

СООБЩ'ЕНИЯ Объединенного института ядерных исследований дубна

5/11-82

18-81-819

Н.А.Гундорин, В.М.Назаров, Б.Отгоолой, Л.Урле, В.П.Чинаева

НЕЙТРОННО-АКТИВАЦИОННЫЙ АНАЛИЗ ВОЛЬФРАМИТОВ И МЕДНО-МОЛИБДЕНОВЫХ КОНЦЕНТРАТОВ С ИСПОЛЬЗОВАНИЕМ НАДТЕПЛОВЫХ НЕЙТРОНОВ

ВВЕДЕНИЕ

Знание элементного состава минералов и рудных концентратов позволяет выяснить ряд закономерностей формирования оруднения, повысить эффективность его комплексного использования. В мировом балансе руд редких металлов велик дефицит тантала в связи с непрерывно возрастающей потребностью в нем новых отраслей техники и промышленности. Наряду с традиционной добычей ИЗ ОЛОВЯННЫХ КОНЦЕНТРАТОВ ШИРОКО ВЕДУТСЯ ПОИСКИ НОВЫХ ВОЗМОЖностей получения тантала. Одна из таких возможностей - использование высокой степени обогащенности танталом некоторых типов вольфрамовых руд и относительно высокой эффективности его извлечения/1/ Себестоимость тантала, получаемого попутно в вольфрамовом производстве, в ряде случаев ниже, чем при извлечении его из руд собственно танталовых месторождений. Кроме того, концентрация тантала и геохимически связанного с ним скандия в вольфрамитах может служить критерием для поиска танталовых месторождений /2/.

Проведение поиска танталосодержащих месторождений и оценка перспектив использования вольфраморудных районов для добычи тантала имеет важное народно-хозяйственное значение. Аналогично и медно-молибденовые руды могут оказаться дополнительным источником золота и серебра/8/.

Для проведения элементного анализа рудных образцов в мировой практике широко используется инструментальный нейтронноактивационный метод. Отличаясь незначительной трудоемкостью, надежностью и высокой чувствительностью, этот метод позволяет с хорошей точностью одновременно определять содержание ряда элементов в образце без его разрушения.

ХАРАКТЕРИСТИКА КАНАЛА ДЛЯ АКТИВАЦИОННОГО АНАЛИЗА

Элементный анализ медно-молибденовых концентратов и вольфрамитов некоторых месторождений МНР проводился на ядерном реакторе ИБР-30 Лаборатории нейтронной физики ОИЯИ /4/.

Использовалась методика инструментального активационного анализа. Образцы облучались в трех позициях, показанных на правой вставке <u>рис.1.</u> Во всех трех случаях образцы располагались между двумя гребенчатыми замедлителями $^{/5/}$. В позицию R образцы доставлялись по каналу пневмапочты, а в позицию 2 и 3

· 1

тепловых, 0 - для тепловых, в - для быстрых нейтронов.

устанавливались вручную на период работы реактора /5-15 дней/. На <u>рис.1</u> представлено распределение плотности потока нейтронов по осям Z и R позиций облучения при наличии в них медномолибденовых образцов. Измерение плотности потока тепловых, резонансных и быстрых нейтронов проводилось по активационной методике с использованием реакций ${}^{65}Cu(n,\gamma){}^{64}Cu$, ${}^{58}Fe(n,\gamma){}^{59}Fe$ и ${}^{115}In(n,n'){}^{115}In In,$

Практически равномерное распределение плотности потока тепловых нейтронов по оси 2/позиция 2/ объясняется тем, что к нижней части замедлителя /4/ примыкает массивная плита из свинца и стали, уменьшающая утечку нейтронов из замедлителей.

В отличие от ядерных реакторов на тепловых нейтронах, в замедлителях которых кадмиевое отношение довольно велико $/50-60/^{/6}$, на ИБРе-30 оно не превышает 7. Поэтому поток надтепловых нейтронов на единицу мощности реактора для ИБРа-30 почти в 10 раз выше, чем для реакторов на тепловых нейтронах. Это обстоятельство определяет относительно высокую чувствительность анализа содержания элементов, имеющих резонансы в сечении активации в надтепловой области энергий нейтронов /Ta, Sc , Au , Sb и др./, при невысокой тепловой мощности реактора и делает возможным снижение уровня фона, вызванного активацией тепловыми нейтронами элементов, входящих в состав матрицы / Cu , Fe , Co , Zn и др./.

МЕТОДИКА АНАЛИЗА

Для успешного применения инструментального нейтронно-активационного анализа существенное значение имеет правильный выбор ядерной реакции, а также энергии нейтронов. В табл.1 приведены ядерные реакции и соответствующие ядерно-физические константы, которые могут быть использованы для определения в медно-молибденовых концентратах и вольфрамитах Au . Ag . Sb и Та на фоне сопутствующих элементов. При сравнении значений (n, v) - реакции на тепловых нейтронах σ с резонансным сечения интегралом $I = \int_{\sigma}^{\infty} \sigma(E) dE / E^{/7/}$ видно преимущество использования резонансных нейтронов для определения концентрации Тав вольфрамитах. При определении содержания золота в медно-молибденовых концентратах с учетом того, что аналитическая линия зо~ лота 412 кэВ находится в комптоновской части спектров сопутствующих элементов, преимущество использования надтепловых спектра у-лучей не очестрогого анализа нейтронов без случае целесообразность применения над~ видно. B 3TOM тепловых нейтронов становится ясной из рассмотрения эквива-Лентного неравенства

$$(IB/\sigma B)_{Au} \geq \sum_{i=1}^{n} I_i B_i / \sum_{i=1}^{n} \sigma_i B_i$$

Здесь B_i - функция, зависящая от условий облучения и констант i -того изотопа основной матрицы. Например, для медно-молибденовых концентратов при указанных концентрациях данных элементов в табл.1 неравенство выполняется следующим образом:

(IB/\sigmaB) _{Au}	$\sum_{i=1}^{n} I_{i}B_{i} / \sum_{i=1}^{n} \sigma_{i}B_{i}$			
	t _{выд} = 3 дня	t _{выд} = 5 дней		
15,7	2,4	8,8		

Из вышеизложенного вытекает, что на реакторе ИБР-30 элементный анализ медно-молибденовых концентратов выгодно проводить с помощью надтепловых нейтронов.

При проведении активационного анализа на надтепловых нейтронах размеры образцов выбираются с учетом эффектов экранировки потока нейтронов. Известно, что для руд редких металлов /кроме золота/ образцы весом /200-400/ мг обладают достаточной представительностью при проведении рядовых количественных анализов ^{/8/}. С целью оценки эффекта самоэкранирования в образцах вольфрамита был проведен сравнительный анализ нескольких эта-

Таблица !

			_						
	Ядерная реакция	Распространен- ность стабиль- ного изотопа (%)	Сечение реак- ции на тепло- вих нейтронах 6 (барн)	1/6	Энергия ос- новного резо- нанса, ЭВ	Период полу- распада	Энергия гамаа. кванта, кэВ	Квантовый вы- ход (%)	Содержание эле- жентов в дан- ном концентра- те (г/г)
	Вольфраннт								
утствуюцие менты	186W(n,y)187W	/ 38,41	36 84	II , 4	18,8	23,94	480 686	21,5 27,1	
	⁵⁸ Fe(n,y) ⁵⁹ Fe	0,31	0,857	Ι,4		45,Ідн	1099 1292	55,5 44,1	
55	455c(n,y)465c	100	22	0,5	4100	83,9дн	889	100	
	¹⁸¹ Ta(n, y) ¹⁸² Ta	100	21,54	32,5	4,28	115дн	1189 1221 1231	16,3 27,3 11,5	
иедно-молибденовый концентрат									
anone	197 Au(n, y) 198 Au.	100	98,73	15,7	4,9	2,7 дн	412	95,53	
(childle	12358(n, y)12458	42,75	2,186	54,9	21,6	60,2дн	603	98,3	7.10-3
цели	1215B(n, y) 1225B	57,25	6,8	20,9	6,24	2,74дн	564	70,9	
Oupe	109/1g(n, y)110m/4g	48,65	114,75	12,2	5,2	253дн	658 885	94,2 76,4	10-4
	98 No(11, 7)99 No	23,78	0,51	9,22	480	66 u	140	89,6	10-3
Jonehth	75As(n,y)76As	100	6,63	9,5	47	26 , 34	559	42,8	5•10 ⁻⁵
	63Cu(n, y) ⁶⁴ Cu	69,09	4,3	1,3	I980	1 2, 84	5I I	38 .	0,35
	$64_{Zn}(n, \gamma)^{65}Zn$	48,89	0,73	2,2	2750	245дн	1115	50,6	10 - 3
Teyro	⁵⁹ Co(n, y) ⁶⁰ Co	100	37	2,03	132 .	5 , 26r	1173 1333	100 100	2.10-4
Conyrc	⁵⁸ Fe(n, j) ⁵⁹ Fe	0,31	0,857	1,4		45, Ідн	1099 1292	55,5 44,I	0,4

лонов весом по 200 мг, имеющих матрицу, близкую к матрице исследуемых образцов /содержание W - 80%/ с различным содержанием тантала: от 2.10⁻⁴ до 10⁻⁸ г. Результат анализа показал линейную зависимость между площадью пиков S полного поглощения ¹⁸²Та для линий /1221,1231/ кэВ/1/ и 1189 кэВ /2// и содержанием тантала Р/рис.2/.

Для оценки самоэкранирования в случае медно-молибденовых концентратов было сделано несколько измерений идентичных проб разного веса. На рис.3 показана зависимость площадей фотопиков линий 603 кэв^{3/124}Sb/1/ и 885 кэв^{110m} Ag/2/ от веса образцов G. Отклонение этой зависимости от линейного закона при величине навески более 200-300 мг указывает на наличие самоэкранирования. Для образца весом 1 г этот эффект достигает 17% для сурьмы и 32% для серебра. Если содержание золота не превышает содержания серебра, то можно пренебречь эффектом самоэкранирования и при определении концентрации золота, используя образцы весом не более 200 мг.

Рис.2. Зависимость площадей пиков полного поглощения от содержания Та в вольфрамитах.

Рис.3. Зависимость площадей пиков полного поглощения Sb и Ag от веса образцов медномолибденового концентрата.

Время облучения для всех видов образцов - 4-7 суток. После облучения вольфрамитовые образцы выдерживались 10 суток, а медно-молибденовый концентрат - от 3 до 38 суток. Для определения содержания Au, Ta, Sb, Ag испольяовались эталоны, приготовленные путем растворения металлических фольг. При этом средняя погрещность приготовления эталонов составила 5%.

Измерения гамма-спектров наведенной активности проводились в течение 30-40 минут с помощью Ge(Li) полупроводникового детектора объемом 50 см⁸ и энергетическим разрешением 3 кэВ по линии 1333 кэВ ⁶⁰Co.

Рис. 5. Спектр гамма-квантов от образца медно-молибденового концентрата.

На рис.4 приведен типичный гамма-спектр об зазца вольфрами-та с содержанием тантала 3.10 г/г. Наряду с фотопиками изовидны пики ¹⁸²Та и ⁴⁶Sc. а также ⁵⁹Fe и ⁵⁴Mn . TOHOB 187W Гамма-спектр образца медно-молибденового концентрата представлен на рис.5. Видно, что фон в районе 412 ков определяется комптоновским рассеянием гамма-квантов от изотопов 64Си, ⁷⁶As, 116 m In. образующегося при ак-122_{Sb} , 124_{Sb} концентрата и тивации индиевых вакуумных уплотнений Ge(Li) -детектора нейтронами, присутствующими в зале, где проводились измерения. Изза этого в дальнейшем определение содержания Аз проводилось в специальном помещении.

Рис.6. Спектр гамма-квантов от образца медно-молибденового концентрата спустя 16 суток после облучения.

В правой части рис.5 показана область спектра с энергией 412 кэв для двух идентичных образцов весом 2,6 г, в один из которых добавлено золото $/4 \cdot 10^{-7}$ г/г/. Время облучения - 7 суток, выдержки - 5 суток. Видно, что линия 412 кэв от изотопа 198 Аш маскируется линией 417 кэв от изотопа 116m In. При таких условиях чувствительность анализа оказалась не хуже 1,4 · 10⁻⁷ г/г. На этом же рисунке представлена аналогичная часть спектра такого же образца весом 0,5 г с добавлением $8 \cdot 10^{-5}$ г/г золота, который получен при отсутствии нейтронного фона. При таких условиях чувствительность анализа для золота достигает $6 \cdot 10^{-8}$ г/г. Чувствительность определена экспериментально; принималось, что минимальное значение числа импульсов в фотопике должно превышать стандартную ошибку фоновых отсчетов не менее чем в три раза.

Как видно из спектра, приведенного на <u>рис.6</u>, кроме содержания Сu, As и Sb можно также определять содержание Ag, Mn, Fe, Co и Zn спустя 16 суток после облучения. Оценка содержания Co, Zn, Fe и Sc проводилась абсолютным методом.

РЕЗУЛЬТАТЫ

В табл.2,3 приведены результаты измерений и усредненные показатели для трех рудных месторождений вольфрамита и медномолибденового концентрата. Приводимые в таблицах ошибки - статистические. Содержание тантала в исследованных образцах вольфрамита колеблется от 3,3 $\cdot 10^{-6}$ до 4,8 $\cdot 10^{-3}$ г/г с ошибкой не более 20%. В исследуемых медно-молибденовых концентратах при чувствительности анализа 5 $\cdot 10^{-8}$ г/г золото не было обнаружено.

Вольфрамит

## of-	Месторождение								
разцов	Ι.			2.			3.		و ب بو بي بي ج م م جري .
	Ta 10-6 r/r	Sc10-6r/r	Fe 10-2 r/r	Ta 10-6 r/r	Sc 10-6 r/r	Fe 10-2r/r	Ta 10-6r/r	Sc 10-6 r/r	Fe10-2r/1
I	240±2,7	*	××	277±4,6	43,3±5,2	37,5±2,2	4835±107	X	¥X.
2	231 *2,9	X	××	271±4,1	42±5,5	37±2,2	3496± 8I	ħ	XX
3	129±4	103±7,8	10,7±1,8	260±5	44±6	36,8±2,3	2210±53	X	30,6±9
4	109±2,5	636 ±20,6	27±1,6	27±1,3	184±13	29±2,4	529±13	×	24±3
5	103±2,7	62±4,7	13,2±1,3	26,5 ±1,3	179±12	28±2,3	31±2,1	42±5,6	23±2,6
6	103±2,6	64±4,4	13 ± 1,1	25±1,3	X	XX	29 ±2,I	70±8,4	19 [±] 2,5
7	30±1,3	78±6	**	8,4±0,7	68±15	25±6	-		-
8	30±1,4	73±5,8	13,2±1,5	8,I [‡] I,I	́ж	来托			
9	12,3±0,9	3I0±47	29±4	7,5 ±0, 8	70,5±14,2	25,3± 5,I			
10	12 ± 1,1	317-44	27,8 [±] 4,1	7,2±0,8	73±15	22,1±6			
II	II,5±0,75	54± 7	15±2	7,1±0,4	×	¥74			
12	11,5 ±0,9	58 ± 7	14,4 ± I,8	7 - I	×	XX			
13	9,1±0,8I	×	27	6 ,9 ±0,5	×	**			
14	9±0,9	. X	XX	6,8±0,4	28±5	12,8±1,9			
1 5 ·	8±0,96	¥	XX	6,7±0,7	3I±4	I4 ±1,8			
16	3,3±0,68	x	XX	6,7±0,4	29±5	12,6±1,9			

(50±10)/9/

* - след на уровне чувствительности Sc /1,4 \cdot 10⁻⁷ г/г/; ** - след на уровне чувствительности Fe /2,4 \cdot 10⁻⁴ г/г/.

Таблица З

Ag 10 ⁻⁴ г/г	Sb10 ⁻³ г/г	Zn 10 ⁻⁸ r/r	Со 10 -4 г/г
1,027 <u>+</u> 0,04	8,18+0,54	1,3 <u>+</u> 0,12	2,2 <u>+</u> 0,07

Медно-молибденовый концентрат

выводы

Применение надкадмиевых нейтронов для элементного анализа вольфрамитовых руд позволило определить концентрацию Та и Sc на уровне 10^{-6} г/г с ошибкой не более 20%, оценить верхнюю границу содержания золота /5· 10^{-8} г/г/, провести оценку содержания Ag , Sb , Co и Zn в медно-молибденовых концентратах. Значительный разброс содержания определяемых элементов/табл.2/ указывает на целесообразность дифференцированного подхода к переработке вольфрамитовых руд. Сравнение с результатом анализа вольфрамитов методом распределительной хроматографии /9/ показывает существенно более высокую точность нейтронно-активационного метода.

Полученные результаты демонстрируют эффективность использования надтепловых нейтронов для элементного анализа вольфрамитов и медно-молибденовых концентратов. При этом возможно применение и менее интенсивных источников нейтронов, таких, как микротрон/10/, в случае более крупных образцов.

В заключение авторы выражают благодарность А.М.Говорову за интерес к работе, Ш.Гэрбишу и Х.Долхсурену за помощь и поддержку.

ЛИТЕРАТУРА

- Четырбоцкая И.И. Вольфрамит как индикатор и новый источник танталового сырья. "Недра", М., 1972.
- Быховский Л.З. Возможность комплексного использования вольфрамитовых концентратов. В кн.: Минералогия и геохимия вольфрамовых месторождений. Изд-во ЛГУ, Л., 1967.
- 3. Выропаев В.Я. и др. ОИЯИ, 13-8604, Дубна, 1975.
- 4. Голиков В.В. и др. ОИЯИ, 3-5736, Дубна, 1971.
- 5. Гундорин Н.А., Назаров В.М. ОИЯИ, РЗ-80-721, Дубна, 1980.
- Hawkesworth M.R. Neutron Radiography. Equipment and Methods. Atomic Energy Review, 1969, vol.15, No.2, Vienna, 1977.

- 7. Nuclear Data in Science and Technology. Proc. of a Symposium. Paris, 1973, IAEA, Vienna, 1973, vol.11.
- 8. Зайцев Е.И. и др. Нейтронно-активационный анализ горных пород на редкие элементы. "Недра", М., 1978.
- 9. Иванова Г.Ф., Максимюк И.Е. Геология рудных месторождений, 1972, №2, с.71.
- 10. Базаркина Т.В. и др. ОИЯИ, 18-12629, Дубна, 1979.

Рукопись поступила в издательский отдел 23 декабря 1981 года.