1624/82

5/ir-82

СООбщения Объединенного института ядерных исследований дубна

18-81-775

А.Эрнандес, А.Г.Белов

ИНСТРУМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МИКРОКОЛИЧЕСТВ ТОРИЯ МЕТОДОМ АКТИВАЦИИ ТОРМОЗНЫМ ИЗЛУЧЕНИЕМ МИКРОТРОНА

Инструментальное определение содержания тория в природных образцах часто осуществляется нейтронно-активационным методом при облучении проб надтепловыми нейтронами ядерных реакторов и регистрации полупроводниковыми детекторами гамма-излучения радиоизотопа ²⁸³ Ра ($T_{1/2}$ =27,4 дн) с E_{γ} =97; 312; 340; 375; 397; 416 кэВ^{/1-4/}. Обычно время облучения, а также время выдержки образцов составляет от десятков часов до нескольких дней. При использовании этого метода определения тория порог чувствительности достигает порядка 10⁻⁶-10⁻⁷ г/г и зависит от концентрации мешающих элементов, например Eu , Au , Lu , Ge, Ba , Tb, Cr ^{/1.4/} и от отношения концентраций урана и тория в пробе^{/4/}.Для определения микроколичеств химических элементов могут быть использованы также фотонейтроны ^{/5.6/} или тормозное излучение микротрона ^{/7.8/}.

В настоящей работе выполнено инструментальное определение содержания тория в геологических образцах и конкрециях при активации их тормозным излучением или надтепловыми нейтронами микротрона. Проведено сравнение результатов нейтронно-активационного и гамма-активационного анализа тория.

ГАММА-АКТИВАЦИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ Содержания тория

Для определения тория методом активации у-квантами целесообразно использовать реакцию

 $^{232}T_{1/2}(.\gamma,n) \overset{231}{=} T_{1/2} \frac{\beta}{25.54} \quad ^{231}Pa.$

Ядерно-физические характеристики изотопа ²³¹ Th приведены в <u>табл.1</u>. Гамма-спектр эталона тория /50 мкг/, облученного γ - квантами микротрона, представлен на <u>рис.1</u>, из которого видно, что определение тория можно проводить по γ -излучению изотопа ²³¹ Th с энергией 25,65; 58,45; 84,17 и 89,94 кэв или по L - линиям Pa с энергией E_{La_1} =13,3 кэв, $E_{L\beta_1}$ =16,7 кэв. Однако при определении тория по L-линиям Pa результат анализа зависит от содержания урана, так как с увеличением концентрации урана L-линии Np($E_{L\beta_1Np}$ =13,9 кэв, $E_{L\beta_2Np}$ =17,8 кэв/, сопровождающие распад ядер изотопа ²³⁷ U, могут существенно влиять на точность анализа. Чувствительность и точность будут также зависеть от химического состава образца вследствие нало-

Таблица 1

Энергия у-квантов Е _к , кэВ *	Квантовый выход на 100 распадов n _к , %		
25,65	14,14		
81,18	0,994		
82,02	0,504		
84,17	7,0		
89,94	1,07		
102,3	0,469		
KX-Pa**	1,5		
LX - Pa ***	-		

Ядерно-физические характеристики изотопа ²³¹Th /14/

* Приводятся только наиболее интенсивные линии.

** Относительные интенсивности КХ-линий Ра следующие: $E_{K\alpha_1}/95,87$ кэВ/: $E_{K\alpha_2}/92,29$ кэВ/: $E_{K\beta_1}/108,0$ кэВ/: : $E_{K\beta_2}/111,5$ кэВ/=100:56:38:13.

*** Экспериментально определено с помощью эталона, что $E_{\gamma}/25,65$ кэВ/: $E_{\gamma}/84,17$ кэВ/: $L_{a_1P_{a}}/13,3$ кэВ/: $L_{\beta_1P_{a}}/16,7$ кэВ/= =1:0,4:1,3:1,3.

<u>Рис.1.</u> Гамма-слектр эталона Th, изготовленного путем нанесения раствора ThO₂(NO₃)₂ на диск фильтровальной бумаги диаметром 35 мм / $t_{06\pi}$.*3 ч; t_{Bbd} .=20 ч; t_{HSM} .=1ч/.

жения интерферирующих изотопов и поглощения излучаемых X -лучей изотопами матрицы. Отметим, что аналогичные затруднения встречаются при определении содержания Th путем активации над-

Таблица 2

Интерферирующие изотопы при определении содержания тория гаммаактивационным методом *

Изотеп	Реанция	туź	Знергия интерфераци- ищего фотошика, изВ	Квантовый выход на 100 респедов	Распространия- ность в природ- ной смеся, 7
84 Sr	845r(4,n) 835r	32,44	Escap=13,4	132,0	6,56
;865 r	855r(7,n) 855r	6 4, 7 An	EI3,4	59,8	9,86
_ 89γ	89y (f,n) 86y	106,6дн	EI4,I7	6I.j	100
90 _{2 r}	902r(1', n) 89 Zr	78 ,4 4	-4-3r E=I4,96;E=I6,7	47,3	51,46
II0 _{Pd}	IIO Polar, n) 109 Pd	13,46 y	тат Е., _{Ал} =24,9	3,5	II,8
II8 _{Sn}	118 Sn(T, n) 117 - So	14.0 дн	E=25,27	64.0	24.0
I2I Sb	121 Sb(3; n) 120	5,76 <u>0</u> H	Eksn Bikso	98,0	57,25
110 _{Cd}	110Cd(r, n)109 Cd	453 дн	Ex. A 25,5	102,0	12,39
236 U	238 U (r, n) ²³⁷ U	6,75 дн	26.4	2.32	99.276
122Te	I22 Te(f, n)I2ImTe	154дн	E. Sp=26,36	15,0	2,46
204 _{Hg}	204 Hg(+, 1) 203 Hg	46.90H	Б. т. =72.87; Б. т.=84.9	13.0	6.85
192 ₀₅	1920s(r, n)1910s (191 191m;r)	15дн	E _{Kalr} =73,5	56,0	41,0
203 _{TI}	203 TI(T, n) 202 TI	12 an	E. n=82.5	79.0	29.50
204 _{Pb}	204 p b(r, n) 203 pb	52, I 4	Exati =84,9	88,0	I,4

* Данные из работы/14/.

•.

<u>Рис.2.</u> Влияние содержания Pb в образце на определение Th.Coдержание Th везде равно 40 г/т; содержание Pb равно: нулю /a/; 200,6 г/т /б/; 417,8 г/т /в/; 1200 г/т /г/; 2000 г/т /д/ и 4011 г/т /е/.

тепловыми нейтронами и измерения L -линий протактиния, сопровождающих распад ядер изотопа $^{233}_{23}$ Th / $T_{1/2}$ =23,5 мин/ ^{/9/}.

Анализ интерференций линий ²³¹Th/табл.2/, а также их относительные интенсивности показывают целесообразность использования в аналитических целях фотопика с энергией Е, =84,17 кэВ /измерения наведенной активности образцов должны проводиться Ge -ППД с разрешением не хуже 500 эВ/. При этом варианте анализа линия с Е. = 84,17 кэв свободна от наложений, кроме случая сравнительно высокого содержания свинца в пробе. Как проверено нами экспериментально, для величины отношения концентраций свинца и тория, равной С(Pb) 7 30. вкладом свинца в фотопик C(Tb) ²³¹Th можно пренебречь. При концентрациях Pb, $C(Pb) \ge 50 C$ (Th) вклад линии РЪ в фотопик 84,17 ков должен учитываться, так как существует частичное наложение обоих пиков /рис.2/. В этом случае обработку спектров целесообразно проводить с помощью ЭВМ. При обработке спектров, показанных на рис.2, по методу, описанному в работе /10/результаты определения содержания тория расходятся не больше. чем на 8%.

Отметим, что отношение средних значений содержания Pb и Th в различных геологических породах, каменных метеоритах и в земной коре/11/, а также в железно-марганцевых конкрециях/12/ оказывается меньше 20. Вкладом изотопа ^{20 анд} при определении тория по пику 84; 17 кэв можно пренебречь /среднее содержание Нg в природных образцах существенно меньше содержания $P_b/11,12/$ а отношение нормированных площадей пиков Pb и Hg E $_{K\beta_2}$ T1($^{208}P_b)//L_{K\beta_2}$ T1($^{208}P_b)//L_{K\beta_2}$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При проведении гамма-активационного анализа активация образцов осуществлялась тормозным излучением микротрона Лаборатории ядерных реакций с энергией ускоренных электронов 20.5 МэВ при среднем тохе примерно 14 мкА. Образцы весом 10-15 г /в зависимости от плотности материала/ были упакованы в кюветы из оргстекла, один из торцов которых закрывался лавсановой пленкой толщиной 10 мкм. Диаметр кювета равнялся 35 мм, что обеспечивает максимальную наведенную активность образца и минимальную ошибку измерения. Высота проб выбрана равной 10 мм исходя из экспериментальных данных, приведенных на рис.3. При этом учитывался эффект ослабления интенсивности потока у ~квантов с увеличением расстояния до тормозной мишени, когда облучались одновременно 5 образцов/13/Для установления оптимальной толщины проб использовалась смесь железистых латеритовых руд с внесенным в смесь раствором тория в виде ThO, (NO,), /содержание тория в смеси равнялось 50 г/т/. Порошки латеритовых руд размешивались в течение 3 ч в вибрирующей мельнице для обеспечения однородности проб.

Для определения содержания тория в природных образцах 5-6 проб облучались одновременно в течение 3-5 ч. Геонетрия облучения, а также способ мониторирования потока у-квантов описаны в работе¹³. После 20-30-часовой выдержки проводились измерения / $t_{\rm H3M}$ =30-60 мин/ спектров облученных образцов с помощью Ge-детектора толщиной 7 мм, объемом 2,1 см³ и энергетическим разрешением 500 эВ на линии 17,1 кэВ. Регистрация и об-

1.0

работка спектров осуществлялись аналогично описанным в работе ^{/8}. Для исключения возможных ошибок, связанных с самопоглоще:нием линии Е,у= ≈84,17 кэВ, применялся метод внутреннего стандарта.

<u>Рис.3.</u> Спределение оптимальной толщины пробы при гамма-активационном анализе Th: $-\Delta - \Delta - \Delta$ наведенная активность; $- \times - \times - \times$ статистическая ощибка измерений.

Таблица З

рн Образец пп		Содержание тория, ГАА	г/т HAA
1.	Стандарт почвы СП-З	9,6+0,3 *	10 <u>+</u> 2 *
2.	Геологическая порода	0,8 <u>+</u> 0,1	-
3.	Железистая латернтовая руда	15,2 <u>+</u> 0,4	16 <u>+</u> 2
4.	Железо-марганцевая конкреция	15,1 <u>+</u> 0,4 **	18+4

Результаты анализа содержания тория

* В паспорте приводится неаттестованный результат определения тория нейтронно-активационным методом: С(Th)=9,0 г/т.

** Результат, полученный при обработке спектра с помощью ЭВМ.

В <u>табл.3</u> представлены результаты определения содержания тория в различных образцах гамма-активационным методом. Там же приведены данные, полученные нейтронно-активационным методом на микротроне при использовании линии ²⁸³Ра с энергией E₃=312кэВ. Из представленных в <u>табл.3</u> данных видно, что результаты согласуются удовлетворительно, но точность и чувствительность нейтронно-активационного анализа уступают точности и чувствительности гамма-активационного.

На рис.4 показаны в качестве примера спектры образцов почвы, геологических пород и железо-марганцевой конкреции, облученных тормозным излучением микротрона. Аналитические линии ²⁸¹Th с энергией 84,17 кэВ в спектрах облученных почвы и геологических пород свободны от наложений. В спектре облученной конкреции видно частичное наложение линии Кв Л1 на линию 84.17 кэВ /отношение C(Pb)/C(Th) =55/. На рис.5 показаны для сравнения участки гамма-спектров тех же образцов, облученных надтепловыми нейтронами микротрона. При активации образцов нейтронами микротрона порог чувствительности определения тория по изотопу 233 Pa/E_y=312 кэВ/ не превышает 5-10⁻⁶ г/г /t_{обл}=10 ч , t_{выд}=4 дн , t_{изм}=1 ч/. Порог чувствительности опраделения тория по фотопику 84,17 ков в природных образцах, для которых отношение концентраций $\frac{C(Pb)}{C(Th)} > 20$ и содержание никеля C(Ni)<0,1%, достигает 5.10⁻⁸ г/г /t_{обл}=5 ч, t_{выд}=20 ч, t_{изм} 51 ч/. Отметим, что при больших содержаниях никеля величина комптоновского фона в области пика 84,17 ков растет из-за вклада расселнных гамма-лучей радиоизотопов 57 Ni с энер-

Рис.4. Гамма-спектры образцов, облученных тормозным излучением микротрона. Участок γ -спектра: а/ образца геологической породы / $C_{Th} = 0,8$ г/т/; б/ железистой латеритовой руды / $C_{Th} = 15,2$ г/т/; в/ почвы / $C_{Th}^{**} = 8,8$ г/т/; г/ железо-марганцевой конкреции / $C_{Th} = 15,1$ г/т/. Время измерения – 1 час.

гией $E_{,y} = 127$ кэВ и 57 Со с $E_{,y} = 122$ кэВ. При этом чувствительность определения тория соответственно снижается. При содержании свинца C(Pb) =0,082% и C(Ni)=0,06% /см., например, <u>рис.4</u>/чувствительность снижается до $2 \cdot 10^{-7}$ г/г. Порог чувствительности рассчитывался по критерир $3\sqrt{3}_{\oplus}$ / $^{S}_{\oplus}$ значение фона в области аналитического фотопика/.

Полученные результаты показывают, что чувствительность определения тория методом гамма-активационного анализа в зависимости от химического состава анализируемых образцов в 10-100 раз превышает чувствительность анализов, выполненных методом активации надтепловыми нейтронами.

Отметия, что методом активации проб тормозным излучением микротрона можно одновременно определять содержание 10⁻⁷г/г

Рис.5. Гамма-спектры образцов, облученных надтепловыми нейтронами микротрона $/t_{oбл}=10$ ч, $t_{HSM}=1$ ч/. Участок гамма-спектра: а/ образца железо-марганцевой конкрецки /C(Th)=17,6 г/т/; б/ почвы / C(Th)=10,4 г/т/; в/ железистой латеритовой руды /C(Th) =15,5 г/т/.

тория и урана в природных образцах сложного химического состава. При этом для определения урана $^{/8/}$ используется реакция 288 U(y, n) 237 U, E_y =59,4 кэ8, T_{1/2}=6,75 дн.

выводы

 Разработана и испытана активационная методика определения содержания тория при облучении тормозным излучением микротрона образцов геологических пород, почвы и конкреций.

2. Порог чувствительности гамма-активационного анализа тория составляет /0,5-5/·10⁻⁷ г/г / t =60 мин/ и превышает в 10-100 раз порог чувствительности нейтронно-активационного анализа.

3. Гамма-активационная методика позволяет одновременно определить микроколичества тория и урана в природных образцах при использовании Ge - ППД для детектирования γ -квантов радионуклидов ²³¹Th и ²⁸⁷U.

Авторы выражают глубокую благодарность Ю.С.Замятину за постоянное внимание к работе и ценные рекомендации, Л.П.Кулькиной за полезное обсуждение результатов, В.Е.Жучко и Ю.Г.Тетереву за помощь при облучении образцов на микротроне, а также Т.Крусу за помощь при обработке спектров на ЭВМ. ЛИТЕРАТУРА

- 1. Meyer H.G. J. of Radioanal. Chem., 1971, v.7, pp. 67-79.
- 2. Колесов Г.М., Сурков Ю.А. Радиохимия, 1979. т. XX1. вып.1. c. 138.
- 3. Зайцев Е.Н., Сотсков Ю.П., Резников Р.С. Нейтронно-активационный анализ горных пород на редкие элементы. "Недра". M.. 1978.
- 4. Ганзориг Ж. и др. ОИЯИ, 6-7040, Дубна, 1973.
- 5. Маслов О.Д. и др. ОИЯИ, 18-12210, Дубна, 1979.
- 6. Белов А.Г. и др. ОИЯИ, 18-80-841, Дубна, 1980.
- 7. Капица С.П. и др. АЭ, 1973, 34, с. 199.
- 8. Эрнандес А., Кулькина Л.П. ОИЯИ, 18-30-846, Дубна, 1980. 9. Mantel M., Amiel S. Anal.Chem., 1975, vol.45, No.12, p.2393.
- 10. Злоказов В.Б. ОИЯИ. Р10-81-204. Дубна, 1981.
- 11. Филиппов Е.М. Ядерная разведка полезных ископаемых. "Наукова думка", Киев. 1978.
- 12. Флеров Г.Н. и др. ОИЯИ, Р6-7856, Дубна, 1974.
- 13. Эрнандес А., Рубио Д. ОИЯИ, 18-80-337, Дубна, 1980.
- 14. Гусев Н.Г., Дмитриев П.П. Квантовое излучение радиоактивных нуклидов. "Атомиздат". М., 1977.