 раза хуже.

При использовании Si(Li) детектора с разрешением по K_{α} -линии Mn ~200 эВ можно достигнуть еще более хороших по точности и чувствительности результатов анализа.

ЗАКЛЮЧЕНИЕ

1. Разработан простой и быстрый рентгенофлуоресцентный мет тод анализа Ni и Co в железистых латеритах с предварительным выделением Ni и Co.

2. Химическая методика включает растворение Ni и Co концентридованной плавиковой кислотой и отделение Ni и Co от Fe и сопуствующих элементов методом катионного обмена в растворе HF.

3. Достигнуты пороги чувствительности анализа для Ni /0,0032%/ и для Co /0,0045%/ при 3-минутном измерении и использовании источников ¹⁰⁹Cd. 4. Расхождение результатов определения Ni и Co/по отношению к химическим анализам/ при содержании Ni 0,1% не превышает 10% и при содержании Co 0,01% не превышает 18%.

5. Проведено сравнение результатов рентгенофлуоресцентных и химических анализов Ni и Co и получено хорошее их совпадение. Коэффициенты корреляции составляют для Ni 0,998 и для Co 0,995.

6. Каждая проба химически перерабатывается за ~100 минут /15 минут для вскрытия образца и ~85 минут для разделения на ионообменной колонке/. Время измерения на рентгенофлуоресцентной установке - /3-6/ минут. Одновременно химически можно перерабатывать десятки проб.

Авторы выражают глубокую благодарность академику Г.Н.Флерову за постоянный интерес к работе, профессору Ю.С.Замятнину за обсуждение результатов и ценные замечания, А.Эрнандесу и Е.Л.Журавлевой за помощь при проведении экспериментов, Б.Л.Жуйкову за помощь в подготовке рукописи к печати.

ЛИТЕРАТУРА

- 1. Флеров Г.Н., Выропаев В.Я. ОИЯИ, Р18-12148, Дубна, 1976.
- 2. Эрнандес А., Рубио Д. ОИЯИ, 18-80-337, Дубна, 1980.
- Augustynski Z., Dziunikowski B., Meitin J. J.Radioanal. Chem., 1981, vol.63, No.2, p.325-334.
- 4. Голиков В.В. и др. ОИЯИ, РЗ-5736, Дубна, 1971.
- 5. Выропаев В.Я. ОИЯИ, 14-9446, Дубна, 1976.
- Doležal J., Povondra P., Sulcek Z. Decomposition Techniques in Inorganic Analysis, I Liffe Books Ltd. Czechoslovakia, 1968.
- 7. Шемякин Ф.М., Степин В.В. Ионообменный хроматографический анализ металлов. "Металлургия", М., 1970.
- 8. Mirza M.Y. Radiochimica Acta, 1973, 20, p.135.
- 9. Севастьянов Ю.Г., Безматерных А.С. Изотопы в СССР, 1973, №33, с.24.
- 10. Ricq J.C. J.Radioanal.Chem., 1968, 1, p.443.
- 11. Никитин М.К. ДАН СССР, 1963, 148, 595.
- 12. Strelow F.W., Sondorp H. Talanta, 1972, 19, p.1113.
- Danielsson L., Ekström T. Acta Chemica Scandinavica, 1966, 20, p.2402.
- 14. Danielsson L., Ekström T. Acta Chemica Scandinavica, 1966, 20, p.2415.
- 15. Рубио Д. ОИЯИ, 18-81-506, Дубна, 1981. Рукопись поступила в издательский отдел 19 февраля 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

1

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д1,2-9224	IV Международный семинар по проблемам физики высоких энергий. Дубна, 1975.	3 р. 60 к.
Д-9920	Труды Международной конференции по избранным вопросам структуры ядра. Дубна, 1976.	3 р. 50 к.
Д9-10500	Труды II Симпозиума по коллективным методам ускорения. Дубна, 1976.	2 р. 50 к.
Д2-10533	Труды X Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3 р. 50 к.
Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5 р. 00 к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6р.00к.
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2 р. 50 к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3 р. 00 к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6 р. 00 к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 р. 40 к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5 р. 00 к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3 р. 00 к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 p. 00 ĸ.
Д11-80-13	Труд≌ рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3 р. 50 к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3 р. 00 к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 р. 00 к.
12-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2 р. 50 к.
110,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 р. 50 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

,

	Рубио Д., Эстевес Х., Брухертзайфер Х. 18-82-131
	Определение содержания никеля и кобальта
	в железистых латеритах рентгенофлуоресцентным методом
- 2	Разработана простая рентгенофлуоресцентная_методика ана- лиза Ni и Co в железистых латеритах с предварительной химиче- ской подготовкой проб. Вскрытие образцов производится концент- рированной плавиковой кислотой. Ni и Co отделяются от сопутст- вующих элементов / Fe, Cr, Al и т.д./ с помощью катионообмен ной фмолы. Для возбуждения характеристического излучения эле- ментов используются источники ⁷¹ Ge и ¹⁰⁹ Cd. Разработана сис- тема "источники ¹⁰⁹ Cd – проба", отличающаяся компактностью,
	эффективностью возбуждения и простотой конструкции. Измерения проведены с помощью Si(Li) -детектора. При использовании ис- точников ¹⁰⁹ Cd достигнуты пороги чувствительности анализа для Ni - 0,0032% и для Co - 0,0045% при 3-минутном изме- рении.
	Работа выполнена в Лаборатории ядерных реакций ОИЯИ.
	Препринт Объединенного института ядерных исследований. Дубна 1982
	 Rubio D., Estevez J., Bruchertseifer H. 18-82-131 X-Ray Fluorescent Method for Determination of Nickel and Cobalt in Ferrous Laterites The x-ray fluorescent simple method for analysis of Ni and Co in ferrous laterites with chemical treatment of samples is described. Fluorhidric acid was used for sample disolution. Separation of Ni and Co from their accompanying elements (Fe, Cr , Al, etc.) was made with cationic exchange resins. For exciting x-ray fluorescence of the elements⁷¹Ge and ¹⁰⁹Cd source were used. The system consisting of ¹⁰⁹Cd source and of sample holder and the source are described. Si(Li) semiconductor detec- tor was used for measurements. Sensitivity threshold of 0.0032% for Ni and 0.0045% for Co are achieved by this method in 3 min measurements. The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.
	Preprint of the Joint Institute for Nuclear Research. Dubna 1982
	Перевол О. С. Виносрадовой