СООБЩЕНИЯ Объединенного института ядерных исследований дубна

3585/2-81

H-428

20/11-81

18-81-189

И.П.Недялков

# ОБ ОДНОЙ ВОЗМОЖНОСТИ ОПРЕДЕЛЕНИЯ ЗАКОНА РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ ЗЕМЛИ ПРИ ПОМОЩИ НЕЙТРИННЫХ ЭКСПЕРИМЕНТОВ



#### §1. ВВЕДЕНИЕ

Хорошо известна огромная проникающая способность нейтрино. По сути дела она используется в эксперименте Дейвиса:/1,2/ для измерения температуры в центральных областях Солнца при помощи нейтрино, которые рождаются в ядерных реакциях. протекающих в солнечной плазме. Благодаря ничтожно малому сечению при соударении с частицами солнечной материи. эти нейтрино проходят через все Солнце, т.е. расстояние в 10<sup>11</sup>см. и регистрируются земными приборами. Предложен и ряд других впечатляющих нейтринных экспериментов, включающих такие, при которых нейтрино проходит через всю Землю /2/. Однако, насколько известно автору, за исключением нескольких работ последнего времени /3-6/ нигде не обсуждалась возможность экспериментального определения функции распределения плотности Земли на основе информации об ослаблении мощных нейтринных пучков, проходящих через всю Землю, и последующей обработки этой информации при помощи методов компьютерной томографии.

Объясним более подробно, о чем идет речь. Пусть область g /в данном случае круг/, ограниченная контуром в /в данном случае окружность/, является сечением некоторой плоскости П с земным шаром. Пусть Р'єв и Р'єв - какие-нибудь точки. Пропустим через Р' и Р" нейтринный пучок. Обозначим через N', соотв. N" его интенсивность в Р', соотв. Р". Если N, и N" известны из измерений, то тем самым определена и средняя плотность вдоль пучка  $\overline{D}(P',P'') = \frac{1}{\ell} \int_{0}^{\ell} D(\zeta) d\zeta, \ /\ell = P',P'', \ \zeta$  - координата вдоль пучка/, которая, как известно из физики, пропорциональна  $\ln(N_{\nu}' N_{\nu}'^{-1})$ . Измеренная величина D(P',P'') является некоторым усреднением функции D(x, y) распределения плотности в области g+s, где x и y - декартовы координаты точки Р∈ g+s. Очевидно, что зная некоторое усредненное значение D(P'. P') некоторой функции D(x.y), ничего нельзя сказать об этой функции. Однако, если нам известны D(P', P'') для некоторого множества бесчисленных пар точек P'є s и P'єs, то тогда компьютерная томография /7,8/ может восстановить значение D(x, y) во всей области g+s. В данном случае речь идет не только об одной теоретической возможности, но и об одном новом методе, который реализован и применяется как при рентгеновской, так и при ультразвуковой диагностике /8/. В /8-6/ сделано частично

объеманенный институр

**SHEAMOTEKA** 

© 1981 Объединенный институт ядерных исследований Дубна

обоснованное предложение об использовании той же методики для определения распределения D(x, y) плотности Земли в сечении g+s, если известны усредненные значения  $\overline{D}(P'_j, P''_j)$  для не-которого числа пар точек  $P'_i$ ,  $P''_i$ , j = 1, 2, ...

В настоящей работе мы рассмотрим заново этот вопрос. Будут исследованы в отдельности системы с  $\pi$  и k-мезонными нейтринными пучками, которые генерируются в ускорительных установках для протонных пучков с энергиями 0,4; 1; 3 и 20 ТэВ.

Исследования проводятся при помощи грубой математической модели /§2/. Подсчеты, сделанные на основе этой модели, показывают, что средствами современной техники генерирования и детектирования нейтринных пучков успешное проведение эксперимента в принципе представляется весьма вероятным /§3/, хотя и связано с большими трудностями. В §4 сформулировано несколько новых задач из области компьютерной томографии, успешное решение которых уменьшило бы затраты на проведение эксперимента и увеличило ценность полученных результатов. Суммируя соображения за и против предлагаемого эксперимента, в заключении /§5/ автор высказывает мысль о целесообразности его изучения параллельно с обсуждением и проектированием нового поколения ускорителей с тэвными и мультитэвными энергиями, а также с обсуждением программы DUMAND <sup>/2,10/</sup>.

## §2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ИЗМЕРИТЕЛЬНОЙ УСТАНОВКИ

Как было сказано во введении, измерительная установка состоит из источника нейтринного пучка в точке Р' с интенсивностью N<sub>1</sub>,  $\nu$ , c<sup>-1</sup> и детектора нейтрино в точке/P<sup>\*\*</sup>. Будем предполагать, что пучок генерируется в ускорительной установке моноэнергетическим протонным пучком с интенсивностью N<sub>n</sub> и энергией Е, из которого рождается п-мезонный лучок с интенсивностью  $N_{\pi}^{F}$  и энергией  $E_{\pi}$ . В туннеле распада из последнего образуется интересующий нас нейтринный пучок /9/ При прохождении через земной шар расстояния  $\ell = P'P''$ , этот пучок регистрируется детектором в точке Р". Обозначим через N<sup>V</sup><sub>reg</sub> число нейтрино, зарегистрированных в Р" за 1 с. Предположим, что область рождения нейтрино можно рассматривать как точку О≡Р, что эта точка является началом локальной декартовой системы координат что ось ОС проходит через точку Р" и что она совпа-0ξηζ, дает с осью нейтринного пучка. Кроме того, 🏾 –мезонный пучок будем рассматривать как моноэнергетический. При этих предпосылках N<sup>µ</sup> можно определить при помощи формулы

 $N_{reg}^{\nu} = \int_{0}^{\nu} A(\theta) B(\theta) 2\pi\theta d\theta$ ,

где θ= ў MP'P", причем М - произвольная точка в детекторе.

В /1/ A( $\Theta$ ) дает плотность ослабленного пучка после прохождения им отрезка  $\ell$  через Землю, а B( $\Theta$ ) выражает долю нейтринного потока, которая регистрируется детектором. Значения A( $\Theta$ ), B( $\Theta$ ) и интеграла /1/ приведены в<sup>/5/</sup>. Здесь мы воспользуемся грубой математической моделью, в которой A( $\Theta$ ) и B( $\Theta$ ) заменены их усредненными в интервале  $0 \le \Theta \le \psi$  значениями  $\overline{A}$ , соотв.  $\overline{B}$ , где  $\psi = \frac{m_{\pi}}{E_{\pi}} / m_{\pi}$  - масса  $\pi$ -мезона/ - угол конуса, на котором энергия нейтрино уменьшается в два раза. Внутри этого конуса проходит половина нейтринного потока. При сделанных предположениях вместо /1/ имеем

$$r_{reg}^{\nu} = \overline{A} \overline{B}_a$$
, /2/

где

σ, =

$$\begin{split} \bar{A} &= N_{\nu} \exp[-0,50 \cdot 10^{-11} D_0 \ell E_{\pi} E_0^{-1} \kappa \beta I], \\ \bar{B} &= 0,50 \cdot 10^{-11} D_{det} H_{det} E_{\pi} E_0^{-1} \kappa \beta. \end{split}$$

В этих формулах  $D_0$  - средняя плотность Земного шара,  $\kappa = 1 - m_\mu^2 m_\pi^{-2}$ , где  $m_\mu$  - масса  $\mu$  -мезона,  $E_0 = 1$  ТэВ,  $D_{det}$  - плотность чувствительного вещества детектора,  $H_{det}$  - высота детектора и  $I = \int \frac{\ell}{D(\zeta)} \frac{D(\zeta)}{D_0} d(\frac{\zeta}{\ell})$  - среднее значение безразмерного интеграла плотности вдоль отрезка Р'Р". Коэффициент 0,50.10<sup>-11</sup> получен из умножения числа Авогадро 0,606.10<sup>24</sup> на коэффициент 0,83.10<sup>-35</sup> в формуле /10/

$$= 0,83 \cdot 10^{-35} E_{\nu} E_{0}^{-1}$$
 /3/

для сечения  $\sigma_{\nu}$  реакции  $\nu_{\mu} + N \rightarrow \mu^{-}$  + адроны, порождаемой нейтрино с энергией  $E_{\nu}$ .

В /2/ фигурируют еще величины a и  $\beta$ , которые определяются так:  $a=\theta^2\psi^{-2}$ ,  $\beta=1$ , если  $\psi>\theta$  и a=0,5,  $\beta=\ln 2$ , если  $\psi<\theta$ , где  $\theta=R_{det}\cdot\ell^{-1}$ , причем  $R_{det}$  - радиус детектора, форма которого по предположению - круглый цилиндр.

Очевидно, что нужная для компьютерной томографии величина  $\vec{D}(P',P'')$  вычисляется через I, а для нахождения самого I необходимо измерить  $N_{reg}^{\nu}$  и  $N_{\nu}^{\prime}$ .

Экспонента в выражении для Ā - малая величина, а I ≈ 1. Поэтому можно представить /2/ в виде

$$l_{reg}^{\nu} = a(1-bI),$$
 /4/

3

где

/1/

 $\begin{aligned} a &= 0.50 \cdot 10^{-11} D_{det} H_{det} E_{\pi} E_{0}^{-1} \kappa \alpha \beta N_{\nu}^{\prime} , \\ b &= 0.50 \cdot 10^{-11} D_{0} \ell E_{\pi} E_{0}^{-1} \kappa \beta. \end{aligned}$ 

В /2/ фигурирует величина  $E_{\nu}^{*} = E_{\pi} \kappa$ , как в экспоненте, так и в виде множителя перед экспонентой, т.е. /2/ можно записать и в виде  $N_{reg}^{\nu} = k_0 E_{\nu}^{*} exp[-k_1 E_{\nu}^{*}]$ . Из этой записи видно, что при всех прочих Одинаковых условиях  $N_{reg}^{\nu}$  достигает максимума, если  $E_{\nu}^{*} = E_{\nu}^{opt} = k_1^{-1}$ . Отсюда получаем

$$E_{\nu}^{\text{opt}} \cdot E^{-1} = (0,50 \cdot 10^{-11} D_0 \ell \beta I)^{-1} .$$
 (5)

При очень больших энергиях сечение  $\sigma_{\nu}$  перестает расти линейно с  $E_{\nu}$ . Тогда вместо формулы /3/ можно использовать приближенную формулу /10/

$$\sigma_{\nu} \approx \left(\frac{E_0}{E_1} + \frac{E_0}{E_{\nu}}\right)^{-1} \cdot 10^{-35},$$
 /6/

где  $E_0 = 1$  ТэВ и  $E_1 = 12$  ТэВ. В этом случае  $E_{\nu}^{opt}$  вычисляется выражением

$$E_{\nu}^{opt}E_{0}^{-1} = (1,5\cdot10^{-12}\frac{M}{R^{2}} - \frac{1}{12})^{-1}$$
, /7/

которое получено тем же способом, что и /5/. В /7/ М и R означают соответственно массу и радиус небесного тела.

Данные о множественности и энергии вторичных  $\pi$ -мезонов, генерированных на мишени протонным пучком, грубо оценим при помощи формул, которые часто используются в физике космических лучей. Для средней множественности вторичных  $\pi$ -мезонов будем использовать формулу  $(n_{\pi}) = 0.85 < n$  /см. рис.2 работы /15/, где  $(n) = 11.2 (E_p E_0^{-1})^{1/4}$  - средняя множественность заряженных частиц для pp -соударений /см. рис.1 работы /12/. Для среднего коэффициента неупругости вторичных  $\pi$ -мезонов примем значение  $K_{inel}^{\pi} = 0.45$ . /В/18/предложено значение  $K_{inel}^{\pi} = 0.42$ /. Соответствующие величины для вторичных K-мезонов будем оценивать по формулам  $(n_K) \approx 0.07 < n$  и  $K_{inel}^{K} \approx 0.05$ .

# §3. АНАЛИЗ ПАРАМЕТРОВ ИЗМЕРИТЕЛЬНОЙ УСТАНОВКИ

Начнем с определения значения  $E_{\nu}^{opt}$  нейтринного пучка, при котором описанная измерительная установка в применении к Земле имела бы наибольшую чувствительность.  $E_{\nu}^{opt}$  можно грубо оценить при помощи /5/, но мы будем пользоваться формулой /7/, которая дает более точные результаты. Для сравнения с теми же формулами, оценим  $E_{\nu}^{opt}$  и для некоторых других небесных тел. Результаты расчетов приведены в табл.1.

Результаты этих расчетов имели бы некоторую ценность в применении к нейтронной звезде, белому карлику и даже к Солнцу, если найдутся совершенно новые, достаточно компактные устрой-

#### Таблица 1

Энергии  $E_{\nu}^{opt}$  для некоторых небесных тел, при которых описанная измерительная установка имела бы максимальную чувствительность

| Небесное  | тело                           | По какой формуле<br>сделан расчет                                                                                         |  |
|-----------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Нейтронна | я звезда                       | (m≈m <sub>O</sub> ; R=10 <sup>5</sup> R <sub>O</sub> ); Е <sup>opt</sup> =150 эВ.<br>Расчет сделан по /5/.                |  |
| Белый кар | олик                           | (m≈ m <sub>☉</sub> ; R=10 <sup>-2</sup> R <sub>☉</sub> ); E <sup>opt</sup> <sub>ν</sub> =150 эВ.<br>Расчет сделан по /5/. |  |
| Солнце    | $E_{\nu}^{opt} = 1$<br>согласн | $E_{\nu}^{opt} = 1,5$ ТэВ согласно /5/; $E_{\nu}^{opt} = 1,7$ ТэВ - согласно /7/.                                         |  |
| Земля     | .Е <sup>opt</sup> =<br>если ра | 41 ТэВ согласно /5/*; ${ m E}_{ u}^{ m opt}$ не существует, счет сделан по /7/.                                           |  |

\*Результат верен, если m >> 70 ГэВ.

ства для генерации и детектирования нейтринных пучков. Тогда можно было бы думать об изучении состава Солнца посредством современной космической техники. В более отдаленном будущем были бы мыслимы и эксперименты с белыми карликами и даже с нейтронными звездами. Такая возможность существует потому, что некоторые из этих объектов в астрофизическом плане являются нашими соседями и в принципе доступны нам в случае реализации программ, подобных программе DAEDALUS<sup>/14/</sup>. Опять нужно оговориться, что все сказанное для неземных объектов имело бы смысл, если бы были открыты новые принципы генерации и детекции нейтринных пучков.

Теперь обсудим условие выполнимости эксперимента для Земли, для которой  $E_{\nu}^{opt} = 41$  ТэВ, если m  $\gg$  70 ГэВ. Для Земли  $E_{\nu}^{opt} = 41$  ТэВ, тогда как в нашем исследовании мак-

Для Земли  $E_{\nu}^{op} = 41$  ТэВ, тогда как в нашем исследовании максимальная энергия нейтринного пучка не будет превышать 4 ТэВ. Имея в виду, что при энергиях  $E_{\nu} < 12$  ТэВ в оценочных вычислениях можно использовать формулу /3/ линейного роста сечения  $\sigma_{\nu}$  с энергией  $E_{\nu}^{/10'}$ , дальнейшие расчеты будем делать при помощи формулы /4/, которая выводится при предположении, что имеет место /3/.

Из  $E_{\nu}^{opt} \approx 41$  ТэВ следует, что нейтринные пучки обсуждаемых в настоящее время ускорителей с энергиями  $E_p = 1$  ТэВ,  $E_p \approx 3$  ТэВ и  $E_n = 20$  ТэВ, не так уж далеки от оптимальных. Поэтому, если

4

предлагаемая методика применима вообще, то это должно быть доказано на основе параметров обсуждаемых в настоящее время ускорителей тэвных и мультитэвных энергий. Для сравнения целесообразно иметь в виду и один действующий большой ускоритель церновский SPS.

Итак, мы будем изучать возможности применения обсуждаемой методики на основе параметров следующих ускорителей:

a/ SPS - ЦЕРН,  $E_p = 400$  ГэВ,  $N_p = 2.10^{13}$ прот./импульс б/ Теватрон,  $E_p = 1$  ГэВ,  $N_p \approx 5.10^{13}$ прот./импульс /15/ в/ УНК - Серпухов,  $E_p = 3$  ТэВ,  $N = 6.10^{14}$ прот./импульс /15/

г/ 20- тэвный ускоритель; E<sub>p</sub> = 20 ТэВ, N<sub>p</sub>=10<sup>15</sup>прот./импульс<sup>/16/</sup>.

Чтобы облегчить сравнение, предположим, что во всех ускорителях интенсивность одинакова  $N_n=10^{12}$  прот.с<sup>-1</sup>.

Целесообразно рассмотреть два предельных случая:

- А/ широкие нейтринные пучки со сравнительно небольшим  $E_{\nu}$  и большим  $N_{\nu}$ ;
- Б/ узкие пучки, в которых Е<sub>v</sub> имеет большие значения, но зато N<sub>i</sub>, меньшие значения.

### А/ Широкие пучки

В табл.2 приведены значения параметров <E  $_{\pi}$ >, N $_{\nu}$ , а и b для  $_{\pi}$ -мезонного пучка, полученного из вторичных  $_{\pi}$ -мезонов, которые рождаются при соударении протонного пучка и мишени. Наличие магнитного рога не предполагается. Расчет сделан для  $R_{det}$  = 0,5 км,  $H_{det}$  = 1 км,  $D_{det}$ =1 г.см<sup>-3</sup>,  $\ell$  = 2R.

#### Таблица 2

Параметры < E > и N' нейтринного пучка, генерированного источником нейтрино при помощи распада  $\pi$  -мезонов; параметры детекции пучка а и b

| Ускоритель<br>Параметры       | SPS<br>E <sub>p</sub> =0,4 ТэВ | Теватрон<br>Е <sub>р</sub> =1 ТэВ | УНК 2<br>Е <sub>р</sub> ≕ЗТэВ | 20-тэвный<br>Е <sub>р</sub> =20 ТэВ |
|-------------------------------|--------------------------------|-----------------------------------|-------------------------------|-------------------------------------|
| <Е <sub>л</sub> > ГэВ         | 23,4                           | 47,5                              | 109                           | 455                                 |
| $N_{\nu}' [\nu \cdot c^{-1}]$ | 4,33.10 <sup>12</sup>          | 2,65.10 12                        | 1,49.1012                     | 1,18.1012                           |
| $a_{\pi} [\nu \cdot c^{-1}]$  | 0,94                           | 4,95                              | 33,3                          | 459                                 |
| b <sub>π</sub>                | 0,359.10 <sup>-3</sup>         | 0,725.10-3                        | 1,66.10 <sup>-3</sup>         | 7,0.10 <sup>-3</sup>                |

При выводе формул /1/-/4/ предполагалось, что нейтринный пучок генерирован  $\pi$ -мезонным пучком. Но теми же формулами можно рассчитать нейтринный пучок, генерированный К-мезонным пучком. Результаты такого расчета, сделанные при предположении, что  $R_{det} = 0.5$  км,  $H_{det} = 1$  км,  $D_{det} = 1$  г·см<sup>-3</sup> и  $\ell = 2R$ , приведены в табл.3.

# Таблица З

Параметры <  $E_k$  > и  $N_{\nu}'$  нейтринного пучка, генерированного источником нейтринного пучка при помощи распада К-мезонов; параметры детекции пучка  $a_k$  и  $b_k$ 

| Парам                                     | коритель             | SPS<br>E <sub>p</sub> =0,4 ТэВ | Геватрон<br>Е <sub>р</sub> =1 ТэВ | УНК<br>Е <sub>р</sub> =3 ТэВ       | 20-тэвный<br>Е <sub>р</sub> = 20 ТэВ |
|-------------------------------------------|----------------------|--------------------------------|-----------------------------------|------------------------------------|--------------------------------------|
| $\langle \mathbf{E}_{\mathbf{k}} \rangle$ | ГэВ                  | 31,8                           | 61                                | 148                                | 600                                  |
| N'                                        | $[\nu \cdot c^{-1}]$ | 0,598.10 <sup>12</sup>         | 0,600.101                         | <sup>2</sup> 0,487.10 <sup>1</sup> | <sup>2</sup> 0,284.10 <sup>12</sup>  |
| a <sub>k</sub>                            | $[\nu \cdot c^{-1}]$ | 0,058                          | 0,48                              | 6,2                                | 185                                  |
| b <sub>k</sub>                            |                      | 1,08.10 <sup>-3</sup>          | 2,16.10 <sup>-3</sup>             | 5,0·10 <sup>-3</sup>               | 20,2.10-3                            |

Для того чтобы применить формулы компьютерной томографии, необходимо выразить I через  $N_{reg}^{\nu}$ , а и b. По /4/ находим

 $I = \frac{N_{reg}^{\nu} - a}{ab} .$  /8/

Из /8/ следует, что для получения I, а заодно и  $D(\mathbf{x}, \mathbf{y})^{/8/}$ с относительной точностью  $\delta$ , необходимо измерить  $N_{reg}^{\nu}$  и  $N_{\nu}^{\prime}$ с относительной точностью порядка  $b\delta$ . Как видно из <u>табл.2</u> и <u>3</u>, такая точность выходит за пределы современных технических возможностей. С другой стороны, относительная погрешность вследствие флуктуаций  $N_{\nu}^{\prime}$  равняется  $\delta_{\Phi} \approx \frac{1}{\sqrt{N_{\nu} t}}$ , где t - длительность процесса измерения. Если сравнить  $\delta$  и  $\delta_{\Phi}$ , то из данных <u>табл.2</u> и <u>3</u> следует, что необходимое для измерения время t неоправданно мало. И, наконец, величина  $N_{reg}^{\nu}$  намного больше необходимого минимального уровня, который определяется фоном космического излучения /10/. Поэтому система измерения, основанная на широком нейтринном пучке, оказывается дефектной. Она недостаточно чувствительна по отношению к точности и избыточна по отношению к интенсивности.

Другая особенность, которая бросается в глаза, - это то обстоятельство, что хотя при тэвных энергиях пучки из К -мезонных нейтрино менее выгодны, при 20 ТэВ наблюдается тенденция

7

6

к выравниванию качеств К и  $\pi$ -мезонных пучков, хотя  $\pi$ -мезонные пучки в общем предпочтительнее. И, наконец, еще одно важное замечание состоит в том, что требования к точности измерений  $N_{\nu env}^{\nu}$  и  $N_{\nu}^{\prime}$  уменьшаются с ростом  $E_p$ .

#### Б/ Узкие пучки

Имея в виду сделанный выше анализ, целесообразно сразу ориентироваться на нейтринный пучок, который: а/ узок, б/ состоит из нейтрино с возможно большей энергией и в/ генерируется распадом  $\pi$  -мезонов. Этим требованиям отвечает меченый нейтринный пучок, предложенный Кафтановым в<sup>/17/</sup>, где  $E_{\nu} = 4$  ТэВ,  $N_{\nu}^{\prime} = 10^8 [\nu \cdot c^{-1}]$ и  $N_{reg}^{\nu} = 9 [\nu \cdot c^{-1}]$ .При пучке Кафтанова длина туннеля распада  $L_1 = 30$  км, а в нашем случае предполагается, что L<sub>9</sub> = 1,5 км. В этом случае детектор будет иметь в мишенной секции 4000 г.см-2, а у нас в качестве детектора будет служить установка DUMAND<sup>/2,10/</sup> с  $R_{det} = 0,5$  км и  $D_{det} = 1$  г·см<sup>-3</sup>, а  $H_{det_{100}} = 1$  км. Имея в виду это и разницу в расчетных формулах"/17/и в данной работе, для модифицированного пучка имеем  $N_{reg}^{\nu} \approx 3,5 [\nu \cdot c^{1}]$  Для параметра в при  $\ell = 2R$  получаем в≈ 0,10. Поэтому, чтобы получить I и D(x,y) с точностью порядка 10%, необходимо измерить  $N_{reg}^{\nu}$  и N, с точностью порядка 0,7%, которая, по-видимому, в принципе не является недостижимой, особенно для меченых нейтринных пучков. Теперь проверим, какая должна быть продолжительность измерения. Из соотношения — 1 **—** 0.007 /NYeg•t находим t≈1,5ч.0тсюда видно, что мы можем работать с самостоятельным протонным пучком, который составлял бы малую часть основного протонного пучка. Интенсивность самостоятельного протонного пучка тогда будет лимитироваться только фоном космических и атмосферных нейтрино /107.

# §4. ВОССТАНОВЛЕНИЕ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ

Полученная при помощи описанной в предыдущих параграфах измерительной системы "ускоритель DUMAND " /коротко система AD / информация должна быть обработана на основе формул компьютерной томографии<sup>/8/</sup>. Ниже мы систематизируем возникающие при этом задачи. Первые две фактически идентичны соответствующим задачам рентгеновской компьютерной томографии<sup>/8/</sup>, а следующие имеют некоторые специфические особенности и ранее не встречались.

Задача 1. Предположим, что D(x, y, z) = D(r),  $r = \sqrt{x^2 + y^2 + z^2}$ . Как выбрать величины  $\overline{D}(P'_1, P''_1)$ ,  $\overline{D}(P'_2, P''_2)$ ,... с тем, чтобы на основе этой информации реконструировать функцию D(r)? Это - классическая задача компьютерной томографии. Для ее решения необходимо провести одну плоскость II через центр Земли, выбрать на s достаточное число пар точек  $P_1', P_1''; P_2', P_2'', ...$ измерить соответствующие значения  $\overline{D}(P_1', P_1''), \overline{D}(P_2', P_2''), ...$ и на их основе при помощи формул "рентгеновской" компьютерной томографии реконструировать D(r).

Задача 2. Пусть функция D(x,y,z)не обладает центральной симметрией. Как выбрать величины  $\overline{D}(P_1',P_1''),\overline{D}(P_2',P_2''),...,$  чтобы на основе этой информации реконструировать D(x,y,z)?

И в этом случае мы имеем задачу классической компьютерной томографии. Для ее решения проведем плоскости  $\Pi^{I}$ ,  $\Pi^{II}$ ,..., через Землю с тем, чтобы соответствующие сечения  $g^{I} + s^{I}$ ,  $g^{II} + s^{II}$ ,..., "охватили" существенные части функции D(x,y,z). Следующий шаг - на каждой из плоскостей,  $\Pi^{I}$ ,  $\Pi^{II}$ ,.... выбирая подходящие пары точек  $P_{1}^{I'}, P_{1}^{I''}$ ;...,  $P_{1}^{II'}, P_{1}^{II''}$ ,.... при помощи стандартных формул  $^{/8/}$  надо восстановить соответствующие двумерные функции  $D^{I}(x,y), D^{\prime\prime}(x,y),$ ... и тем самым искомую D(x,y,z). При этом надо иметь в виду, что DUMAND легче перемещается по дну океана, тогда как перемещение ускорителя очень трудно. Поэтому должно быть как можно больше точек  $P_{1}^{I'} \equiv P_{2}^{I'} \equiv ... \equiv P$  $\equiv P_{1}^{II'} \equiv P_{1+1}^{II} \equiv ... \equiv Q_{1}$ , иначе говоря, один ускоритель в данном положении  $Q_{1}$  должен обслуживать как можно больше плоскостей  $\Pi^{I}, \Pi^{II}, ....$  Другой ускоритель расположен в другой точке  $Q_{2}$  земного шара

Если будет решено на основе системы AD изучать детально часть мантии Земли в некотором районе океана, то тогда придется перемещать одновременно и ускорить и DUMAND.

Перейдем к следующим задачам.

Пусть D(x, y) - точное значение функции плотности в некотором сечении g+s земного шара, а  $\tilde{D}(x,y)$  - ее приближенное значение. Пусть  $\rho[D,\tilde{D}]=\delta$ , где  $\rho$  - расстояние от D до  $\tilde{D}$  в смыс-ле некоторой функциональной метрики, а  $\delta$  - допустимая ошибка. Пусть  $\tilde{D}(P'_j, P''_j; \Delta_j)$ , j=1,2,..., J - значение  $\tilde{D}$ , если измерения соответствующих значений N $_{reg}^{\nu}$  и N $'_{\nu}$  сделаны с заданными ошиб-ками  $\Delta_j$ , и пусть  $Z_j$  - затрата для получения значения  $\tilde{D}(P'_j, P''_j; \Delta_j)$ . Используя эти обозначения, сформулируем следующую задачу.

<u>Задача 3</u>. При фиксированном  $\delta$  надо выбрать число J пары точек  $P_j, P_j', j = 1, 2, ..., J$  и ошибки  $\Delta_j$ , таким образом, чтобы суммарные затраты  $\Phi_3 = \sum_{j=1}^{J} Z_j$  были минимальны.

В последующей задаче используется дополнительная информация о D(x,y,z).Она содержится в значениях вертикального градиента V силы тяжести, который предполагается известным. Для простоты затратами на приобретение этой информации будем пре-

8

9

небрегать. Пусть  $Q_k \equiv x_k$ ,  $y_k$ ,  $z_k \in s$ , k=1,2,...,K - точки на поверхности земного шара, в которых имеются данные о вертикальном градиенте  $V_k$  силы тяжести

$$V_{k} = \frac{\partial U(Q_{k})}{\partial n} = G \frac{\partial}{\partial n} \iiint \frac{D(\xi, \eta, \zeta) d\xi d\eta d\zeta}{\sqrt{(x_{k} - \xi)^{2} + (y_{k} - \eta)^{2} + (z_{k} - \zeta)^{2}}}$$

где 'G - гравитационная постоянная.

Пусть величины  $V_k$  известны с ошибками  $\delta_k$ . Обозначим через  $V_k^*$  значение вертикального градиента силы тяжести в точках  $Q_k$ , полученные на основе решения задачи 3 для  $\Pi^I, \Pi^{II}, \ldots$ Далее обозначим  $\sup |V_k^* - V_k|$  через  $\delta_k^*$  и через  $S_k$  выражение  $S_k = f(|\delta_k^* - \delta_k|)$ , где f – некоторая штрафная функция с аргументом  $|\delta_k^* - \delta_k|$ . Тога можно сформулировать задачу следующим образом:

Задача 4. При фиксированном  $\delta$  надо выбрать числа Ј пары точек  $P_j, P_j''$ , ошибки  $\Delta_j, j = 1, 2, ..., J$  и плоскости  $\Pi^I, \Pi^{II}, ...$  так, чтобы функционал

$$\Phi_4 = \sum_{j=1}^{J} Z_j + \sum_{k=1}^{K} S_k$$

имел минимальное значение.

#### §5. ЗАКЛЮЧЕНИЕ

Суммируя сказанное, отметим следующее. По-видимому, не существует причин, из-за которых предлагаемый эксперимент был бы принципиально неосуществим. Мы обсудили экспериментальную установку при предположении, что генератор нейтринного пучка – тэвный или мультитэвный ускоритель, а детектор – детектор типа DUMAND <sup>/2,10</sup>/

Но даже при этом предположении, не учитывая возможный прогресс в будущем, оказалось, что измерительный комплекс - 20тэвный ускоритель - DUMAND в принципе пригоден для измерения распределения плотности земного шара с точностью порядка 10%. Однако надо отметить, что его осуществление выдвигает трудные проблемы технического и финансового характера, вызванные необходимостью поворота протонного пучка в вертикальное направление. Поэтому не исключено, что компромиссное решение с 3-тэвным или 1-тэвным ускорителем более предпочтительно.При таком решении трудности, связанные с поворотом протонного пучка, существенно уменьшаются. При этом, однако, повысятся в несколько раз требования к точности измерения N<sup>ν</sup><sub>гев</sub> и N<sup>ν</sup><sub>ν</sub>.

Для решения этой проблемы, вероятно, надо искать принципиально новые пути в рамках метода меченых пучков. ЛИТЕРАТУРА

- 1. Davis R., Jr., Harmer D.S., Hoffman K.C. Phys.Rev.Lett., 1968, 20, p.1205.
- Conference Proceedings Neutrino-78, ed. by E.C.Fowler. Pardue University, April 28 - May 2, 1978.
- 3. Недялков И.П. Докл. БАН, 1980, 33, кн.10.
- Nedelkov I.P. In: Seventh Annual Meeting European Geophysical Society. 24-29 August, 1980. Programme and Abstracts. Budapest, 1980.
- 5. Недялков И.П. Изв. вузов. Техническая физика, 1980, 15, кн.2.
- 6. Недялков И.П. Докл. БАН /в печати/.
- 7. Гельфанд И.М., Гиндикин С.Г., Шапиро З.Я. Функциональный анализ и его приложения, 1979, 13, вып.2.
- 8. Kak A.C. Proc. IEEE, 1979, 68, No.9.
- 9. Kleinknecht K. In: Proc. of the 1978 CERN School of Physics. Geneva, 1978.
- 10. Березинский В.С., Зацепин Г.Т. УФН, 1977, 122, вып.1.
- 11. Гришин В.Г. УФН, 1979, 127, №1.
- 12. Лиходед А.К., Шляпников П.В. УФН, 1978, 124, №1.
- 13. Барашенков В.С., Елисеев С.М. ОИЯИ, Р2-5331, Дубна, 1970.
- DAEDALUS Study Group. Project Daedalus. Space Flight, 1977, 19, No.12.
- 15. Goldwasser E.L. In: Proc. 19th Conf. High Energy Physics, Tokyo, 1978.
- Proc. of the Second ICFA Workshop on Possibilities and Limitations of Accelerators and Detectors. Les Diablerets, Switzerland 4-10 October, 1979. Ugo Amaldi ed., CERN.
- 17. Kaftanov V. see<sup>/16/</sup>.

# Рукопись поступила в издательский отдел 27 апреля 1981 года.