

СООбЩЕНИЯ Объединенного института ядерных исследований дубна

3649/2-80

1/8-80 18-80-337

А.Эрнандес, Д.Рубио

ПРИМЕНЕНИЕ ФОТОНЕЙТРОНОВ И ТОРМОЗНОГО ИЗЛУЧЕНИЯ МИКРОТРОНА ДЛЯ МНОГОЭЛЕМЕНТНОГО АНАЛИЗА ЖЕЛЕЗИСТЫХ ЛАТЕРИТОВЫХ РУД

Многоэлементный анализ проб пород и руд с помощью радиоактивационных методов представляет определенные трудности. связанные с тем, что не все элементы достаточно хорошо активируются нейтронами или у -квантами /1-3/. Для преодоления этих трудностей целесообразно комплексное применение гамма- и нейтронно-активационных методов анализа /ГАА/ и /НАА/ с помощью электронных ускорителей /4/. Одним из наиболее подходящих для этого ускорителей является микротрон /5-7/

В настоящей работе предлагается методика для анализа Ni /. Fe, Co, Cr, Al, Mg, Si и Ma в железистых латеритах, при комплексном применении гамна- и нейтронного пучков микротрона с энергией электронов 16 МэВ и средним током 25 мкА.

ГАММА- И НЕЙТРОННО-АКТИВАШИОННЫЙ АНАЛИЗ ЖЕЛЕЗИСТЫХ ПАТЕРИТОВЫХ РУД

В состав железистых латеритовых руд входит ряд элементов. которые сравнительно хорошо активируются тепловыми нейтронами / Co , Al , Mn / или быстрыми нейтронами / Mg , Si /. Другие, как, например, Ni , Fe , Cr , эффективнее активировать гаммаквантами. Исходя из критерия достижения наибольшей экспрессности при обеспечении удовлетворительной чувствительности и точности анализов, в работе был экспериментально установлен оптимальный вариант определения содержания данных элементов в железистых латеритах. При этом учитывался и тот факт. что при облучении торнозным излучением микротрона ножно использовать для аналитических целей как У-кванты, так и быстрые нейтроны, образованные в мишени.

Определение содержания Fe , Ni , Cr , Mg осуществляется при одночасовом одновременном облучении 10 проб тормозным излучением микротрона по реакциям, приводимым в табл.1. После облучения проводятся:

1/ измерения активности 58 Fe /t _{ИЭМ} = 80 c/; 2/ одновременное измерение 57 Ni , 49 Cr , 24 Na / t _{ИЗМ} ≈ 3 мин/.

Анализ Si /см. табл. 1/ осуществляется при 5-минутном облучении и 3-минутном измерении активности ²⁸ Al. При наличии пневмолочты возножно определение Si в ~12 пробах за час одновременно с проведением анализа Fe , Ni , Cr и Mg.

1

Таблица 1

Элементы, активируемые у -квантами и быстрыми нейтронами в железистых латеритах при их облучении тормозным излучением микротрона

Элемент	Образущия изотоп	ася Реакция	Е (2), КаВ (выход, \$)	Т _{I/2} (1) Збч.	
ыкель	57 Ni	58 _{Ni} (7,n) ⁵⁷ Ni	127(14), 1378(86) 1890 (14)		
белезо	53 Fe	54Fe(1,n)53Fe	378(32)	8,5MMH	
Кобальт	58 _{Co}	59 _{Co} (r,n) ⁵⁸ Co	810(99),865(1,4)	71,3д	
Хром	⁴⁹ Сг 51 _{Сг}	⁵⁰ Cr(Xn) ⁴⁹ Cr 52 _{Cr} (Xn) ⁵¹ Cr	<u>90(28),153(13)</u> <u>320(</u> 9)	41,9мин. 27,8д.	
Магний	1 24 (3) Na (3)	24 Mg(n,p)24 No	1365(100),2754(100)	154.	
Кремний	28 _{A1} (3)	²⁸ Si (n , p) ²⁸ Al	1778(100)	2, Змин.	
марганец	54 _{Mñ}	55Mn(Y. n) 54M	n <u>834</u> (100)	303 дн.	
Клор	³⁴ Ci	35ci (x, n)34ci	145(45),1170(12), 2120(36)	32,4 мин.	
Мышьяк	⁷⁴ As	75 As (1, n) 74 As	596(61),635(14)	17,5дн.	
Гитан	47 Sc	47Ti (n,p)47Sc	160(73)	3,4 дн.	
Цирконий	892r	90 Zr (Y, n)89 Zr	910(99),1710 (1)	794.	
Сурьма	122 _{Sb}	123 _{Sb} (7, 1)122 _S	564(66),686(3,4)	2,8дн.	
Лод	126 [127 1 (r, n) 126	I 386(34),667(3 3)	13,3 дн.	

/1/ Литературные данные/12/.

/2/ Подчеркнуты энергии у-линий, использованные для аналитических целей.

/3/ Проверено экспериментально, что в рассматриваемом диапазоне концентраций Na , Al эти элементы не дают мешающего вклада по реакциям 23 Na(n,γ) 24 Na, 87 Al(n,γ) 28 Al.

Анализ Со , Al , Mn производится нейтронно-активационным методом при 10-минутном облучении образцов, расположенных в графитовой призме микротрона ⁷⁷⁷, тепловыми нейтронами, по реакциям, показанным в табл.2. Определение Со осуществляется при измерении / $t_{\rm N3M} \leq 8$ мин/ наведенной активности X-лучей внутренней конверсии ^{60M} Со / E $_{\rm Ka}$ = 6,9 КэВ/. Определение Al и Mn производится / $t_{\rm N3M}$ = 1 мин/ по изотопам ²⁸ Al и ⁵⁶ Mn.

Таблица 2

Элементы, активируемые в пробах железистых латеритовых руд при их облучении тепловыми нейтронами

Элемент	Образующийся изотоп	Реакция	быбарн	(1) Е, кэВ (выход,%)	F _{I/2} (1)
Кобельт	60 ^m Co	59 _{Cu(n,7)} 60 m Co	1800	59(2,1),1330 (0,25), X = TV504 CO	10,5мин.
Алюминий	28A1	27 _{AI} (n, 1) ²⁸ AI	235	1778(100)	2, Змин.
Марганец	⁵⁶ Mn	55 (n, 7) ⁵⁶ Mn	13300	846(99),1811(2110(15)	29) 2,6ч.
Ванадий	52 _V	⁵¹ γ (n.૪) ⁵² γ	4900	1434(100)	3,75ммн.
Титен	⁵¹ Ti	⁵⁰ Ţi(n,)) ⁵¹ Ti	140	320(95),605(1 928(5)	5) 5,8мин

/1/ Данные взяты из/12/.

ЭКСПЕРИМЕНТАЛЬНЫЕ УСТАНОВКИ. ОБРАЗЦЫ И МОНИТОРЫ

В качестве источника нейтронов и у-излучения использовался микротрон Лаборатории ядерных реакций ОИЯИ с энергией электронов примерно 16 МэВ и средним током 25 мкА ^{/8/}.

Для измерения у- и X-излучений активированных образцов были использованы Ge(Li)-ППД с чувствительным объемом 23 см³, разрешением 3,5 кэВ по линии 662 кэВ и Si(Li) - ППД, у которого диаметр чувствительной поверхности - 5,12 мм и разрешение для K_{α} линии железа - 190 эВ. Для регистрации и обработки информации использовался 4096-канальный анализатор, разработанный и собранный в ОИЯИ⁹ на основе микропроцессора "INTEL-8080" и 800-канальный анализатор фирмы "Nokia" типа LP-4840.

Образцы в виде порошков весом около 1,5 г были упакованы в плексигласовые бюксы внутренним диаметром 20 мм и высотой 4 мм. Один из торцов бюксов закрыт лавсановой пленкой толщиной 10 мк для обеспечения минимального поглощения Х-лучей кобальта.

Для облучения образцов тормозным излучением микротрона была использована подставка, показанная на <u>рис.1</u>. Учет спада интенсивности у -квантов с увеличением расстояния между про-

Рис.1. Подставка для облучения образцов тормозным излучением микротрона. 1 - плексигласовая подставка, 2 - образец, 3 - медный монитор, 4 тормозная мишень.

Бами и тормозной мишенью осуществлялся с помощью <u>медных</u> фольг диаметром 25 мм и весом 400 мг. Для мониторирования потока тепловых нейтронов использовались алюминиевые фольги диаметром 25 мм и весом 90 мг.

В работе использовались геологические пробы железистых латеритовых руд с известным содержанием Fe, Ni, Co /данные химического анализа/. Для количественных определений использовались четыре стандарта, изготовленных в нашей лаборатории.

ВЫБОР ОПТИМАЛЬНОГО ВРЕМЕНИ ИЗМЕРЕНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ЖЕЛЕЗА

Время измерения активности короткоживущих изотопов надо выбирать таким образом, чтобы площадь фотопика данного изотопа в последнем из измеряемых образцов была максимально возможной. С этой целью на основе уравнения активации и условия максимуна измеряемой площади фотопика выведена следующая формула для оптимального времени измерения

$$\frac{\mathrm{Im}\,\mathrm{Ax}}{\mathrm{N}\,\mathrm{Sm}} = \frac{\mathrm{Im}\,\mathrm{N}/\mathrm{N}-1}{\lambda} \,, \qquad (1)$$

<u>Рис.2.</u> К выбору оптимального времени измерения активности изотопа ⁵³ Fe /1/.Зависимость площади фотопика $E_{\gamma} = 378$ кэВ N-ого образца от $t_{_{ИЗМ}}$. -•-• - расчетные данные; * * экспериментальные данные. /2/ Экспериментальные эначения относительной статистической погрешности измерения площади фотопика N-ого образца при режимах с различными $t_{_{ИЗМ}}$.

где $t_{\rm M3M}^{\rm max}$ - время измерения, соответствующее максимальной площади фотопика N-го образца, N - число измеряемых образцов, λ - постоянная распада измеряемого изотопа.

В качестве примера на <u>рис.2/1/</u> показана зависимость измеряемой площади фотопика 53 Fe N-го образца (N=5) от времени измерения. Как следует из рисунка, существует удовлетворительное, в пределах погрешности измерения, совпадение расчетых и экспериментальных данных. На <u>рис.2/2/</u> показан экспериментальный ход относительной статистической погрешности с ростом t_{N3M} . Как видно, t_{N3M} , соответствующее минимальной ошибке, также совпадает в пределах ошибок с t_{N3M}^{max} , вычисленным по формуле /1/.

При N =10 из /1/ имеем t $_{\rm ИЗM}^{\rm max}$ = 77,5 с для 53 Fe. На практике для определения железа при N=10 и выборе t $_{\rm ИЗM}$ = 60,80, 100,110, 180 с наилучшие результаты были получены в режиме с t $_{\rm ИЗM}$ = 80 с.

4

5

фотопика ⁵⁷Ni / E_y = 1378 кэВ/.

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОЙ ТОЛЩИНЫ ПРОБ ПРИ МАССОВОМ ОБЛУЧЕНИИ У-ПУЧКОМ

Выбор размеров проб, при массовом облучении тормозным излучением микротрона, должен учитывать особенности углового и пространственного распределений у-квантов ^{/11/} Определенная роль принадлежит также и геометрии измерения.

В настоящей работе мы взяли диаметр проб равным диаметру круглого сечения пучка у -квантов в плоскости первого образца, а для определения толщины пробы h исходили из требования, что активность, наведенная в наиболее отдаленном от мишени образце, должна быть максимально возможной. Увеличение h пробы приведет с одной стороны к нарастанию навески и соответственно активности, с другой - к уменьшению активности N -ого образца вследствие убывания интенсивности у -квантов с расстоянием. Нами проверено, что спад интенсивности у -квантов в отсутствие подставки с образцами можно описать зависимостью

- $\frac{1}{R^{T,B}}$ / R - расстояние от тормозной мишени/. Убывание интенсивности у -квантов вдоль подставки, загруженной образ-

цами латеритовых руд, описывается зависимостью — $\frac{1}{R^{1,9}}$, что указывает на дополнительное ослабление потока, вызываемое поглощением и рассеянием γ -квантов образцами. Итак, зависимость активности N-ого образца от толщины проб можно представить в виде функции

$$f_{N}(h) = \frac{h}{(R_{0} + (N-1)h)^{1,9}}.$$
 /2/

где Rn - расстояние от тормозной мишени до центра первой пробы.

На <u>рис.3</u> /1/ представлен график f_N(h) при R₀ = 60 мм, N = = 10, что соответствует нашим экспериментальным условиям. Из рисунка видно, что h_{opt} = 7,5 мм. На <u>рис.3</u> /2/ показаны экспериментальные данные зависимости площади фотопика ⁵⁷Ni / E_y = = 1378 кэВ/ N -ого образца от толщины проб. Расхождение экспериментальных данных с теоретической кривой для h > 3,5 мм объясняется влиянием геометрии измерения. При этом значение h_{opt} оказывается, как и следовало ожидать, несколько меньшим, чем рассчитаниое по формуле /2/.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл.3 приведены результаты ГАА и НАА Ni , Fe , Co в железистых латеритах. Из таблицы следует, что полученные с помощью этих анализов данные хорошо совпадают с результатами химического анализа /ХА/. Расхождения с данными ХА не превышают 15-18%. Как следует из табл.3 и рис.4, существует хорошая корреляция между результатами ГАА и ХА при определении Ni /r= 0,995, b =0,980, a = 0,0013/ и Fe / r = 0,999, b = 1,025, a = -0,265/, а также /рис.5/ между НАА и ХА при определении содержания Co / r = 0,997, b = 0,977, a = 0,0012/. Из-за отсутствия достаточного количества образцов с известным содержанием остальных элементов, корреляционный анализ результатов ГАА, НАА и ХА этих элементов сделан не был.

Минимальная концентрация C^{min} , которую можно обнаружить с надежностью анализа $99\%^{/10/}$ достигает 0,8% Fe , $5\cdot10^{-2}$ % Ni; $4\cdot10^{-3}$ % Co , $8\cdot10^{-2}$ % Cr , $6\cdot10^{-2}$ % Al , $7\cdot10^{-1}$ % Mg , 1% Si и 10^{-2} % Mn.

Точность анализов не хуже 3% /С \geq 10% Fe, $t_{\rm H3M}=80$ c/, 15% /С \geq 10 $^{-1}$ % Ni /, 10% / C \geq 10 $^{-2}$ % Co/, 3% /С \geq 1% Cr /, 2% /С \geq 1% Al/, 15% /С \geq 1% Mg /, 8% /С \geq 2% Si / и 1% /С \geq 24.10 $^{-1}$ % Mn/.

На <u>рис.6</u> показаны участки спектра образца железистых латеритовых руд, облученного на у-пучке /a/ и на тепловых нейтронах /б,в/ микротрона. Присутствие К_а-линии Fe /<u>рис.6в</u>/

Таблица 3

Результаты ГАА определения Fe , Ni и НА определения Co в железистых латеритах

**	Гамма-активационных анализ		Нейтронный активационный	имический анализ содержание, 5		
	Содержани пелезо	никель	анализ содержание, %	пелезо	никель	кобальт
T	2		кобальт	5	6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	4				0	
Ι.	9,7±0,3	0,I0 <u>+</u> 0,0I	0,004 <u>+</u> 0,00I	9,98_0,43	10,0.01,0	0,004 <u>+</u> 0,00I
2.	9,0-0.4	0,11+0,01	0,004+0,001	10,18_0,21	0,10+0,01	$0,005 \pm 0,002$
з.	9,0+0,2*	'0,II <u>+</u> 0,0I	0,004+0,001	10,48-0,22	0,10-0,01	$0,004 \pm 0,001$
4.	8,6+0,4	0,08 <u>+</u> 0,0I	0,003+0,001	9,17:0,40	0,09±0,0I	0,004+0,001
5.	49,0+0,7	1,03+0,02	0,009 <u>+</u> 0,001	52,0+0,42	1,06±0,05	0,010±0,002
6.	7,2+0,4	0,70+0,02	100,012+0,001	6,14+0,26	0,66_0,05	0,010.0,002
7.	6,8+0,5	0,68+0,03	0,013+0,001	6,34.0,28	0,64+0,05	0,012±0,002
8,	6,0-0,2	10,2I+0,0I	0,014-0,001	6,76±0,30	0,23+0,03	0,013±0,003
9,	9,4+0,2	0,63+0,01	0,021+0,002	9,92+0,40	0,62+0,05	200,0-010,0
IC.	43,8-0,9	0,41+0,02	0,024+0,002	43,77.0,39	0,38+0,04	0,023+0,004
11.	44,4+1,1	0,70+0,02	0,028+0,002	43,99+0,40	0,69+0,05	0,028+0,004
12.	44,8-0.61	0,64+0,03	0,031+0,002	43,94+0,40	0,63+0,04	0,030+0,005
3.	49.6-I.61	0.92+0.04	0,034-0,002	46,79+0.42	0,82+0,06	0,031+0,005
4.	15,9+0,6	1,41+0.03	0,034-0,002	14,07+0,21	1,36+0.07	0,032+0,005
15.	50.7+I.I	0.74+0.03	0.040+0.004	49.27.0.44	0.77+0.05	0.038+0.006
6.	17.0+0.5	1.70+0.02	0.039+0.002	18,35+0,39	I.80+0.09	0.038+0.006
17.	16.8+0.6	1.32+0.03	0.040+0.002	14.85-0.31	1.43+0.07	0.040+0.006
.8	44.6-0.9	0.65+0.02	0.046+0.002	44.17+0.40	0.68+0.05	0.041+0.006
9	17.0+2.2	1.74+0.03	0.048+0.002	15.11+0.32	1.81+0.09	0.042+0.006
20.	50. I+I.3	0.92 ± 0.03	0.046+0.002	51.67+0.41	1.02+0.05	0.043+0.007
21.	58.7+4.1	0.66+0.03	0.043+0.002	49.78+0.44	0.65-0.04	0.046+0.007
22.	50.2+T	0.52+0.03	0,046+0,005	48,78+0,45	0,55+0,04	0.048+0,007
3.	[8,7+0.3	1.07+0.04	0.059+0.003	19.25+0.40	0.93+0.07	0.061+0.005
4.	49.8+0.5	I 32+0 03	0.094+0.006	49.47+0.45	1.35+0.07	0.094+0.008
25.	52 6+ I B	0, 85-0, 02	0.109+0.004	50.12-0.40	0.87+0.06	0.114-0.006
6	45 3+1 3	T 80+0 03	0 105+0.006	39.36+0.43	L.64+0.08	0.123-0.006
27	49 8.1 3	1.00+0.03	0.156-0.006	49,80+0,45	1.04+0.05	0.161-0.006
В.	45.6+1.21) 1 13.0 04	0 162+0 007	45.61.0.41	1.17-0.05	0.169+0.008
29	51.911.5	12 94+0 04	0.197+0.006	51.4-0.41	0.95-0.07	0.182-0.005
30.	55.7.1.6	1) 07.0.04	0 184-0 005	52 02-0 42	T 06-0 05	0 190-0 000
11	50. T- I 5	1 22.0 02	0,10410,000	49.61.0.44	I.30+0.06	0.196+0.010
12	48.5-3.4	1 140 03	0 218+0 004	52 18+0.42	I.20-0.06	0.220+0.009
13	45 6 T 4	0.55.0.02	0.021.0.002	AT HLO 2H	0.51-0.04	0.019-0.004
<i>.</i>	40,041,4	0,00+0,02	0,021+0,002	41,01,0,30	0.0170,04	0,013-0,004

/1/ t _{ИЭМ} ≖ 80 с.

60 × 2 16 2.2 40 20 0. tt? a) 5} 02 94 25 08 10 12 14 15 14 20 an Fr. x XA Codes ------ No. 56 XA

Рис.4. Корреляционная зависимость результатов ГА и химического методов анализа железистых латеритовых руд; а/ при определении железа; б/ при определении никеля.

Рис.5. Корреляционная зависимость результатов НА и химического методов анализа при определении кобальта.

9

Рис.6. Спектры облученного образца железистых латеритовых руд; а/ участки у -спектра после облучения тормозным излучением микротрона; б/ участки у-спектра после облучения на тепловых нейтронах; в/ спектр Х-лучей после облучения на тепловых нейтронах.

объясняется возбуждением характеристических лучей этого элемента посредством излучения изотопов матрицы.

Заметим, что: а/ чувствительность и точность анализов Si можно повысить соответствующим увеличением навески образцов; б/ при НАА Со, Al и Mn целесообразно использовать пневмопочту; в/ применение нескольких Si(Li) - ППД увеличивает во столько же раз производительность анализов при измерении X лучей Со.

При наличии пневмопочты, двух Ge(Li) - ППД и двух Si(Li) - ППД производительность методики составляет за 8-часовую смену:

- 200 элементных определений % содержания / Fe , Ni , Cr , Mg , Si / в 40 пробах;

- 160 элементных определений % содержания Al , Mn в 80 пробах одновременно с 48 анализами Со.

Это означает, что производительность составляет 50 элементных определений в час. При настоящих экспериментальных условиях производительность составляет 30 элементных определений данных химических элементов в час.

ЗАКЛЮЧЕНИЕ

1. Предлагается методика многозлементного анализа проб железистых латеритовых руд на основе комплексного использования фотонейтронов и тормозного излучения микротрона.

2. Достигнута чувствительность анализа для Fe-8.10⁻¹ %, Ni - 5.10⁻² %, Co - 4.10⁻³ %, Cr - 8.10⁻² %, Al - 6.10⁻² ; Mg - 7.10⁻¹ %, Si - 1%, Mn - 10⁻² %.

3. Точность анализов во всех случаях не хуже: 3% / C \geq $\geq 10\%$ Fe /, 15\% /C $\geq 10^{-1}$ % Ni /, 10% / C $\geq 10^{-2}$ % Co /, 3% /C $\geq 1\%$ Cr /, 15% /C $\geq 1\%$ Mg /, 8% / C $\geq 2\%$ Si /, 2% / C $\geq 1\%$ Al / μ 1% / C $\geq 4 \cdot 10^{-1}$ % Mn /.

4. Производительность методики составляет 30-50 элементных определений процентного содержания Fe , Ni , Co , Cr , Mg , Al , Si , Mn в час.

5. При корреляционном анализе результатов ГАА, НАА и XA Fe , Ni , Со получены коэффициенты корреляции 0,999, 0,995, 0,997 соответственно.

6. Выведена формула для расчета оптимального времени последовательного измерения проб в зависимости от их числа и постоянной распада измеряемого изотопа.

 Установлен критерий для выбора оптимальных толщин проб при одновременном облучении N -образцов тормозным излучением микротрона.

Авторы глубоко признательны Г.Н.Флерову за постановку проблемы и постоянный интерес к работе; Ю.С.Замятнину и Л.П.Кулькиной за поддержку и ценные замечания, В.Я.Выропаеву за полезное обсуждение результатов, а также А.Г.Белову и В.Е.Жучко за помощь и техническое обеспечение экспериментов.

ЛИТЕРАТУРА

- Зайцев Е.И., Сотсков Ю.П., Резников Р.С. Нейтронно-активационный анализ горных пород на редкие элементы. "Недра", М., 1978.
- 2. Lutz G. Analyt.Chem., 1971, 43, No.1, p.93.
- Бровцын В.К. и др. Сб. статей "Активационный анализ", Изд-во ФАН, Ташкент, 1971, с.70.
- Бровцын В.К. и др. Сб. статей "Ядерно-физические методы анализа вещества". Атомиздат, М., 1971, с.216.
- 5. Бровцын В.К., Самосюк В.Н., Ципенюк Ю.М. А3, 1972, 32, с.383.

- 6. Капица С.П. и др. АЭ, 1973, 34, c.199.
- 7. Базаркина Т.В. и др. ОИЯИ, 18-12699, Дубна, 1979.
- 8. Выропаев В.Я. ОИЯИ, 14-9446, Дубна, 1976.
- 9. Глейбман Э.М., Жучков В.Е. ОИЯИ, 10-8051, Дубна, 1980.
- 10. Хуснутдинов Р.И., Лобанов Е.М., Мингалиев Г.Г. Сб. статей "Активационный анализ", Изд-во ФАН, Ташкент, 1971, с.9.
- Ковалев В.П. Вторичные излучения ускорителей электронов. Атомиздат, М., 1979.
- 12. Lederer M.C., Hollander J.M., Perlman I. Table of Isotopes. 6th Edition, John Wiley and Sons, 1967.

Рукопись поступила в издательский отдел 7 мая 1980 года.