

2105 2-80

18-80-42

В.А.Альперт, С.Э.Борискин, Д.Сенеш

ВЛИЯНИЕ ИОННОГО ОБЛУЧЕНИЯ НА ТЕРМО-ЭДС НЕКОТОРЫХ МЕТАЛЛОВ

введение

Термопары являются наиболее распространенными в реакторной технике датчиками температуры, с помощью которых осуществляется контроль температурного режима работы реактора. Поскольку термопары в этом случае работают в условиях интенсивного облучения потоком нейтронов, очень важным является вопрос о влиянии облучения на термоэлектрические свойства материалов термопары. Исследования этого влияния уже проводилось /1-3/, однако величина максимальной дозы облучения не превышала 5×10^{20} нейтронов/см², что обусловлено техническими возможностями современных реакторов и фактором времени. Так, интенсивность потока быстрых нейтронов в экспериментальном канале высокопоточного реактора СМ-2 составляет 2×10^{14} нейтронов/см² /13/. Это значит, что для получения дозы 10^{22} нейтронов/см² необходимо непрерывное облучение в течение трех лет.

Основной компонентой энергетического спектра современного реактора на быстрых нейтронах являются нейтроны с энергией 1 МэВ, в то время как в энергетических термоядерных установках энергия нейтронов составляет 14 МэВ. Ответ на вопрос о поведении термопар в полях нейтронного облучения термоядерных реакторов требует постановки модельных экспериментов, поскольку имеющиеся в настоящее время у экспериментаторов источники нейтронов с энергией 14 МэВ обладают очень низкой интенсивностью.

ПОСТАНОВКА ЗАДАЧИ

Основой для имитационного исследования поведения вещества в полях нейтронного излучения являются полученные методом математического моделирования на ЗВМ $^{4/}$ кривые эффективности смещений атомов кристаллической решетки мишени при их взаимодействии с различными частицами /puc.1/. На основе этих данных может быть построена кривая относительной эффективности тяжелых ионов в отношении радиационного повреждения структуры, которую условно можно назвать кривой "коэффициента нейтронного эквивалента". Эта кривая приведена на puc.2. Видно, например, что один ион Xe по эффективности дефектообразования в структуре облучаемого материала "эквивалентен" 3x10⁶ нейтронов с энергией 1 МэВ.

1:

Глубина проникновения /мкм/

Рис.2. График относительной эффективности ионов в отношении радиационного повреждения структуры /рассчитан по данным ^{/4./}/.

in the set

Облучение металлических мишеней нейтронами всегда сопровождается ядерными реакциями в них, что, во-первых, ведет к радиационному легированию мишеней и не позволяет выделить в чистом виде влияние дефектов структуры на термоэлектрические свойства материалов и, во-вторых, затрудняет работу с облученными образцами вследствие из активации. Но если энергия иона меньше энергии кулоновского барьера для реакций данного иона с ядром мишени, а толщина мишени меньше длины полного пробега иона заданной энергии в этом веществе, то возможность радиационной активации и радиационного легирования облученных образцов за счет ядерных реакций или имплантации ионов полностью исключается.

В настоящей работе сделана попытка модельного исследования термоэлектрических свойств металлов в полях интенсивного нейтронного облучения с помощью высокоэнергетичных ионов ксенона. В литературе данные по этому вопросу отсутствуют.

МЕТОДИКА ЭКСПЕРИМЕНТА

Высокая энергия ионов приводит к большому удельному энерговыделению в объеме образца и требует принятия специальных мер для его эффективного охлаждения в процессе облучения. Были изучены несколько методов охлаждения тонкопленочных образцов. из которых наилучшим оказался метод организации теплового контакта между образцом и охлаждаемой водой медной подложкой с помощью теплопроводного клея, представляющего собой суспензию мелких /порядка 1 мкм в диаметре/ частиц серебра в органическом растворителе. Эффективность теплоотвода в такой системе при прочих равных условиях обратно пропорциональна толщине слоя клея. Наклеивание образцов под давлением обеспечивало минимальную толщину этого слоя. Температура облучаемых образцов определялась с помощью градуировочных кривых, снятых при различных интенсивностях пучка ионов Хе,при этом эталонной мишенью служила наклеенная на охлаждаемую подложку никелевая фольга толщиной 10 мкм с приваренной к ней термопарой. Во всех опытах температура облучаемых образцов не превышала 70°С.

Фольги меди, платины, золота и железа чистотой соответственно 99,93; 99,93; 99,99 и 99,98% облучались в вакууме на ускорителе У-300 Лаборатории ядерных реакций ОИЯИ ионами Xe_{136}^{+9} с энергией 150 МэВ током 1,5 мкА, что соответствует интенсивности облучения 10^{12} ионов/см² с. Выбранные нами металлы различались как структурой, так и температурой плавления. Для некоторых из них опубликованы данные по измерению термоэлектрических свойств при нейтронном облучении ^{/3/}. Толщина фольг во всех случаях была меньше длины пробега ионов ксенона в иссле-

дуемом металле /magn.1/. Перед облучением образцы меди, платины и золота отжигались в течение часа при температуре 700°С в вакууме /10⁻⁵ Top/, а образцы железа - два часа при 1000°С. Специальных мер для обеспечения однородности радиационного дефектообразования по глубине образца не принималось.

Металл	Пробег ионов Хе, 150 МэВ, мкм	ΔS при флюенсе 10 ¹⁵ ионов/ см ² , мкВ/градус	Лбсолютная термо-ЭДС S _{абс} . при 300°К, мкВ∕градус	Лите- ратура	ΔS/S _{aбc.,} %
Pt	7	+0,56	-5,3	/11/	10
Au	8	+0,26	+2,1	/10/	12
Cu	8	+0,50	+1,8	/9/	28
Fe	9	-1,0	S _{абс.} < 1	/12/	>100

Таблица 1

Изменение термоэлектрических свойств металлов, подвергнутых облучению, регистрировалось дифференциальным методом в сравнении: облученный - необлученный образец. Схема измерения показана на *рис.3.* Размер исследуемых образцов 0,01x2x15 мм.

Рис.3, Схема измерения термо-ЭДС.

Механический зажим обеспечивал их хороший электрический и тепловой контакт с отполированной поверхностью центрального и четырех периферийных медных цилиндров. Центральный цилиндр. в середине которого помещались концы четырех исследуемых образцов /необлученный металл, облученный металл и две компоненты стандартной термопары/, снабжен нагревателем. В процессе измерения он медленно нагревался на 0,5-1°С относительно периферийных цилиндров, температура которых в процессе измерения оставалась постоянной, равной комнатной, благодаря хорошей теплоизоляции и большой их теплоемкости. Величина термо-ЭДС, генерируемой парой облученный-необлученный образец, сравнивалась с термо-ЭДС стандартной термопары медь-константан и после усиления микровольтметром типа Ф-116 регистрировалась на диаграмме двухкоординатного самописца. Величина искомой термо-ЭДС определялась по наклону прямой на диаграмме самописца. Чувствительность метода измерения составляла 0,005 мкВ/°С. Изохронный отжиг платины и золота до 500°С проводился в ат-

мосфере, а при температурах, превышающих 500°С - в вакууме /10⁻⁵ Тор/. Время изохронного отжига - 30 мин.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

:

Зависимости радиационно-наведенной термо-ЭДС от дозы обнаруживают в указанном на рис. 4,5 диапазоне флюенсов склонность к насыщению. В табл. 1 представлены сравнительные данные по величинам радиационно-наведенной термо-ЭДС $\Delta S = S_{0\bar{0}\bar{J}}$. - $S_{Heo\bar{0}\bar{J}}$. - где $S_{0\bar{0}\bar{J}}$. - абсолютная термо-ЭДС облученного образца, а $S_{Heo\bar{0}\bar{J}}$. необлученного.

РИС.4. Графики дозовых зависимостей радиационно-наведенной термо-ЭДС платины, меди и золота.

Рис.5. График дозовой зависимости радиационно-наведенной термо-ЭДС железа.

Изменение ΔS исследованных металлов при изохронном отжиге носит сложный характер /puc.6,7/. Возможные причины такого поведения обсуждаются ниже, а сейчас отметим, что $\Delta S_{\rm A}$ для золота отжигается при 500°С, а для платины – ~750°С.

Рис. 6. Кривая изменения радиационно-наведенной термо-ЭДС платины при изохронном отжиге, время отжига 30 мин.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Использованная нами экспериментальная методика позволила полностью исключить из рассмотрения вклад радиационного леги-

Рис.7. Кривая изменения радиационнонаведенной термо-ЭДС золота при изохронном отжиге, время отжига 30 мин.

рования $\Delta S_{_{\mathcal{I}}}$ в радиационно-наведенную термо-ЭДС ΔS , выявить в чистом виде вклад радиационного дефектообразования $\Delta S_{_{\mathcal{I}}}$.

В работах, посвященных влиянию нейтронного облучения на термо-ЭДС металлов и сплавов /1,2/, обычно не разделяется вклад ΔS_{Λ} и ΔS_{Λ} . Для этого надо проследить за изменениями ΔS в процессе отжига облученных образцов. Остаточная величина термо-ЭДС после высокотемпературного отжига будет соответствовать вкладу от радиационного легирования ΔS_{Λ} . Авторы /3/ приводят данные по ΔS_{Λ} для золота, платины и меди, облученных нейтронами с энергией 1 МэВ. В *табл.2* для сравнения представлены и результаты измерения ΔS_{Λ} , полученные в наших опытах.

7	аблица	2

Металл	Флюенс быстрых нейтронов, E = 1 МэВ, н/см ²	ΔS_{A} , данные $^{/8/}$, облучение нейтронами E = 1 МэВ, мкВ/градус	Флюенс ионов Хе, исн/см ²	Δ8 _д , облучение ионами Хе, 150 МэВ, мкВ/градус
Fe	10 20		3x10 ¹⁸	-0,30
Cu	1,8×10 ²⁰	+0,07	6×10 ¹⁸	+0,30
Pt	1,8×10 ²⁰	-0,08	6x10 ¹³	+0,35
Au	0,35×10 ²⁰	+0,78	10 ¹⁸	+0,10

При расчетах соответствующих нейтронных доз использовался теоретически полученный нами для ионов Xe "коэффициент нейтронного эквивалента" К /puc.2/, равный $3\cdot10^8$. В $maG_A.2$ обращает на себя внимание несоответствие знаков ΔS_R платины в случае нейтронного и ионного облучения. Сравнивая абсолютные величины ΔS_A исследованных металлов, следует принять во внимание оценочный характер расчета К, основанного лишь на обеспечении эквивалентного количества смещенных атомов и не учитывающего необходимости совпадения и энергетического спектра первичных атомов отдачи для корректного моделирования процессов радиационного дефектообразования.

Исследуя зависимость наведенной термо-ЭДС от дозы при нейт-ронном облучении термопар в интервале 2.10¹⁸ - 10²¹ нейтр./см², автор /1/аппроксимировал ее степенной функцией и на основании этих данных экстраполировал полученную зависимость на область более высоких флюенсов. Согласно рис. 4 насыщение радиационнонаведенной термо-ЭДС исследованных металлов при облучении их ионами Хе начинает проявляться при флюенсе 3.10¹⁴ ионов/см², что в пересчете на эквивалентную нейтронную дозу /puc.2/ как раз и составит величину порядка 10²¹ нейтронов/см². Подобный характер поведения зависимостей радиационно-наведенной термо-ЭДС от дозы заставляет с осторожностью подходить к аппроксимации Δ \$ на область более высоких флюенсов. Таким образом, можно предполагать, что при нейтронном облучении металлов флюенсом свыше 10²¹-10²² нейтронов/см² вклад радиационных дефектов в их термоэлектрические свойства не превысит некоторого уровня, характерного для данного металла, и дальнейшее изменение этих свойств будет определяться главным образом радиационным легированием вещества.

Насыщение дозовых зависимостей ΔS указывает на то, что, по-видимому, при некоторой определенной концентрации радиационных дефектов сравниваются скорости их генерации и рекомбинации и уменьшается эффективность воздействия дефектов на изменение термо-ЭДС. Согласно *рис.1* при флюенсе 5×10^{14} ионов/см² каждый атом решетки облучаемого вещества испытывает в среднем одно смещение. Вероятно, что при флюенсе 10^{14} ионов/см² насыщение ΔS может быть обусловлено вышеупомянутым механизмом.

При анализе данных *табл.1* следует иметь в виду, что, как известно, при одинаковой дозе облучения изменение свойств /например, электросопротивления/ значительнее в том металле, который обладает менее плотной упаковкой ^{/5/}. Поэтому для железа как представителя класса 0ЦК-металлов, решетка которых имеет коэффициент упаковки 0,69, величина радиационно-наведенной термо-ЭДС при одной и той же дозе больше, чем для золота, меди и платины – металлов с ГЦК-решеткой, коэффициент упаковки которых равен 0,74. Интересно сопоставить термо-ЭДС, наведенные радиационными дефектами и дефектами, возникающими при пластической деформации. Для золота и меди в наших опытах $\Lambda S_A > 0$. Дефекты, возникающие при пластической деформации данных металлов, по-разному воздействуют на абсолютную термо-ЭДС: вакансии понижают ее, а вклад от дислокаций положителен ^{/8,7/}. Таким образом, по характеру воздействия на абсолютную термо-ЭДС золота и меди радиационные дефекты, возникающие при ионном облучении, аналогичны дислокациям. Проводить более глубокую аналогию между ионным облучением и пластической деформацией применительно к воздействию на термо-ЭДС металлов вряд ли правомерно. Дефектные структуры, возникающие в этих случаях в материалах, будут различны.

Авторы ^{/7/}, исследуя влияние холодной прокатки на абсолютную термо-ЭДС меди, предлагают следующую формулу для ее оценки:

$$\frac{\Delta S}{S} = 7,66 \cdot 10^{-15} \rho_{\rm d} \cdot {\rm CM}^2, \qquad (1/$$

отмечая хорошее согласие этой формулы с экспериментальными данными. Здесь S - абсолютная термо-ЭДС, Δ S - ее изменение при пластической деформации, $\rho_{\rm d}$ - плотность дислокаций. Проводя дальнейшую аналогию между пластической деформацией и ионным облучением в отношении характера воздействия на абсолютную термо-ЭДС меди, мы можем сказать, что действие флюенса 10¹⁴ион Xe /см² эквивалентно в меди плотности дислокаций 3x10¹³см⁻² /конечно, если формула /1/ остается справедливой при таких величинах $\rho_{\rm d}$ /. Такая неправдоподобно высокая величина плотности дислокаций говорит, по-видимому, о том, что дефектные структуры после облучения быстрыми тяжелыми ионами и после сильной деформации значительно отличаются друг от друга.

Температурный интервал начального спада кривых изохронного отжига радиационно-наведенной термо-ЭДС, представленных на puc.6,7, совпадает с III стадией отжига дефектов как для платины, так и для золота ^{/8/}. В области 300 °С может происходить образование кластеров, увеличение числа которых будет вносить дополнительный вклад в термо-ЭДС. Этот механизм кластерообразования может объяснить ход кривых на puc.6,7 при температуре выше 200°С. Однако для выяснения природы этих кластеров и для однозначной интерпретации кривых отжига необходимы дальнейшие исследования.

выводы

7

1. Исследовано влияние радиационного дефектообразования на радиационно-наведенную термо-ЭДС ΔS Au, Pt, Cu, Fe при облучении их ионами Xe⁺⁹/150 MaB/. Порядок ΔS составляет 1 мкB/°C.

2. Начиная с флюенсов 10¹⁴ ÷10¹⁵ ионов/см ² обнаружено насыщение радиационно-наведенной термо-ЭДС всех исследованных металлов.

3. Исследовано влияние изохронного отжига на наведенную облучением термо-ЭДС платины и золота. После отжига золота и платины при температуре выше соответственно 500° С и 700° С величиной Δ S можно пренебречь.

4. Основываясь на данных работы ^{/3/}, сделана попытка сопоставить вклад радиационных дефектов в радиационно-наведенную термо-ЭДС при нейтронном и ионном облучении Au, Cu и Pt.Cpeди прочих данных обращает на себя внимание отличие знака радиационно-наведенной термо-ЭДС платины в случае ионного и нейтронного облучения.

В заключение авторы считают своим приятным долгом выразить благодарность Е.Д.Воробьеву за постоянный интерес к работе, а также Н.Г.Флерову и В.И.Бейлику за участие в обсуждении окончательных результатов.

ЛИТЕРАТУРА

- 1. Маркина Н.В., Самсонов Б.В. НИИАР. П-152, Мелекесс, 1972.
- 2. Правдюк Н.Ф., Иванов А.Н., Дубровин К.П. АЭ, 1968, 25, вып.3, с.233-235.
- 3. Адаменко А.А., Дехтяр И.Я., Шалаев А.М. "Физика металлов и металловедение", 1972, т.34, №3, с.464.
- 4. Rev.Mod.Phys., 1975, vol.47, Suppl. No.3, p.922.
- 5. Wruck D., Wert C. Phys.Rev., 1954, 94, p.1417; Acta Metallurgica, 1955, 3, p.115.
- 6. Polak J. "Чех.физ.журн.", 1964, B143, с.176.
- 7. Адаменко А.А., Дехтяр И.Я. "Укр.физ.журн.", 1968, т.13, №2, с.225.
- 8. Schilling W., Sonneberg K. J.Phys., F., 1973, vol.3, p.322.
- 9. Henry W.G. Can.J.Phys., 1963, 41, p.1094.
- 10. Huebener R.P. Phys.Rev., 1964, 135, A1281.
- 11. Huebener R.P. Phys.Rev., 1966, 146, No.2, p.490.
- 12. Коломоец Н.В., Ведерников М.В. ФТТ, 1961, 3, с. 2735.
- 13. Фейнберг С.М. АЭ, 1970, 29, с.162.

Рукопись поступила в издательский отдел 21 января 1980 года.