

Объединенный институт ядерных исследований дубна

30/11-81

18-80-836

Д.Рубио

1645/2-81

РЕНТГЕНОФЛУОРЕСЦЕНТНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ СЕРЕБРА В ГЕОЛОГИЧЕСКИХ ОБРАЗЦАХ С УЧЕТОМ МАТРИЧНОГО ЭФФЕКТА

Направлено в журнал "Заводская лаборатория"

Анализ серебра по характеристическому излучению с энергией $E_{\rm 2}{=}22,2$ кзВ, возбуждаемому в геологических образцах изотопными источниками у-и Х-излучения, связан с некоторыми трудностями, обусловленными: а/ сильным влиянием поглощения характеристического излучения серебра в веществе пробы на выход излучения /матричный эффект/; б/ сложностью подбора подходящего источника первичного излучения для оптимального возбуждения характеристического излучения для оптимального возбуждения характеристического излучения серебра; в/ возможным изменением количества импульсов в пике серебра и в пиках когерентного и некогерентного рассеянного излучения источника возбуждения с энергией $E_{\rm 1}$ из-за наличия в образцах элементов с знергиями краев поглощения - $E_{\rm K}$, находящимися в пределах $E_{\rm 2}{\sim}E_{\rm K}{<}E_{\rm 1}$.

Так, при возбуждении характеристического излучения серебра / E_2 =22,2 куВ/ источником излучения с энергией E_1 . близкой к E_2 , например $^{125}\,I$ / E_1 = 28,0 куВ/, и регистрации этого из-лучения Si Li) -детектором появляется дополнительный вклад в фон энергетической области спектра, соответствующей линии серебра, поскольку эта линия расположена на спаде пика неко-герентного рассеяния с энергией $E_{\rm IKPp} \approx 26$ куВ $^{-1.2'}$. При большой разнице между энергией возбуждения E_1 и энергией характеристического излучения с энергией $E_{\rm IKPp} \approx 26$ куВ $^{-1.2'}$. При большой разнице между энергией возбуждения E_1 и энергией характеристического излучения серебра E_2 . например при возбуждении источником $^{241}\,\rm Am$ / E_1 =59,6 куВ/, трудно учесть эффект поглощения излучения на тики серебра и рассеянных излучения в интервале $E_2 < E_k \leq E_1$.

В работах ^{(3,47} для рентгенофлуоресцентного анализа с Si(Li)детектором были использованы двухступенчатые источники рентгеновского излучения /ДИРИ/. Эти источники позволяют устранить большинство указанных трудностей при анализе серебра в геологических образцах, но их общим недостатком является низкий выход вторичного излучения возбуждения ⁽⁵⁷.

В работе ^{/6/} предлагается метод определения содержания серебра по рентгеновскому излучению палладия после активации образца на пучке тормозного излучения микротрона. Метод отличается высокой чувствительностью: /1÷2/·10⁻⁴ %, но предъявляет жесткие требования к эталонированию для учета матричного эффекта. Целью настоящей работы являлась разработка рентгенофлуоресцентного метода анализа /РФА/ серебра с чувствительностью ~10⁻⁴ %, учитывающего влияние матричного эффекта на результаты измерений.

Для решения поставленной задачи в качестве источника возбуждения использовался ДИРИ ²⁴¹ Аm ~ Ba, разработанный на основе источников ²⁴¹ Am фирмы "Изотоп". Конструктивные решения, примененные в ДИРИ, позволили существенно увеличить выход вторичного излучения возбуждения по сравнению с выходом, получаемым в ДИРИ с кольцевым источником ²⁴¹ Am.

ОБОСНОВАНИЕ МЕТОДИКИ

Из формулы Блохина $^{\prime 7,B^\prime}$ следует, что оптимальная энергия E_1 для возбуждения характеристического излучения серебра с энергией $E_2=22,2$ кэВ должна быть близка к E_2 и выше или равна энергии края поглощения серебра $E_k=25,5$ кэВ. Источник излучения 125 I имеет энергию возбуждения $E_1=28,0$ кэВ, но, как установлено в работах $^{\prime 1,2^\prime}$, спад пика некогерентного рас сеяния от излучения источника 125 I дает вклад в фон под пи ком серебра, что ограничивает использование этих источников при определении малых содержаний серебра.

Более подходящими энергиями E_1 для возбуждения серебра являются энергии характеристических излучений цезия E_1 = \approx 31,0 кэВ и бария $E_1\approx32,2$ кэВ. Вклад пиков некогерентного рассеяния этих излучений значительно меньше, чем при возбуждении источником $^{125}\mathrm{I}.$

Применение ДИРИ с ²⁴¹ Am и вторичной бариевой мишенью позволяет использовать энергию характеристического излучения бария для возбуждения характеристического излучения серебра. При этом значение линейного коэффициента поглощения излучения бария в серебре является достаточным для решения поставленной задачи. Кроме того, при измерении характеристического излучения серебра и рассеянного излучения с энергией E₁ = 32,2 кэВ легче удовлетворить условию относительно бесконечно толстого слоя пробы, чем в случае использования излучения возбуждения с энергией E₁ = 59,6 кэВ. Для энергии E₁ = 32,2 кэВ относительно толстый слой образца с Z $3\phi \approx 11$ примерно равен 1 г/см⁸, что вполне возможно осуществить в реальных случаях.

В работах ^{/8-10/} установлена возможность определения зависимости между Z_{3qc} пробы и интенсивностью когерентного – N_{Kp} /имп/мин/ и некогерентного – N_{HKp} /имп/мин/ рассеянного излучения. Для установления такой связи можно исходить из зависимости дифференциальных сечений /по углу/ для когерентного $d_{a}\sigma^{K}$ и некогерентного $d_{a}\sigma^{RK}$ рассеяния от Z, которые имеют вид ⁽⁹⁾:

2

$$d_{a} \sigma^{K} \approx Z^{2} \exp\left(-\frac{E \sin \theta/2}{Z^{1/3}}\right),$$
$$d_{a} \sigma^{HK} \approx Z\left[1 - \exp\left(-\frac{E \sin \theta/2}{Z^{2/3}}\right)\right]$$

где Е - энергия первичного излучения, и θ - угол рассеяния.

Благодаря использованию энергии возбуждения $E_1=32,2$ кэВ и малой разнице между энергиями E_2 и E_1 , можно установить экспериментальную зависимость между выходом характеристического излучения серебра I_{BbX} /имп/мин.% содер. Ag / и $N_{\rm HKP}$, а следовательно, и Z $_{\rm 2dh}$, т.е.

 $I_{Bbix} = f(N_{HKp}) = \phi(Z_{3\phi}). \qquad (1/$

В данной работе мы измеряли амплитуду пика некогерентного рассеяния – $I_{\rm HKP}$ /имп/мин/, так как это позволяет упростить процесс измерения и обработки результатов при достаточной точности определения $I_{\rm HKD}$.

Для практического использования зависимости /1/ была построена калибровочная кривая, позволяющая по амплитуде пика некогерентного излучения I_{нкр} определить выход характеристического излучения серебра из пробы I_{вых} в зависимости от Z_{эд} образца. Значения I_{вых} определялись по формуле

$$I_{Bbix} = \frac{i_{R9}}{C_{Ag9} \cdot t}, \qquad /2/$$

где і_{л Э} - количество импульсов в пике серебра спектра стандартной пробы при t мин измерения; С_{Ад}, - содержание серебра в стандартной пробе.

Связь между I $_{\rm HKD}$ и $Z_{\rm SQ}$ находилась путем использования различных комбинаций химических реактивов. Z $_{\rm Vd}$ рассчитывается

по формуле $\frac{11}{2} z_{9\Phi} = \sqrt[3]{\frac{1}{2}} p_i Z_i^3$, где p_i - относительное весо-

вое содержание Z- го элемента, n - число элементов в среде. Для построения калибровочной кривой достаточно иметь в распоряжении 4÷5 стандартных проб серебра с разными Z_{эф} матрицы.

Содержание серебра в пробах определяется по формуле

$$C_{Ag} = \frac{i_{\Pi}}{I_{BbIX} \cdot t}, \qquad (3)$$

где i_n ~ количество импульсов в пике при времени измерения t, а $I_{вых}$ определяется по калибровочной кривой.

 $\bar{\mathbf{B}}$ случаях, когда в пробе существуют элементы с энергиями краев поглощения $\mathbf{E}_{\mathbf{x}}$, лежащие между $\mathbf{E}_{\mathbf{y}} < \mathbf{E}_{\mathbf{y}} < \mathbf{E}_{\mathbf{y}}$, надо вво-

дить соответствующие поправки, учитывающие влияние излучений этих элементов на характеристическое излучение серебра и рассеянное излучение от первичного излучения с энергией E₁.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Блок-схема ДИРИ ²⁴¹ Am ~ Ва изображена на рис.1, где указаны основные элементы устройства. Измерения характеристического излучения проб проводились на 800-канальном анализафирмы NOKIA с использованием торе типа LP-4840 Si(Li) - deтектора с чувствительной площадью ~ 20 мм² и разрешением по -линии Mn ~240 эВ. При исследовании был использован на-Ka бор геологических образцов с разными матрицами и различным содержанием серебра /см. таблицу/.Содержание серебра в пробах предварительно было определено РФА с использованием внутреннего стандарта. Для анализа брались навески проб по 2-3 грамма, помещенные в пластмассовые бюксы размером $o = 20 \times 12$ мм² с лавсановым дном толщиной 10 мкм.

Рис.1. Блок-схема ДИРИ ²⁴¹ Ат-Ва. 1 - источники ²⁴¹ Ат, 2 - вторичная бариевая мишень, 3 - проба, 4 - свинцовая защита, 5 -Si(Li) -детектор.

Для оценки степени влияния матричного эффекта на результаты анализа серебра на рис.2 представлены спектры пиков серебра, полученные при измерениях синтетических проб с известными Z _{эф} и одинаковыми содержаниями серебра /0,004%/ при 20 мин измерения. В таблице приведены количестьенные результаты измерений /пробы с порядковым номером 15-20/. Видно, что I_{вых} уменьшается в 7,4 раза при увеличении Z_{эф} в 2,2 раза.

При анализе серебра в геологических образцах с разными Z_{эф} матричный эф-

фект может быть учтен при помощи калибровочной кривой, приведенной на <u>рис.3</u>. Калибровочная кривая построена по результатам измерения проб, представленных в таблице.Содержание серебра определялось по формуле /3/.

Чувствительность метода /по критерию $3\sqrt{I_{\rm doH}}$ / в зависимости от матричного эффекта и при 30 мин. измерении приведена

Таблица

п/н	Содержание серебра С _{А9} (10 ⁻⁴ %)	Относительная ошибка опреде- ления количест- ва импульсов в пике серебра (%)	Время измере- ния (мин.)	I _{вых} (имп/,10 ⁻⁴ %. мин.))	Z ^{жи} эф
I	5,2	14	30	2,18	-
2	8,5	6	30	4,26	-
з	9,5	10	30	2,61	-
4	10	13	30	0,97	-
5	14,7	ô	30	2,66	-
6	21	6	30	I,85	-
7	32	2	30	2,60	
ъ	39	3	20	5,35	- '
9	49	4	20	I,16	-
10	60	3	20	1,57	-
11	75	2	15	3,50	-
12	75	2	15	4,82	-
13	в0	3	I5	1,28	-
14	150 r	2	10	4,37	-
Ξā	40 [%]	2	20	4,31	11,3
16	40 ^{**}	2,5	20	3,24	15,3
17	40 [¥]	3,1	20	2,34	17,0
18	40 [¥]	3,8	20	I,46	18,6
19	40 ^{**}	4,8	20	0,94	21,4
20	40 [#]	ö,9	50	0,78	25 , I

Результаты измерений геологических образцов с известными содержаниями серебра

* Синтетические пробы.

** Расчетные данные.

на <u>рис.4</u>. Как видно из рисунка для Z _{Эф}=11÷22 а.е., чувствительность плавно меняется в пределах /1÷4/·10⁻⁴ %.

Относительные ошибки определения серебра в геологических пробах даны в таблице,из которой видно, что ошибки не превышают 14% в указанных пределах содержания серебра. Отметим, что относительная ошибка сильно зависит от Z_{30} матрицы. Особенно это наглядно видно для проб 15-20 с содержанием серебра $40\cdot10^{-4}$ %. В этом случае с увеличением Z_{30} в ~2,2 раза относительная ошибка возрастает в ~3,4 раза.

Рис.4. Чувствительность анализа серебра в геологических пробах в зависимости от $1_{\mu KD}$ и $Z_{3\Phi}$. Время измерения – 30 мин.

<u>Рис.5.</u> Спектр геологического образца с содержанием серебра $8,5 \cdot 10^{-4}$ %. Время измерения - 30 мин.

На <u>рис.5</u> представлен спектр геологического образца с содержанием серебра $8,5\cdot 10^{-4}$ % и $Z_{\eta_{c}} \sim 11,2$ а.е., полученный при 30-минутном измерении. Относительная ошибка определения содержания серебра составила 6%.

Полученные данные показывают, что выход вторичного излучения источника ДИРИ 241 Am — Ва является достаточным для решения поставленной задачи. В данном ДИРИ были использованы источники 241 Am общей активностью 800 мКи. Эта активность может быть увеличена до 1200÷1600 мКи при практически полной радиационной безопасности. За счет этого выход вторичного излучения с энергией $E_1 = 32,2$ кэВ должен увеличиться в 1,2÷1,5 раза, что приведет к сокращению времени измерений, либо увеличению точности.

ЗАКЛЮЧЕНИЕ

 В работе предлагается методика анализа серебра в геологических образцах с учетом матричного эффекта.

 Показано, что двухступенчатые источники рентгеновского излучения ²⁴¹ Am- Ba могут успешно применяться для этой цели.

3. Достигнутая чувствительность анализа серебра в геологических образцах с разными матрицами: /1÷2/·10⁻⁴ % для легких и средних матриц /Z $_{\rm DD}$ =11÷17 а.е./; /2÷4/·10⁻⁴ % для более тяжелых матриц /Z $_{\rm DD}$ = 17÷22 а.е./ при 30-минутном измерении.

Автор глубоко признателен Г.Н.Флерову за постановку задачи и постоянный интерес к работе, Ю.С.Замятнину за обсуждение результатов и ценные замечания, Е.Л.Журавлевой и Х.Эстевесу за помощь в проведении экспериментов.

ЛИТЕРАТУРА

- 1. Burkhalter P.G. Analyt.Chem., 1971, vol.43, No.1, p.10.
- 2. Рубио Д., Журавлева Е.Л. ОИЯЙ, 18-12854, Дубна, 1979.
- 3. Giuque R.D. Analyt.Chem., 1968, vol.40, No.13, p.2075.
- 4. Shenberg C., Boazi M. J.Radioanal.Chem., 1975, vol.27,p.457.
- Вольдсет Р. Прикладная спектрометрия рентгеновского излучения. Атомиздат, М., 1977.
- 6. Во Дак Банг, Замятнин Ю.С., Чыонг Тхи Ан. ОИЯИ, 18-80-407, Дубна, 1980.
- Блохин М.А. Физика рентгеновских лучей. Гос. изд. ТТЛ, М., 1953.
- Лосев Н.Ф. Количественный рентгеноспектральный флуоресцентный анализ, "Наука", М., 1969.

- Плотников Р.И., Пшеничный Г.А. Флуоресцентный рентгенорадиометрический анэлиз. Атомиздат, М., 1973.
- Мамиконян С.В. Аппаратура и методы флуоресцентного рентгено-радиометрического анализа. Атомиздат, М., 1976.
- 11. Леман Е.П. АЭ, 1969, т 27, вып.5, с. 474.

Рукопись поступила в издательский отдел 22 декабря 1980 года.