Объединенный институт ядерных исследования дубна

5-435

2491

-79

18 - 12279

А.Г.Белов, В.Я.Выропаев, Н.Содном, Б.Далхсурэн, Ш.Гэрбиш, П.Зузаан, С.Даваа

РЕНТГЕНОСПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ МАЛЫХ СОДЕРЖАНИЙ ЭЛЕМЕНТОВ ОТ V ДО Мо С ПРИМЕНЕНИЕМ НОВОГО ВАРИАНТА ЭТАЛОНИРОВАНИЯ НА СПЕКТРОМЕТРЕ С ПОЛУПРОВОДНИКОВЫМ ДЕТЕКТОРОМ

1979

18 - 12279

А.Г.Белов, В.Я.Выропаев, Н.Содном^{*}, Б.Далхсурэн^{*} Ш.Гэрбиш^{*}, П.Зузаан^{*}, С.Даваа^{*}

РЕНТГЕНОСПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ МАЛЫХ СОДЕРЖАНИЙ ЭЛЕМЕНТОВ ОТ V ДО Мо С ПРИМЕНЕНИЕМ НОВОГО ВАРИАНТА ЭТАЛОНИРОВАНИЯ НА СПЕКТРОМЕТРЕ С ПОЛУПРОВОДНИКОВЫМ ДЕТЕКТОРОМ

Направлено в АЭ

* Монгольский государственный университет, Улан-Батор

Белов А.Г. и др.

Рентгеноспектральное определение малых содержаний элементов от V до Мо с применением нового варианта эталонирования на спектрометре с полупроводниковым детектором

Изложены результаты исследований по разработке нового варианта способа рентгеноспектрального флуоресцентного анализа, основанного на использовании в качестве эталона одного элемента сравнения для группы элементов от V до Мо. Приведено теоретическое обоснование способа и методика пользования им. Экспериментально проверена эффективность предлагаемой методики при определении элементов в стандартных и рудных образцах. Результаты рентгенофлуоресцентного анализа сравниваются с результатами химического анализа. Оценена достоверность предлагаемой методики.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1979

Belov A.G. et al.

18 - 12279

X-Ray Spectral Analysis of Small Amounts of Elements from V up to Mo by Using a New Version of an Internal-Monitor Method

A new version of internal monitor method for qualitative determination of small amounts of elements ($\leq 0.5\%$) from 23 V up to 42 Mo with induced x-ray analysis using a Si(Li) detector is described. A number of elements in standard and ore samples have been measured by this method. Results of analysis are compared with chemical assay. A reliability of the offered method is evaluted.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1979

В последние годы рентгеноспектральный анализ находит все более широкое применение при определении содержания элементов в рудах, почвах, материалах биологического происхождения и в пробах, взятых для контроля за состоянием окружаюшей среды /1-2/. Особенностями анализа таких объектов являются необходимость контроля малых содержаний группы элементов и отсутствие в большинстве случаев стандартов-эталонов. Вследствие этого представляются перспективными разработка и исследование способов рентгеноспектрального анализа, основанных на применении минимального количества эталонов. В настоящей работе изложены результаты исследований по разработке нового варианта способа рентгеноспектрального флуоресцентного анализа, основанного на использовании в качестве эталона олного элемента сравнения для группы элементов от V до Mo. Этот способ целесообразно применять при определении, в основном, малых концентраций элементов /< 0,5%/.

ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ СПОСОБА

Предлагаемый способ количественного рентгеноспектрального анализа является, на наш взгляд, вариантом способа внутреннего стандарта ^{/3/}. Способ основан на использовании относительных удельных интенсивностей R_{ℓ}^{j} аналитических линий определяемых элементов. Величина R_{ℓ}^{j} определяется в расчете на 1%: где I_{ℓ}, I_{j} и C_{ℓ}, C_{j} - соответственно интенсивности аналитических линий и концентрация элементов ℓ и ј для рассматриваемого образца /элемент является в данном случае элементом сравнения - виутренним стандартом/.

Предположим, что в рассматриваемом образце концентрация каждого элемента в группе не превышает ~0.5%.Пусть это будут, например, элементы от 23Vдо 42MoToгда, используя для возбуждения рентгеновской флуоресценции изотоп ¹⁰⁹Cd, можно одновременно исследовать К-спектры этих элементов. При расчетах интенсивности флуоресценции, возбужденной в рассматриваемом образце источником ¹⁰⁹Cd, первичный спектр можно с приемлемой точностью считать монохроматическим, поскольку вклад жесткой компоненты с энергией 88 кэВ будет пренебрежимо мал. Так как все края поглощения элементов с $23 \le 2 \le 42$ лежат с длинноволновой стороны от AgK -спектра источника, все расчеты можно сделать для AgK_a линии ⁴⁴. В нашем случае можно пренебречь вкладом эффекта избирательного возбуждения в интенсивности флуоресценции. Тогда будет

$$I_{\ell} = k \cdot W_{\ell}^{\ell} \cdot P_{i}^{\ell} \frac{S_{k}^{\ell} - I}{S_{k}^{\ell}} \cdot \mu_{mI}^{\ell} \frac{C_{\ell}}{\mu_{mI}^{oop} + n \cdot \mu_{mi}^{oop}}, \qquad /2/$$

где к - коэффициент пропорциональности; n - sin $\phi/sin\psi$ - углы падения на образец первичного и отбора флуоресцентного излучения; W_k^ℓ - выход флуоресценции элемента ${}_{\ell}\ell$; P_i^{ℓ} - вероятность перехода атома ℓ с испусканием линии i; S ${}_{\ell}$ - скачок поглощения К - уровня; μ_{mI}^{ℓ} , μ_{mI}^{oop} , μ_{mi}^{oop} - соответственно массовые коэффициенты поглощения первичного излучения элементом ℓ и образцом, а также флуоресцентного излучения элемента ℓ образцом.

Если теперь ввести обозначение:

$$\eta_{j} = W_{k}^{j} \cdot P_{i}^{j} \cdot \frac{S_{k}^{j} - I}{S_{k}^{j}} \cdot \frac{\mu_{mI}^{j}}{S_{k}^{j}} \cdot \mu_{mI}^{j},$$
 /3

то для R^jполучим следующее выражение:

$$\mathbf{R}_{\boldsymbol{\varrho}}^{\mathbf{j}} = \frac{\eta_{\mathbf{j}}}{\eta_{\boldsymbol{\varrho}}} \cdot \frac{\mu_{\mathbf{mI}}^{\mathbf{o}\mathbf{o}\mathbf{p}\cdot} + \mathbf{n}\cdot\mu_{\mathbf{mi}\boldsymbol{\varrho}}^{\mathbf{o}\mathbf{o}\mathbf{p}\cdot}}{\mu_{\mathbf{mI}}^{\mathbf{o}\mathbf{o}\mathbf{p}\cdot} + \mathbf{n}\cdot\mu_{\mathbf{mi}\boldsymbol{\varrho}}^{\mathbf{o}\mathbf{o}\mathbf{p}\cdot}} \cdot$$

 $\mu_{\rm m}^{\rm j} = C_{\rm i} \lambda^{\alpha_{\rm j}} ,$

.

à

На рис. 1 показана зависимость от атомного номера Z относительной удельной интенсивности R_{ℓ}^{j} для элементов от 23 V до 42 Мо. Кривая построена по результатам теоретической оценки. За стандарт выбран 40 Zr($R_{\ell}^{Zr} - 1$). Все необходимые параметры взяты из таблиц 5.67. Массовые коэффициенты поглощения вычислялись с использованием данных работы Хайнриха.⁷⁷⁷ по формуле

где λ - длина волны излучения, а параметры С_ј и a_j табулированы для каждого элемента. Величина n выбрана равной О,7О7, что соответствует углам ϕ =45° и ψ =90°.

Нетрудно показать, что зависимость, показанная на *рис. 1*, не изменяет своего хода при изменении химического состава в широких пределах, если в диапазоне длин волн между λ /первичное излучение/ и $\lambda_{i \max}$ /максимальная длина волны излучения аналитической линии, в рассматриваемом случае VK_a / отсутствуют края поглощения элементов с большой концентрацией /> O,4÷1,O%/. Действительно, в этом случае массовый коэффициент поглощения образца будет непрерывной функцией в диапазоне длин волн ($\lambda_1 - \lambda_{i \max}$). Тогда в соответствии с формулой /5/:

$$\mu_{\mathrm{mI}}^{\mathrm{oop}} = \left(\frac{\lambda_{\mathrm{I}}}{\lambda_{\mathrm{j}}}\right)^{a} \cdot \mu_{\mathrm{mij}}^{\mathrm{oop}}, \qquad /6/$$

и выражение для Rⁱ можно преобразовать к виду:

$$R_{\ell}^{j} = \frac{\eta_{j}}{\eta_{\ell}} \cdot \frac{I + n \cdot (\lambda_{i}^{\ell} / \lambda_{I})^{\alpha}}{I + n \cdot (\lambda_{\ell}^{j} / \lambda_{I})^{\alpha}} .$$
 (7/

-4

Видно, что параметр R_{ℓ}^{j} не зависит от химического состава проб. Таким образом, использование относительных удельных интенсивностей позволяет для рассматриваемого типа проб учитывать взаимные влияния элементов.

Рис.1. Зависимость относительной удельной интенсивности от атомного номеда.

Рассмотрение формулы /3/ показывает, что при малых значениях п величина R_{ℓ}^{j} полностью определяется отношением $\eta_{j}/\eta_{l'}$. Для больших п, когда величиной μ_{mI} можно пренебречь, формула /3/ принимает вид:

$$\mathbf{R}_{\ell}^{\mathbf{j}} = \frac{\eta_{\mathbf{j}}}{\eta_{\ell}} \cdot \frac{\mu_{\min}^{\mathrm{odp.}}}{\mu_{\min}^{\mathrm{odp.}}} \cdot (\mathbf{z}_{\mathbf{j}})^{\mathbf{j}} \cdot (\mathbf{z}_{\mathbf{j}}$$

В нашем случае массовый коэффициент поглощения излучения аналитической линии элемента с номером Z всегда больше, чем для элемента с /Z+1/ и т.д. Вследствие этого при увеличении п величина R_{l}^{j} будет всегда возрастать для элементов с большими Z. Анализ по предлагаемой методике выполняется следующим образом:

1. Для анализируемой группы элементов выясняется зависимость относительной удельной интенсивности от Z.

2. Для анализируемых проб определяется элемент, который может служить стандартом. Такой элемент не должен присутство-

вать в пробах или его концентрация должна быть меньше определенного уровня.

3. В анализируемую пробу добавляется определенное количество материала, содержащего элемент-стандарт. Таким материалом может служить, например, борная кислота, так как ее введение в образец позволяет получать прочные таблетки.

4. Выполняется измерение интенсивностей аналитических линий для анализируемых образцов при заданных условиях анализа.

5. Обрабатываются результаты измерений /нахождение площадей пиков, интенсивностей фона, интенсивностей аналитических линий I_i /.

6. Концентрации определяемых элементов рассчитываются по формуле:

$$\mathbf{C}_{j} = \frac{\mathbf{I}_{j}}{\mathbf{I}_{\ell}} \cdot \frac{\mathbf{I}}{\mathbf{R}_{\ell}^{j}} \cdot \frac{\mathbf{C}_{\ell}}{\mathbf{I} - \mathbf{C}_{\tilde{\mathbf{O}}}}, \qquad /9/$$

здесь Сб - концентрация борной кислоты в излучателе.

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА СПОСОБА

Проверка эффективности предложенного варианта способа внутреннего стандарта выполнялась на рентгеновском спектрометре фирмы Ортек. В настоящем исследовании использовался Si(Li) ORTEC Mode 7016 /ø10 мм, разрешение -детектор ~220 эВ для излучения MnK_a -линии, Be - окно толщиной 25 мкм/ и кольцевой радиоактивный источник ¹⁰⁹ Cd фирмы Амершем с активностью 20 мкюри /внутренний днаметр источника 26,5 мм, внешний 34,25 мм/. На рис. 2 и 3 представлена схема расположения держателя образца, возбуждающего источника, коллиматора и детектора. Прибор укомплектован сменными коллиматорами из алюминия высотой 13 мм и диаметром отверстия 2, 4, 6, 8 и 10 мм. Предусмотрена также возможность изменения расстояния источник - образец.

В общем случае для кольцевого источника возбуждения мы имеем расходящиеся пучки. Например, при расстоянии от источника до образца 15 мм и диаметре коллиматора 6 мм мини-

6

7

Таблица 1

Рис.2. Держатель образца для точечного источника.

d= (4,6,8,10,14) هديد (4,6,8,10,14).

Рис.3. Держатель образца для кольцевого источника.

мальное значение ϕ равно 34°, максимальное - 83°, а угол ψ изменяется при этом в пределах от 65° до 90°. Величина п изменяется соответственно от 0,62 до 1,09. Нами сделана оценка влияния изменения этого параметра на ход кривой *рис. 1.* Оказалось, что относительная удельная интенсивность \mathbb{R}_{Zr}^{Ni} изменяется при этом от 0,04 до 0,05. Так как максимальный вклад в зарегистрированную детектором интенсивность вносит центральная часть пробы, то для дальнейших расчетов выбраны следующие значения углов: $\phi = 45^\circ$ и $\psi = 90^\circ$, что соответствует n = 0,707.

В табл. 1 сопоставлены значения относительных удельных интенсивностей R_{ℓ}^{j} для теоретических оценок и экспериментальных измерений. Экспериментальные данные для V исправлены на различие в эффективности детектора. Видно, что расхождение теоретических и экспериментальных данных не превышает 11% /см. R_{ℓ}^{j} для Ge /. Коэффициент вариации, характеризующий расхождение теоретических и экспериментальных значений R_{ℓ}^{j} , составил 4.4%.

TEODEINACCROC N JRCHEDNMENIAJIBNUE JNAJEN	Георетическое	И	экспериментальное	значени
---	---------------	---	-------------------	---------

z	элемент	_{Вдг} (теоретич)	ј (экслер име нт) ^R Zr	R ^j Zr ЭК СП	/ _{Rj} Teop.%
23	v	0,0058	0,00695±0,00∪3		+2,6
25	Mn	0,0144	0,0I36 ±0,0U03		-5,6
26	Fe	0,0219	0,0220 ±0,0002		+0,5
28	Ni	0,0469	0,0469 ±0,0010		0,0
29	Cu	0,0664	0,0685 ±0,0010		+3,2
30	Zn	0.0894	0,0863 ±0,0010		-3,5
32	Ge	0,159	0,142 ± 0,0020		-10,7
40	Zr	I.0	I ,0		-
4I	Nb	I.185	1,207 ±0,007		+ I,9
42	Mo	I.395	I.36 ±0.003		-I,5

Проверка справедливости соотношения /7/ выполнена на образцах с содержанием определяемых элементов Ni, Zn, Zr и Nb, равным по O,4%, наполнителем из SiO₂ /78,4%/ и борной кислоты /2O%/. Оказалось, что замена наполнителя SiO₂ на Fe₂O₃ не привела к значительному изменению относительных удельных интенсивностей K_a - линий рассматриваемых элементов. Экспериментальные значения R $\frac{Zn}{Zr}$ и R $\frac{Nb}{Zr}$ оказались равными O,089, O,O9O и 1,2O, 1,212 соответственно для наполнителей из SiO₂ и Fe₂O₃. Скорость счета аналитических линий ZnK_a, ZrK_a, NbK_a изменялась при замене наполнителей примерно в 5 раз. Аналогичные результаты получены при замене в образии с 20% SiO₂ на SnO₂.

При существенном увеличении концентрации какого-либо элемента из рассматриваемого диапазона /от 23 Vдо 42Mo/ значения R_{ℓ}^{j} для некоторых элементов также изменяются. Например, при увеличении содержания Ni от 0,1% до 10% величина R_{Zr}^{Ni} возрастает примерно на 30%. Аналогично изменяются значения R_{Zr}^{Cu} , R_{Zr}^{Co} , R_{Zr}^{Fe} и т.д. /для элементов от V до Cu λ_{k}^{Ni} лежит в интервале между λ и λ_{i} /. Величины R_{Zr}^{j} для элементов с Z 30 при этом практически не изменяются, так как соотношение /6/ не нарушается. Следовательно, при анализе по предлагаемой методике образцов с наличием повышенных концентраций отдельных элементов /~0,5%/ необходимо учитывать изменение величин R_{ℓ}^{j} /уровень концентрации таких элементов определяется требуемой правильностью анализа/.

- 9

По предлагаемой методике нами проведен рентгеноспектральный анализ ряда искусственных образцов. В качестве параметров R^{j}_{ℓ} использованы расчетные значения. Ошибка анализа не превышала расхождений между теоретическими и экспериментальными R^{j}_{ℓ} . Таким образом, для этих элементов не потребовалось выполнять никаких измерений на предварительной стадии эксперимента.

Для проверки методики мы определили содержание ряда элементов в стандартных образцах TS. ТВ и GM. В качестве элемента сравнения выбран цирконий, так как он присутствует в достаточных количествах во всех трех стандартах. Определяемые элементы: Fe, Cu, Zn, Rb, Sr, Y, Nbu Mo. Нами учтено наложенне К_Влиний Rb, Sr, Y и Zr на аналитические К_и линии Y, Zr, Nbи Мо соответственно. Для Сu К_а линий введена поправка на фоновое содержание меди в коллиматоре перед детектором /образец TS /. Вследствне того, что эта поправка оказалась сравнительно большой / 500 г/т/, мы не определяли содержание Си в образце ТВ. При определении содержания Fe учтено величины R^{Fe} при увеличении концентрации изменение Fe (С_{во} > 0,5%). Полученные результаты приведены в *табл. 2*. Видно удовлетворительное совпадение аттестованных величин концентраций и данных рентгеноспектрального анализа по предлагаемой методике.

Таблица 2

Результаты рентгенофлуоресцентного определения содержания элементов в стандартных и медно-молибденовых рудных образцах

	Элемент	•	TS			TB				GM		
		аттесто- Ванные	•:	экспери- мент	-:	аттесто-: Евнные :	1	экспери мент	:-: :	аттесто +: Еанные :	91 ME	спери- ент
26	Fe	5,21±0,07	:	-	:	1,41±0,02	::	1,24	:	4,84±0,028	3:	5,59
29	Cu	493 [±] 102	:	473	:	12,8 [±] 1,4	:	-	:	5I±5,5	:	-
30	Zr.	-	:	-	:	39,I±8,4	:	-	:	93 ± 8,5	:	82,0
37	Rb	222±22,8	:	226	:	253 ± 20	:	263	:	177±15	:	193,0
38	Sr	93,3±27	:	114	:	133 ± 11	:	129	:	150±13	:	166,0
39	Y	-	:	174	:	26,3±5,3	3:	33	:	39,3±3,I	:	52,0
40	Zr	279±28,9	:	стандарт	:	148 ±17	:	стандар	эт:	178±15	:0	тандарт
4 I	NЪ	- '	:		:	17±7	:	22	:	-	:	-
42	Mo	132 ± 29 , 3	:	155	:	-	:	-	:	- '	:	-

Рис.4. Сравнение результатов рентгенофлуоресцентного и химичес-кого анализов.

Нами проанализированы также образцы медной и молибденовой руды. Результаты сравнивались с химическим анализом более ЗОО проб при определении меди по предлагаемой методике /см. *рис.* 4/. Достоверность данной методики оценена методом вариационной статистики.

Разработанный способ анализа используется нами при определении содержаний ряда элементов в образцах минералов и почв.

Авторы выражают искреннюю благодарность академику Г.Н.Флерову за постоянную поддержку и интерес к работе, а также кандидату физико-математических наук А.Г.Ревенко за участие в эксперименте и в обсуждении результатов работы.

ЛИТЕРАТУРА

- 1. Лосев И.Ф. и др. Заводская лаборатория, 1977, 43, 2, с. 160-178.
- Birks L.S., Gilfrich J.V. Anal. Chem., 1976, v. 48(48),
 b. 273R-281R.
- 3. Лосев И.И. Количественный рентгеноспектральный флуоресцентный анализ, "Наука", М., 1969.

- 4. Величко Ю.И., Ревенко А.Г. В кн. "Исследования в области физики твердого тела", Иркутск, Изд-во ИГУ, 1974, вып. 2, с. 204-211.
- 5. Блохин М.А. Физика рентгеновских лучей. Гостехиздат, М., 1957.
- 6. Fink R.W., et al. Rev. Mod. Phys., 1966, v. 38(3), p. 513-540.
- 7. Heinrich K.F.J. The electron microprobe, 1966, p. 296.

Рукопись поступила в издательский отдел 2 марта 1979 года.