

Объединенный институт ядерных исследований дубна

5166 81

19/2-81

18-81-510

М.В.Голованов, Н.А.Гундорин, С.Ф.Гундорина, Б.Отгоолой, М.В.Фронтасьева, В.П.Чинаева, А.С.Шиловцева

О ПРИРОДНОЙ ДИСПЕРСИИ СОДЕРЖАНИЯ ЭЛЕМЕНТОВ В ТКАНЯХ ЛАБОРАТОРНЫХ ЖИВОТНЫХ

Направлено в журнал "Медицинская радиология"

Методические возможности нейтронного активационного анализа позволяют с высокой чувствительностью и производительностью проводить многоэлементный анализ пораженных и непораженных тканей при развитии экспериментального опухолевого процесса.

Ранее нами сообщалось^{/1/} об исследовании содержания ряда элементов (K, Na, Ca, Mg, P, Cl) в тканях и биологических жидкостях животных. Значительный разброс данных от животного к животному не позволил дать количественного описания изменений показателей водно-солевого обмена при опухолевом процессе. Этот разброс при идентичности таких факторов как возраст, пол, сезонность, рацион питания и содержания отражает индивидуальные особенности подопытных животных ^{/2/}.

В настоящей работе проводится анализ природной дисперсии /рассеяния значений/ элементного содержания в тканях лабораторных животных /крысы-самцы в возрасте 2 и 5 месяцев/.

МЕТОДИКА И АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Исследовалась группа из 25 животных. Все они происходили от одних и тех же самок питомника ВОНЦ АН СССР, были отсажены от них в одно и то же время и находились в одинаковых условиях содержания и питания. Забор тканей проводился по единой методике. В лабораторных условиях ВОНЦ было приготовлено 250 проб /печень, сердце, легкие, почки, селезенка, семенники, головной мозг, костная и мышечная ткань/. Образцы весом 200 - 1500 мг упаковывались в полиэтиленовые капсулы, предварительно обработанные 1%-ным раствором азотной кислоты /химически чистой/ и промытые 8-10 раз деионизованной водой в боксах из органического стекла. Высушивание биологических материалов проводилось в сублимационной установке ТГ-5.

Определение абсолютного содержания исследуемых элементов К, Cl, Br, Na, Ca, Mg, Р проводилось с использованием специально приготовленных эталонов. В состав эталона эти элементы вводились в виде следующих соединений: КCl, KBr, NaHCO₃, CaO, MgO, KH₂PO₄. В качестве наполнителя в эталонах использовалась сахароза. Во избежание ошибок, связанных с неравномерностью плотности потока нейтронов по длине капсулы, геометрические параметры проб и эталонов были выдержаны одинаковыми.

Облучение образцов проводилось в канале пневмотранспорта реактора ИБР-30 ЛНФ ОИЯИ с плотностью нейтронного потока до

Осьединсь с областити ИССРНых иссле собласти БИБЛИОТЕКА

1

3.10¹⁰ н/(см²с). Для измерения наведенной активности использовался гамма-спектрометр, выполненный на основе полупроводникового Ge-Li -детектора объемом 50 см³ и разрешением 3 кэВ по линии 1333 кэВ ⁶⁰Со.

Описание методики измерений и обработки результатов приведено в работе /1/.

Было проведено 1500 элементоопределений для семи элементов K, Na, Ca, Mg, P, Cl и Вг в девяти тканях. Для анализа экспериментальных данных использовались стандартные статистические параметры /3/. Для группы из в животных определяется среднее арифметическое значение содержания элемента в мг/г по сырому весу:

$$\bar{\mathbf{x}} = (\sum_{i=1}^{n} \mathbf{x}_i)/n \pm \sqrt{\frac{\mathbf{s}^2}{n}}$$
.
Здесь $\mathbf{s}^2 = \frac{\sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}^*)^2}{n-1}$ – дисперсия /при $n \le 30$ /, которая
складывается из аналитической погрешности методики \mathbf{s}_{ah}^2 и ис

ешности методики s² и ис-

комой природной дисперсии $s_{\Pi p}^2$ таким образом, что $s_{\Pi p} = \sqrt{s^2 - s_{aH}^2}$ со средним квадратичным отклонением $\tilde{s}_{\Pi p} \simeq s_{\Pi p} / \sqrt{2 n}$. Относительная величина природной дисперсии представляется через коэффициент вариации $s_{\Pi p}^k = (s_{\Pi p} / \vec{x}) \cdot 100\%$ с ошибкой

$$\tilde{s}_{np.}^{k} \simeq s_{np.}^{k} \sqrt{\frac{1}{2n} + (\frac{s}{\bar{x}})^{2} / n}$$

Показателем разброса данных служит также вариационный размах, т.е. разница между максимальными и минимальными значения-

ми $R = (x_{MAKC} - x_{MUH})$. С помощью критерия Стьюдента определяются доверительные пределы для искомого среднего значения $\mu = \bar{x} \pm \frac{t_p \cdot s}{\sqrt{n-1}}$, где t_p табулированное значение величины t, для которого t t, c вероятностью р при числе степеней свободы n-1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 1 приведены результаты статистического анализа полученных данных по костной ткани двух групл здоровых животных. Наблюдаемые различия в элементном содержании согласуются с известным фактом изменения возрастных показателей минерального состава костной ткани /4/ В других тканях такого различия не обнаружено, поэтому для этих тканей данные по двум группам животных 2- и 5-месячного возраста объединены.

Из результатов анализа мышечной ткани /табл. 2/ следует, что коэффициент природной вариации меняется от /8+1/% для натрия до /15+5/% для кальция, в то время как для магния он составляет /28+57%.

5.5	9							9						
∡ = t _{ee} μτ/τ γ∩.	(e,e±0,7).IO ⁻	2,9±0,3	I,7±0,2	52 ± 4,0	I,0 ± 0,I	2,7±0,I	I44 ± 9	(9,6 [±] I,5).IO ⁻	$4,3 \pm 0,6$	2 ,5±0, 9	79 ± 4	I, <u>I</u> ± 0,2	4,40,4	255 ± 15
5 Ap. ± 5 Ap.	I3 ± 3	IO ± 2	I6 ± 3	I2 ± 2	22 ± 4	7 1. I	9 1 2	I8 ± 4	9 ± 44	38 ± 9	4 ± I	I9 ± 5	9 † 2	6 t I
Sap. ± Sap. S Mar/r	(0,84 ± 0,18)-10 ⁻³	0,29 ± 0,06	0,28 ± 0,05	6,2 ± I,I	0,22 ± 0,04	0,20±0,03	I4,0±2,0	$(I,7 \pm 0,4) \cdot I0^{-3}$	0,70 ± 0,16	0,9 ± 0,2	3,I ± 0,7	0,2I ± 0,05	0 ,3 9 ± 0,09	I6,0±4,0
, Хам. МЕГ/Т	0,6.10 ⁻³	0,2	0,3	3,0	0,05	0,10	10 ° 0	0,6.10 ⁻³	0,2	0,5	4 ,0	0,05	0,2	IO,O
R Mer/r	3,5.10 ⁻³	0°Ĩ	1,3	20,05	0,52	0,70	65,0	5,0.10 ⁻³	I,8	2,6	15	0,70	I,3	50,0
Kr/r	I,0.I0 ⁻³	0,35	0,41	6,9	0,23	0,22	0,11	I,8.I0 ⁻³	0,73	1,0	5 , I	0,21	0,44	0'6I
۲	H	H	1	5	1	13	£i	ი	6	ი	ი	б	ი	6
Jue- Meht	Å	ЯŊ	' ഷ	ሲ	ઝ	Na	g	۲g	Ma	Н	ዱ	SC	∕a	, Ca
	(, Mec.)					۹۳ ا) איזדא	•0• 1	- MG MG MG MG MG MG MG MG MG MG MG MG MG	G)				

ткани

костной

6

данных

анализа

статистического Labuma

результатов

Сравнение

XHHDOTHNX

групп здоровых

BOSDACTHMX

XY

2

Таблица 2

ткани мышечной оц анализа данных статистического Результаты

Эле-	c	S	¥	Saw.	Sop. ± Sop.	Sop & Sop.	X + 196.3
MCHT		MC/T	MET/T	MCT/T	MT/T	%	MC/T
놂	61	0,7.I0 ⁻³	2,9,10 ⁻³	0,4.I0 ⁻³	(0,58 ± 0,09).I0 ⁻³	I4 ± 2	$(4,0 \pm 0,4) \cdot 10^{-3}$
Мg	61	0,15	0,40	0,05	0,I4 ± 0,02	28 ± 5	0,5I±0,07
К	24	U , 87	3,3	0,70	0,52 ± 0,08	11 ± 2	4,9 ± 0,4
പ	24	0,46	Ι,4	0,3	0,34 ± 0,05	п 1 6	3,7 ± 0,2
ଞ	24	0,06	0,2	0,03	0,05 ± 0,0I	I † 6	0.49 ± 0,03
Na	24	0,05	0,14	0,03	0,03 ± 0,004	8 † I	0,44 ± 0,02
Ca	S	0,018	0,05	0,015	0,01 ± 0,003	I5 ± 5	0,07 ± 0,03

Отметим, что при анализе все органы, кроме печени, исследовались целиком. Из-за большого размера печени для анализа бралась только ее часть. Известно^{/2/}, что для такого органа, как почки, обнаружено изменение содержания Na и Cl в 5 раз по мере продвижения вглубь органа. Это обстоятельство побудило нас провести анализ проб, взятых из разных участков печени одного и того же животного. В <u>табл. 3</u> приведены данные по абсолютному содержанию элементов в пяти пробах печени. Для Br, P, Cl, Na не наблюдается существенного различия, коэффициент вариации для этих элементов не превышает 4%, в то время как для Mg и K величина коэффициента природной вариации составляет /26,4+9,0/% и /19,4+6,4/%, соответственно.

В сводной табл.4 представлены значения коэффициентов вариации содержания элементов в исследуемых тканях. В последнем столбце приведены средние значения коэффициента вариации по элементам: наибольшими средними отличаются почка и селезенка, наименьшими - костная и мышечная ткань.Максимальное значение усредненного по тканям коэффициента вариации характерно для брома. Это связано с его принадлежностью к микроэлементам, для которых биологический разброс существенно больше ^{/5/}, чем для макроэлементов.

Полученное нами обобщенное среднее значение коэффициента вариации составило /17+3/% и согласуется с данными работ ^{/8/} -20% и ^{/8/} - /10-30/%, хотя в ^{/7/} разброс результатов анализа связывается с методическими погрешностями и отождествляется с коэффициентом воспроизводимости. В используемой нами методике этот коэффициент не превышает величины аналитической погрешности.

Для группы из пяти животных при коэффициенте вариации 17% и аналитической погрешности методики 5% величина 95%-ного доверительного интервала составляет +0,25%. Этот результат требует критического отношения к оценке получаемых экспериментальных данных, если различие в содержании элементов не превышает 25%, поскольку такое различие может быть следствием индивидуального биологического разброса.

Приведенные ниже примеры позволяют оценить возможности исследования изменений в элементном содержании при опухолевых процессах.

Вследствие прививки экспериментальной опухоли /карциносаркома Уокера/ в мышечную ткань правой задней лапки животного наблюдается изменение содержания Ca, P, Na,Mg в костной ткани подопытных животных /табл. 5/, которое превышает величину природной дисперсии.

В табл. 6 представлены данные, демонстрирующие высокое содержание Na, Cl и Br в прилежащей к опухоли мышечной ткани и в самой опухоли по сравнению с мышечной тканью здоровых животных.

5

Таблица 3

Содержание элементов в разных пробах печени одного здорового животного $(\bar{x} \pm S/\sqrt{n})$

Вес образца г	8r• MRT/T	Mg Mr/r	K MT/T	р мг/г	(<u>)</u> MT/T	No. MT/T
1,31	7,5 ± 0,3	0,42 ± 0,06	3,6 ± 0,5	3,9 ± 0,3	1,27 ± 0,03	0,81 ± 0,02
1,27	7,6 ± 0,3	0,39 ± 0,02	3,8 ± 0,5	4,7 ± 0,3	1,23 ± 0,05	0,74 ± 0,03
I,48	7,0 ± 0,3	0,27 ± 0,01	1,9 ± 0,3	4,I ± 0,2	I,I3 ± 0,05	0,7I ± 0,03
1,20	7,3 ± 0,3	0,22 ± 0,0I	3,5 ± 0,5	4,3 ± 0,3	1,25 ± 0,06	0,79 ± 0,04
1,18	7,I ± 0,3	0,27 ± 0,01	3,I ± 0,4	4,I ± 0,2	I,I5 ± 0,05	0,73 ± 0,03
Ā	7,3 ± 0,1	0,31 ± 0,04	3,2 ± 0,3	4,2 ± 0,I	1,2 ± 0,03	0,75 ± 0,02
Snp. ± Snp	2,2 ± 0,7	26 ± 9	19,4 ± 6,4	3,7 ± 1,2	3,3 ± 1,1	4,0 ± I,3

Таблица 4

Коэффициент вариации содержания элементов в исследованных тканях здоровых животных $(S_{np}^k \pm \tilde{S}_{np}^k)\%$

Элемент Ткань	Br	Mg	к	P	a	Na	Ca	Среднее по элементам
Костная ткань (2 мес.)	13 + 3	10 ± 2	16 ± 3	12 ± 2	22 ± 4	7 ± I	9 ± 2	13 ± 2
Костная ткань (5 мес.)	I8 ± 4	9 ± 2	38 ± 11	4 ± I	19 ± 6	9 ± 2	6 ± I	15 ± 4
Мышечная ткань Головной мозг Сердце	14 ± 2 24 ± 4 34 ± 6	28 ± 6 20 ± 3 II ± 2	11 ± 2 10 ± 1 17 ± 3	9 ± 1 19 ± 3 20 ± 3	9 ± 1 13 ± 2 17 ± 3	8 ± 1 12 ± 2 14 ± 2	15 ± 2 - -	13 ± 2 16 ± 3 19 ± 3
Легкие	22 ± 4	17 ± 3	13 ± 2	21 ± 3	14 ± 2	12 ± 2	-	17 ± 3
Почки	32 ± 6	38 ± 7	2I ± 3	I6 ± 2	15 ± 2	17 ± 2	-	23 ± 4
Селезенка	3 0 ± 5	31 ± 5	28 ± 4	II ± 2	17 ± 3	16 ± 2	-	22 ± 4
Семенники	25 ± 4	24 ± 4	15 ± 2	17 ± 2	17 ± 2	2I ± 3	-	20 ± 3
Печень	25 ± 4	9 ± 1	20 ± 3	10 ± 1	19 ± 3	I4 ± 2	-	I6 ± 2
Среднее по тканям	24 ± 4	20 ± 4	19 ± 3	I4 ± 2	16 ± 3	13 ± 2	12 ± 2	17 ± 3

~

Таблица 5

Содержание Са, Р. Mg, Na в костной ткани здоровых животных и опухоленосителей на 7- й день после прививки карциносаркомы Уокера при размере опухоли 4,6-8,5% от веса животного $(x \pm s/\sqrt{n})$

Элемент	Ca Mr/r	Р мг/г	Mg Mt/t	Ма мг/г
Здоровые животные (2 мес.) n = 17	144 ± 4	52 ± 1,7	1,7 ± 0,1 ^{*)}	2,7 ± 0,05
Опухолено- сители (2 мес.) n = 4	83 ± 4	33,2 ± 3,2	1,37 ± 0,07	2,07 ± 0,09

В этом случае n=6

Таблица 6

Сравнительное содержание элементов в мышечной ткани, в прилежащей к опухоли мышечной ткани и в самой опухолевой ткани животных на 5-й день после прививки карциносаркомы Уокера при размере опухоли 0,3-0,8% от веса животного

Элемент	CL Mr/r	Na. mr/r	Br MKF/F
Здоровые животные 2-х и 5-и мес. n = 24	0,49 ± 0,0I	0,44 ± 0,0I	4,0 ± 0,2 ^{±)}
Левая бедренная мышца опухолено- сителей 5 мес. л = 3	0,48 ± 0,08	0,53 ± 0,15	5,0 ± 0,9
Правая бедренная мышца опухолено- сителей 5 мес. R = 3	0 ,63 ± 0,08	0,75 ± 0,12	5,9 ± 0,9
Прилежащая к опу- холи мылечная ткань <i>A</i> = 3	3,06 ± 0,7	3,05 ± 0,7	30 ± 7
Опухолевая ткань n = 3	2,0 ± 0,1	2,I ± 0,I	20,7 ± 4,0

* В этом случае n =19.

Приведенные результаты свидетельствуют о перераспределении этих элементов в организме животного при развитии опухолевого процесса и подтверждают возможность его изучения при наличии природной дисперсии.

ЗАКЛЮЧЕНИЕ

1. Определены характерные параметры природной дисперсии содержания элементов К. Na, Ca, Mg, P. Cl и Вг в девяти тканях лабораторных животных - беспородных крыс-самцов. Обобщенное среднее значение коэффициента вариации составляет /17+3/%.

2. Для получения результатов с доверительными пределами +0,25 x на уровне достоверности 95% достаточно пяти животных в каждой экспериментальной группе.

3. Величина природной дисперсии содержания определяемых в работе элементов позволяет изучать направленность изменений в пораженных и непораженных тканях опухоленосителей /карциносаркома Уокера/.

Авторы благодарны В.М.Назарову и профессору А.И.Рудерману за внимание к работе, И.В.Казачевскому за полезные обсуждения, а также Р.Бакаловой и Е.А.Щербаковой за помощь при обработке экспериментальных данных.

ЛИТЕРАТУРА

- 1. Голованов М.В. и др. ОИЯИ, 18-12262, Дубна, 1979.
- Кист А.А. Биологическая роль химических элементов и периодический закон. "ФАН", Ташкент, 1973.
- 3. Худсон Д. Статистика для физиков. "Мир", М., 1970.
- Neuman W.F., Neuman M.W. The Chemical Dynamics of Bone Mineral. Univ. of Chicago Press, 1958;
 Красавина Б.С., Торбенко В.П. Минеральные ресурсы организма. "Наука", М., 1975.
- 5. Верховская И.Н. Бром в животном организме и его действие. Изд-во АН СССР, М., 1962; T.Sato, Kato T. J. of Radioanalyt. Chemistry 1979, v. 53, N1-2, p. 181.
- 6. Bowen H.J.M. Atomic Energy Review, 1975, v.13, No.3, p.458.
- 7. Казачевский И.В. и др. В кн.: Труды III совещания по использованию новых ядерно-физических методов для решения научно-технических и народнохозяйственных задач. ОИЯИ, P18-12147, Дубна, 1979, c.247.

Рукопись поступила в издательский отдел 5 августа 1981 года.