

СООБЩЕНИЯ Объединенного института ядерных исследований дубна F

2325/2-81

11/5-81 18-80-846

А.Эрнандес, Л.П.Кулькина

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ УРАНА МЕТОДОМ АКТИВАЦИИ ТОРМОЗНЫМ ИЗЛУЧЕНИЕМ МИКРОТРОНА

Инструментальные ядерно-физические методы анализа получили большое распространение для определения содержания урана в природных объектах в связи с их высокой чувствительностью и возможностью проведения анализа без разрушения пробы ¹¹.

В нейтронно-активационном варианте анализ урана основан на активации пробы нейтронами, например, реактора или ускорителя, и регистрации гамма-излучения изотопа ²³⁹ U с $E_y = 44$; 75 кэВ^{/2-4} или ²³⁹ Np с $E_y = 106$; 228; 278 кэВ ¹.3.5'. В этом случае порог чувствительности достигает порядка /10⁻⁶ ~10⁻⁷ /г/г и зависит от состава исследуемых образцов, например, от присутствия мар-ганца или натрия ^{23,5}. Чувствительность заметно ухудшается при определении урана в таких образцах, как железо-марганцевые конкреции, в которых содержание Mn может быть 42%⁶.

В работе ⁷⁷⁷ представлены предварительные результаты определения содержания урана с помощью активации тормозным излучением с энергией 30 МэВ в бокситах и некоторых образцах окружающей среды. В настоящей работе исследовано инструментальное определение содержания урана в различных объектах при активации тормозным излучением микротрона с энергией электронов 16 МэВ. Проведено сравнение результатов нейтронно-активационного и гамма-активационного анализа урана.

ГАММА-АКТИВАЦИОННЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ УРАНА

При гамма-активационном анализе урана целесообразно использовать реакцию

 $^{238}U(y, n)^{237}U \xrightarrow{\beta} ^{237}Np$,

При этом регистрируется гамма-излучение ²³⁷U или КХ-лучи Np /см. табл.1/. Как следует из табл.1, удобно применить для аналитических целей фотопики с $E_y = 59,54$; 208,0 кэВ или $E_{K_{\alpha},Np} = 97,08$ кэВ, $E_{K_{\alpha},Np} = 101,07$ кэВ.

Для выполнения анализов с помощью КХ-излучения Np с $E_{K_{\alpha_1}Np} = 101,07$ кэВ или более мягких линий спектра использовался полупроводниковый Ge-детектор с чувствительным объемом 2,1 см³, обеспечивающий необходимое разрешение, эффективность регистрации излучения и низкий уровень фона в данной знергетической области. Регистрация у-квантов изотопа ²⁸⁷ U

ł

Энергия у -квантов Е _К , кэв 	Квантовый выход на 100 распадов п _К .%		
-	-		
332,34	1,25		
208,0	22,4		
164,59	1,92		
64,94	1,25		
59,54	34,6		
26,34	2,32		
KX-Np **	50,0		

Характеристики гамма- и КХ-излучений радиоизотопа ²³⁷U *

 Данные взяты из/14/ Приводятся только энергии у -квантов с квантовым выходом >1%.

** Относительные интенсивности КХ-линий Np следующие: $E_{Ka_1}/101,07$ кэВ/: $E_{Ka_2}/97,08$ кэВ/: $E_{K\beta_1}/114,0$ кэВ/: $E_{K\beta_2}/117,5$ кэВ/ = 100:57:39:14.

с Еу=208 кэВ проводилась с помощью Ge(Li) -ППД. Использование этой линии в аналитических целях нецелесообразно, так как в этой области спектра при анализе проб со сложным химическим составом наблюдается большой комптоновский фон и чувствительность анализа снижается. Кроме того, разрешение пика ²³⁷ U / E_y=208 кэВ/ с фотопиком изотопа ⁸⁷Ga / E_y=208,96 кэВ/ не происходит. Поэтому присутствие Zn и Ga в пробе влияет на определение содержания урана '7'.

В <u>табл.2</u> представлены возможные интерференции для всех рассматриваемых аналитических линий. Наложение линий с энергиями $E_{K_{\alpha_1} T_a} = 57,54$ кэВ /от ¹⁸¹ W /, $E_y = 58,47$ кэВ /от ²⁸¹ Th /, $E_{K_{\alpha_2} O_8} = 61,5$ кэВ /от ¹⁹² Ir / на линию 59,54 кэВ, а также все наложения на линию 101,0 кэВ изотопа ²⁸⁷ U не будут иметь места при использовании Ge -детектора из-за его высокого разрешения. Кроме того, при измерении проб после 72-96-часовой выдержки значительно уменьшается интенсивность фотопика с $E_y = 58,47$ кэВ ²³¹ Th / T $_{12} = 25,52$ ч/, который может снизить точность определения урана при сравнительно больших содержания тория. Отношение нормированных площадей пиков неразрешенных линий U, Re и Lu с энергиями $E_y = 59,54$ кэВ (²³⁷ U), $E_{K_{\alpha_1}W} = 59,3$ кэВ / ¹⁸⁴ MRe , ¹⁸⁶ Re / и $E_{\beta_1} r_b = 59,3$ кэВ

Таблица)

Таблица 2

Элемент	Реакция	Энергия интер- ферирующего фотопика,кэВ	Т _{1/2}
Цинк	$\frac{67}{30}$ Zn (n, p) $\frac{67}{31}$ Ca	208,96	78,26 ч
Галий	$^{69}_{31}$ Ga(y, 2n) $^{67}_{31}$ Ga*	208,96	78,26 ч
Иридий	$\begin{array}{c} 193 \text{ Ir } (\gamma, n) \begin{array}{c} 192 \text{ Ir} \\ 77 \end{array}$	205,8; Х-лучи Os:74,02 дн. Е _{Кар} =61,49	
Платина	$\frac{196}{78}$ Pt (y, n) $\frac{195M}{78}$ Pt	98,86	4,1 дн.
Волъфрам	182 W (y, n) 181 W 74 W (y, n) 74	Х~лучи Та: Е _{Ка1} =57,54	120,95 дн.
Торий	232 90 Th (γ. n) ²³¹ Th	58,47	25,52 ч
Самарий	${}^{154}_{62}$ Sm (y, n) ${}^{159}_{62}$ Sm	97,0; 103,2	46,44 y
Лютеций	¹⁷⁵ Lu(y, n) ^{174M} Lu 71 Lu(y, n) ⁷¹ Lu	59,1; Х-лу- чи Үb: Е _{К β1} =59,3	142 дн.
	$^{175}_{71}$ Lu(γ , n) $^{174}_{71}$ Lu	Х-лучи Yb	3,31 г
Рений	185 Re(y, n) 184MRe 75 75	Х⊸лучи W: Е _{Ка1} ≖59,32	165 дн.
	$^{185}_{75}$ Re(y, n) $^{184}_{75}$ Re	Х-лучи W	38 дн.
	¹⁸⁷ ₇₅ Re(y, n) ¹⁸⁶ ₇₅ Re	Х-лучи W	90,64 v.

Интерферирующие элементы при определении содержания урана гамма~активационным методом

* Ввиду того, что в нашем случае энергия электронов равна 16 МэВ, эта реакция не наблюдается.

/174 MLu, 174 Lu / составляет/при $t_{BbJ_{1}} = 50$ ч/ соответственно 300:43:1. Вкладом лютеция в общем случае можно пренебречь. Рений же является рассеянным элементом, который чаще всего сопутствует некоторым минералам, содержащим Mo, Cu, Pb, Zn, Pt, Nb⁷⁸.Кроме того, обнаружены три минерала рения: окиссл, сульфид и сульфорепат меди /джезказганит/⁹⁷. Поэтому целесообразно при анализе содержания урана в этих минералах прове-

3

рить присутствие рения в пробе по другим линиям изотопов рения /например, $E_{K_{\alpha_{2}}} = 57,98$ кэВ, $E_{K_{\beta_{1}}} = 67,2$ кэВ, $E_{\gamma} = 137,2$ кэВ/ и в случае необходимости осуществить анализ урана, используя линию $K_{\alpha_{1}}$ Np с энергией 101 кэВ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Активация образцов осуществлялась тормозным излучением микротрона Лаборатории ядерных реакций с энергией электронов 16 МэВ при среднем токе 22 мкА^{/10}:Образцы в виде порошков весом 2,5-3 г были упакованы в плексигласовые кассеты с внутренним диаметром 20 мм и высотой 12 мм. Один из торцов кассеты закрывался лавсановой пленкой толщиной 10 мкм для обеспечения минимального поглощения излучения с низкими энергиями при детектировании. Геометрия облучения, а также способ мониторирования потока у -квантов олисаны в работе '11'.

12 образцов облучались одновременно в течение 4 ч. После 48-96-часовой выдержки проводились измерения / $t_{\rm HSM}$ = 30÷ 60 мин/ спектров активированных образцов. При анализе урана по фото-пику с E_y =208 кзВ измерение проводилось с помощью Ge(Li)-ППД с чувствительным объемом 23 см³, разрешением 3,5 кзВ на линии 662 кзВ. При определении урана по линиям 101,07; 59,5 кзВ был использован Ge детектор толщиной 7 мм, объемом 2,1 см³ и энергетическим разрешением 500 зВ на 59,5 кзВ. Регистрация и обработка информации осуществлялись с помощью 4096-канальных анализаторов и программных пакетов "ГИТАН" ¹¹²/и "АКТАН-60" ¹¹³. Ввиду того, что исследуемые образцы сильно отличались по составу и концентрации элементов основы, применялся метод внутреннего стандарта, исключающий ошибки, связанные с само-поглющением линии E_y = 59,5 кзВ.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл.3 представлены результаты определения содержания урана в различных образцах гамма-активационным /ГА/ методом и их сравнение с данными, полученными нейтронно-активационным /НА/ методом. Как видно, существует удовлетворительное согласие между результатами, но точность НА метода уступает точности ГА метода. При содержании урана меньше 1 г/т в образцах продуктов переработки железо-марганцевых конкреций анализ урана можно осуществлять только ГА методом. НАА по ²³⁹ U невоз-можен из-за большого содержания марганца. При определении урана в этих образцах по изотопу ²³⁹ Np / E_y = 106 кзВ/, как известно '³', чувствительность не лучше 1 г/т.

Таблица З

**	07	Содержан	ие урана, г/т	
ш	Образец -	ГАА по ²³⁷ U *	НАА по ²³⁹ U **	110 239 Np ***
1.	Железо-марганцевал конкреция	3,6 <u>+</u> 0,1	4,2+1,0	3,8+0,5
?.	Продукты пере- работки конкреций	0,6 <u>+</u> 0,1	-	-
5.	Геологическая порода	2,5 <u>+</u> 0,1	2,4 <u>+</u> 0,1	2,3 <u>+</u> 0,4
•	Продукты пере- работки заводской нефти	2,0 <u>+</u> 0,1	1,9 <u>+</u> 0,2	1,7 <u>+</u> 0,9
	* t _{u3M} , = /30-60/	′мин; ** t	изм. = 23 мин;	*** t _{инт} =60 мин
4000 2000 2000	a designan → topica, n designan designan designan	100 mm m		a tan paga sa tan ang ang ang ang ang ang ang ang ang a
	Minune .			

Результаты анализа содержания урана

<u>Рис.1.</u> Гамма-спектр продукта переработки железо-марганцевой конкреции, содержащен 0,6 г/т U после облучения тормозным излучением микротрона / $t_{0\bar{0}\bar{A}}$ = 4 ч; $t_{Bb|\bar{A}}$ = 84 ч; t_{X3M} = 60 мин/.

5

Рис.2. Гамма-спектры железо-марганцевой конкреции, содержащей 4 г/т U, облученной надтепловыми нейтронами: участок гамма-спектра при определении содержания урана по ²³⁹ U : $t_{0iл.} = 25$ мин, $t_{HMI.} = 5$ мин, $t_{H3M.} = 23$ мин /a/; по ²³⁹ Np: $t_{0iл.} = 10$ ч, $t_{HMI.} = 48$ ч, $t_{H3M.} = 60$ мин /6/.

<u>Рис.3.</u> Гамма-спектры образца геологической породы при облучении его у жвантами: $t_{0\bar{0},\bar{1}}$.= = 4 ч, t_{Bbll} .= 47 ч, t_{N3} M.= = 60 мин /a/, и надтепловыми нейтронами: $t_{0\bar{0},\bar{1}}$.= 25 мин, t_{Bbll} .= = 5 мин, t_{N3M} .= 23 мин/6/; $t_{0\bar{0},\bar{1}}$.= 10 ч, t_{Bbll} .= = 48 ч, t_{N3M} .= 60 мин /b/. На <u>рис.1</u> приведен спектр образца продукта переработки железо-марганцевой конкреции, содержащей 0,6 г/т урана, облученного тормозным излучением микротрона. Аналитические линии урана с энергией 59,5; 97,0; 101,0 кэв свободны от наложений. Фотопик изотопа¹⁵³ Sm с $E_y = 103,2$ кэв несколько снижает чувствительность определения содержания урана по пику 101 кэв. Отметим, что при облучении этого же образца надтепловыми нейтронами за один час измерения не были обнаружены фотопики изотопов ²³⁹ U, ²⁸⁹ Np. На <u>рис.2а,6</u> показаны для сравнения участки гамма-спектров образца железо-марганцевой конкреции /содержание урана 4 г/т/, облученной надтепловыми нейтронами микротрона.

Чувствительность определения урана по фотопику 237 U с E_y = 59,5 кэВ в исследуемых образцах железо-марганцевых конкреций и продуктов переработки конкреций равна 0,1 г/т при времени измерения 1 ч. При активации этих же образцов надтелловыми нейтронами чувствительность анализа урана по фотопикам 239 U с E_y = 74,7 кэВ /t_{ИЗМ,} = 23 мин/ и 239 Np с E_y = 106 кэВ / t_{ИЗМ} = 60 мин/ равняется 2 и 1 г/т <u>соо</u>тветственно. Чувствительность рассчитывалась по критерию $3\sqrt{S_{\rm ch}}$ / S_{ch} - значение фона в области мотопика/.

При анализе геологических образцов пределы чувствительности иные. На <u>рис.3</u> приведены в качестве примера у -спектры образца геологической породы, содержащей 2,2 г/т урана, облученной у -квантами /<u>рис.3a</u>/и надтепловыми нейтронами /<u>36,8</u>/. Чувствительность определения урана в этом случае равняется 0,1г/т / $t_{\rm M3M.}$ = 30 мин/, 0,2 г/т / $t_{\rm M3M.}$ = 23 мин/ и 0,6 г/т / $t_{\rm M3M.}$ =60 мин/ по изотолам ²³⁷ U, ²³⁹U и ²³⁹Np соответственно. Аналогичные результаты были получены при анализе содержания урана в нефти.

Полученные результаты показывают, что чувствительность определения урана методом ГАА по фотопику 59,54 кэ8 в зависимости от химического состава анализируемых образцов в 2-10 раз превышает чувствительность анализов, выполненных методом активации надтегловыми нейтронами. Если приходится использовать для определения урана фотопик с энергией 101,0 кз8, чувствительность снижается в 1,5-2 раза по сравнению с результатами, полученными по фотопику $E_{\rm V}$ =59,54 кз8.

выводы

ł

 Разработана и опробована методика определения содержания урана при облучении тормозным излучением микротрона на образцах конкреций и продуктов их переработки, геологических пород и нефти. 2. Чувствительность ГАА урана составляет 1.10⁻⁷ г/г при t_{IIIAM.} = /30-60/ мин и превышает в 2-10 раз чувствительность НАА.

Авторы выражают глубокую признательность профессору Ю.С.Замятнину за постоянный интерес к работе и ценные замечания, Х.Эстевесу за изготовление стандартов, необходимых для исследований и анализов, А.Г.Белову за техническое обеспечение экспериментов, Нгуен Динь Зунгу и Данг Ван Хуонгу за проведение облучений на микротроне.

ЛИТЕРАТУРА

- 1. Колесов Г.М., Сурков Ю.А. Радиохимия, 1979, т.XXI, вып.1, с.138.
- 2. Steinnes E., Brune D. Talanta, 1969, 9, p.1326.
- 3. Маслов О.Д. и др. ОИЯИ, 18-12210, Дубна, 1979.
- 4. Ruf H., Shabana R. KFK, 1979, 2871.
- 5. Бурмистров В.Р., Мадянов Т.Н. АЭ, 1976, 40, с.414.
- 6. Железо~марганцевые конкреции Тихого океана /под ред. П.Л.Безрукова/. "Наука", М., 1976.
- Fushban H.U., Segebade C. In: 5th Symposium on the Recent Development in Activation Analysis, Oxford, 1978, p.22.
- 8. Лебедев К.Б. Рений. Металлургиздат, М., 1960.
- Филиппов Е.М. Ядерная разведка полезных ископаемых. "Наукова думка", Киев, 1978.
- 10. Выропаев В.Я. ОИЯИ, 14-9446, Дубна, 1976.
- 11. Эрнандес А., Рубио Д. ОИЯИ, 18-80-337, Дубна, 1980.
- 12. Глейбжан Э.М., Жучко В.Е. ОИЯИ, Р10-80-51, Дубна, 1980.
- 13. Хак Тхи И. ОИЯИ, 10-80-680, Дубна, 1980.
- 14. Гусев Н.Г., фютриев П.П. Квантовое излучение радиоактивных нуклидов. Атомиздат. М., 1977.

Рукопись поступила в издательский отдел 30 декабря 1980 года.