ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

В.Н. Пенев

1773

, Ł

ИССЛЕДОВАНИЕ РЕЗОНАНСОВ В π⁻ – Р-ВЗАИМОДЕЙСТВИЯХ ПРИ 7,5 ГЭВ/С С РОЖДЕНИЕМ СТРАННЫХ ЧАСТИЦ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Научный руководитель доктор физико-математических наук

М.И.Подгорецкий

T.

В.Н. Пенев

1773

ИССЛЕДОВАНИЕ РЕЗОНАНСОВ В π – Р-ВЗАИМОДЕИСТВИЯХ ПРИ 7,5 ГЭВ/С С РОЖДЕНИЕМ СТРАННЫХ ЧАСТИЦ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

.

Научный руководитель – доктор физико-математических наук

М.И.Подгорецкий

. 4

Дубна 1964

. 7

۰.

К одному из наиболее интересных в физике сильных взаимодействий явлений, интенсивно исследуемых в настоящее время, относятся резонансные состояния. Результаты исследований свидетельствуют о том, что почти во всех типах взаимодействий, например, пион-нуклонных, пион-пионных, пион-гиперонных, К -мезон-пионных, осуществляются процессы резонансного характера, которые можно интерпретировать как рождение большого количества короткоживущих частиц. Эти частицы распадаются по сильному или электромагнитному взаимодействию со временем жизни соответственно порядка 10⁻²²сек и 10⁻¹⁹ ÷ 10⁻²⁰сек. Список новых резонансов и частиц постоянно подолияется.

До последнего времени исследования резонансов проводились в основном в области энергий т⁻-мезонов и К -мезонов порядка 1-2 Гэв, а также при аннигиляциях рр́. Сейчас успешно исследуются резонансные состояния при более высоких энергиях.

Настоящая работа посвящена исследованию резонансов, образующихся в $\pi - p$ взаимодействиях при энергии первичных "--мезонов 7.5 Гэв/с. Изучались только такие взаимодействия, в которых генерировались странные частицы. С этой точки зрения все изучаемые события делятся на 2 типа: а) взаимодействия с образованием АК -пар и б) взаимодействия с образованием КК -пар. Кроме того, эти группы событий разделены в свою очередь на подгруппы с разной множественностью заряженных частии: 2 и 4. В большинстве случаев только одна из пары странных частиц была зарегистрирована в эффективном объеме камеры. По типу этой частицы будем в дальнейшем именовать события (а) событиями с Л -гиперонами и события (б) - событиями с К⁰-мезонами. В настоящей работе исследовалось 251 событие с Л-гиперонами со множественностью заряженных частиц п = 2 и 102 - с п = 4 ; 283 события с К -мезонами (п_=2) и 138 - с п_=4. Наряду с поиском известных и новых резонансов автор ставил перед собой задачу изучить свойства обнаруженных резонансов, а также исследовать характеристики образования этих короткоживущих частид. Большое внимание уделено обсуждению влияния отдельных резонансов на некоторые обнаруженные ранее особенности в угловых и импульсных характеристиках частиц.

Отметим, что сведения об образовании резонансов в *п*р -взаимодействиях с генерацией странных частиц при энергиях, близких к исследуемой в этой работе и выше, нельзя считать исчерпывающими, поскольку работы, посвященные этому вопросу,

основаны на малом количестве событий парного рождения странных частиц (до 100)^{1,2/}, что затрудняет исследование. В этих работах получены лишь указания на образование некоторых резонансов: возбужденного Y (1385)-гиперона, K*(888) -мезоков и др.

Диссертация состоит из введения и 4 глав.

Во введения обсуждается постановка проблемы.

Первая глава посвящена описанию опыта и методов анализа. Работа выполнена с помощью 55-сантиметровой пропановой пузырьковой камеры³⁷, установленной в постоянном магнитном поле напряженностью 13700 э с максимальной неоднородностью ±3%. Точность измерения импульсов заряженных частиц в среднем равна 10%, а среднеквадратичная ошибка в измерении углов заряженных и нейтральных частиц при длине треков более 5 см составляет 34°. При изучении резонансов важна точность определения эффективных масс М эфф. Обнаружено, что отношение $\frac{\Delta M}{M \to \phi \phi}$ почти не зависит от величины эффективной массы М $\frac{\partial \phi \phi}{M \to \phi \phi}$, для определенной системы частиц. Среднеквадратичные относительные ошибки $[(\frac{\Delta M}{M \to \phi \phi})^2]^{16}$ для различных комбинаций частиц составляют 6-9%.

Идентификация V^0 -частиц проводилась с применением критерия χ^2 с помощью электронно-счетной машины. Кроме того, для установления природы заряженных частиц от звезды, а также следов от распада V^0 -частиц использовались другие возможности: измерение ионизации, измерение импульсов δ -электронов, анализ вторичных взаимодействий частиц; для отбора групп определенных событий (например, ΛK^+ -пар) привлекался расчет недостающих масс.

Изучение резонансов в нашем эксперименте усложняется трудностями методического характера, обусловленными наличием большого разброса в импульсе первичного пучка π -мезонов ($P_{\pi^{-}}=7,5\pm0,6$ Гэв/с). В первую очередь это сказывается на возможностях различения отдельных каналов реакций и выделении резонансных состояний на уровне фона. Эти вопросы рассматриваются в 1-й главе диссертации. Для выделения фона в распределениях эффективных масс автор использовал сравнение с кривыми фазового объема^{X)}, расчеты по методу Монте-Карло и другие способы. Можно думать, что при наличии согласия между результатами этих методов имеется возможность правильно оценить фон.

В этой же главе рассмотрены:

а) критерии отбора "-р - взаимодействий:

х) Подробности относительно сложения фазовых кривых для разных каналов вынесены в Приложение III диссертации. При сложении использовались предположения статистической модели. Правильность сложения контролировалась по средней миожественности зараженных и нейтральных частип. Исследование недостающих масс в некоторых случених дает представление о величинах вкладов отдельных каналов. Эти данные также использовались для проверки правильности сложения фазовых объемов. б) эффективность просмотра и влияние возможных систематических пропусков следов на спектры масс;

г) геометрические поправки и

 д) влияние на спектры масс исключения из рассмотрения некоторых следов, импульсы которых по каким-либо причинам нельзя было измерить.

Во второй главе описываются результаты исследований резонансов в системах π -мезонов, сопровождающих образование странных частиц $(\frac{1}{2}, 5)$. Установлено существование максимумов в спектрах эффективных масс систем частиц $(\pi^+\pi^-), (\pi^+\pi^+\pi^{\pm})$ и $(\pi^+\pi^+\pi^-\pi^-)$, принадлежащих соответственно ρ -мезону, A_1 -мезону с массой 1040 Мэв и неизвестному до сих пор состоянию, условно обозначенному F -мезон.

 ρ^0 - мезон, масса и полуширина которого, по нашим данным, составляет N₀ = 730 Мэг и Г/2 = 80 Мэв, образуется только в событиях с множественностью заряженных частиц n_g = 4 и составляет (40±8) % событий, в которых образовались ЛК -пары (рис. 1) и = 14% событий с КК -парами. Первая величина соответствует сечению (74±28) мкбари. Угловое распределение π -мезонов в системе покоя ρ - мезонов не противоречит известным данным о спине ρ -мезона. Исследование поведения ρ^0 -частиц показало, что

1. Интенсивность образования ρ° -мезонов не связана с какой-нибудь определенной величиной переданного четырехмерного импульса $\Delta = |\vec{\Delta}|^2 - \Delta_0^2$, где $\vec{\Delta}$ и Δ_0 разности импульсов и энергий барионов до и после взаимодействия. В частности, мы не обнаружили преимущественного образования ρ^0 -мезонов в событних с малыми Δ .

2. Имеется указание на то, что ρ^0 -мезоны могут сопровождаться образованием ω -мезонов (сечение совместного образования $\sigma_{\rho\,\omega}$ ~ 15 мкбарн) и Y(1385)--гиперонов.

3. π - мезоны, являющиеся продуктами распада ρ^0 - мезонов и сами ρ^0 - мезоны в угловых распределениях в с.ц.м. направлены преимущественно вперед. Для ρ^0 - мезонов отношение вперед-назад $\hat{\pi}_{\rho}/\hat{\pi}_{\rho} = 2.6 \pm 0.7$, для π^+ и π^- - мезонов, не являющихся продуктами ρ^0 - частиц, эти отношения равны

 $\frac{\dot{n}_{\pi^+}}{\ddot{n}_{\pi^+}} = 0,90 \pm 0,19$ K $\frac{\dot{n}_{\pi^-}}{\ddot{n}_{\pi^-}} = 1,43 \pm 0,17.$

Приводятся также другие характеристики ρ^0 -мезонов и продуктов их распада (средние значения полных поперечных и продольных импульсов и т.д.).

Оценено, что η -мезоны могут образовываться в (15+4)% и ω -мезоны в (33+7)% случаев совместно с парами. Однако более подробное изучение в нашем эксперименте этих частиц затруднено.

Распределение масс $M_{\pi^{\mp}\pi^{\mp}\pi^{\pm}}$ для событий с КК –парами ($n_{\pi} = 4$) свидетельтвует об образовании примерно в 18% событий A₁ -мезона с массой M₀ = 1040 Мэв и Г/2=70 Мэв (рис. 2). Можно легко убедиться, что A₁ -мезон распадается преимущественно каскадным способом с образованием ρ^0 -мезона в промежуточном состоянии (рис. 2). Были отобраны взаимодействия, в которых наблюдалось образование ρ -мезонов и исследовались спектры эффективных масс ρ^{π} -мезонов от этих событий. Результаты подтверждают факт образования A₁ -мезонов в событиях с КК -парами ($n_{\pi} = 4$, рис. 3) и не противоречат тому, что A₁ -мезоны генерируются также совместно с ЛК -парами (рис. 2). В настоящее время о существования A₁ -мезона заявлено также в других экспериментах^{/6/}. При изучении A₁ -мезонов и звезд, в которых они образуются, обнаружены некоторые особенности. В частности, интересно отметить, что в с.ц.м. π -р -взаимодействия A₁ -мезоны летят в основном вперед (отношение для событий с ЛК- парами равно $\vec{n}_{A_1}/\vec{n}_{A_1}$ (3.6 ±1.0).

В конце главы обсуждается максимум, наблюдаемый в спектре масс четырех π -мезонов ($\pi^+\pi^-\pi^+\pi^-$). Анализ показал, что для объяснения этого максимума имеется несколько возможностей. К их числу можно отнести влияние совместного рождения ρ^0_- и ω -резонансов и особенно наличие резонанса, распадающегося на ρ^0 -и ω мезоны. Кроме того, сильное кинематическое влияние на спектр четырех π -мезонов может оказывать образование A_1 -мезонов.

Возможность рождения нового резонанса, обозначенного нами как F-мезон, с массой 1340 Мэв и Г/2 = 70, который может иметь следующие схемы распада:

$$F \rightarrow \rho^{0} + \pi^{+} + \pi^{-},$$

$$F \rightarrow A_{1} + \pi^{-},$$

$$F \rightarrow 4\pi^{-},$$

необходимо проверить на большем количестве событий.

В третьей главе излагаются результаты исследования резонансов, распадающих-/4,5,7,8/ ся на странные частицы и п -мезоны

 $Y^+(1385)$ — гиперон образуется (рис. 3) как в звездах с $n_s = 2$ (в (15 ± 3) % случаев), так и в звездах с $n_s = 4$, (в (32 ± 7) % событий). Сечение генерации Y^+ —гиперона равно (129±38) мкбн, из которых на долю событий с множественностью $n_s = 4$ падает (59±23) мкбн и с $n_s = 2$ (70±25) мкбн. $Y^-(1385)$ — гипероны образуются, по-видимому, с меньшей вероятностью. Подробно проанализированы были только Y^+ —гипероны. Установлено, например, что

А. Угловое распределение A -частиц в системе покоя Y⁺ -гиперонов согласуется с известными данными о спине Y -гиперонов (рис. 5). В. Величины переданного четырехмерного импульса в событиях с У⁺-гиперонами распределены изотропно от 0,6 до 2 Гэв.

С. В импульсном распределении в с.п.м. А -гипероны от распада Y^+ -гиперонов попадают в основном в область до 1300 Мэв/с; *п*-мезоны от распада Y^+ -гиперонов имеют величины импульсов до 400 Мэв/с.

Приводятся и другие сведения, касающиеся поведения Υ⁺ -гиперонов в с.п.м. π р -взаимодействия, их средние угловые и импульсные характеристики и т.д. Обсуждается влияние фоноьых событий на обнаруженные эффекты.

 Делается оценка интенсивности образования гиперона с массой = 1630 Мэв и Г/2 ≈ 36 Мэв, который мы отождествляем с наблюдавшимся У(1660) – гипероном ^{/θ/}.
 У (1630) составляют (16±5)% от полного числа событий, что соответствует сечению σ x (1800) = (30±13) мкбн.

Подробно обсуждается максимум в спектре масс ($\Lambda \pi^+\pi^-$)-частиц из двухлучевых звезд. Показано, что это не есть результат образования нового резонанса. Эффект может быть объяснен кинематическим влиянием известного резонанса Y (1385). Наблюдавшееся в области ~ 1770 Мэв на спектре $M_{\Lambda_{\pi}^+\pi^-}$ -отклонение от фоновой кривой, учитывающей образование Y(1385)-гиперонов может быть обусловлено неточностями при определении вклада Y⁺(1385) -резонанса, а также статистической флюктуацией.

В этой же главе помещены данные о резонансах, распадающихся на К- и п мезоны. Более подробно исследовались резонансы в событиях с КК -парами. Установлено, что интенсивно образуются известные К*(888) - и К^{*}(730) -мезоны; их доля в процентах и сечения приведены в таблице 1. К^{*} мезоны выделяются горафдо лучше поскольку среди отрицательных п -мезонов меньше примеси неоднозначно идентифицированных частиц.

<u>Таблица 1</u> Вклады резонансов К [*] (730)-и К [*] (888)-мезонов				
к [*] (888	$) \rightarrow \tilde{K}^0 + \pi^-;$	$\tilde{K}^{*}(730) \rightarrow \tilde{K}^{0} + \pi^{-} \tilde{K}$	$(888) \rightarrow \vec{K}^{0} + \pi^{-};$	$K^{+}(730) \rightarrow K^{0} + \pi^{+}$
%	18 <u>+</u> 5 ^{x)}	7 <u>+</u> 3 、	~ 38	- 19
о (ме бн)	46 <u>+</u> 17	18 <u>+</u> 8		

х) Ошибки статистические.

Более подробно исследовались К (888) -мезоны. Изучение угловых распределений продуктов распада этого резонанса показало (рис. 4), что спин этого резонанса I > 1 . Наш результат согласуется с данными других работ /13/, в которых установ-

7

лено, что спин К^{*} (888) I = 1 . Имеется по крайней мере 2 группы К^{*} -мезонов, наибольшее различие между которыми наблюдается в угловом распределении в с.ц.м. π-р (рис. 6). Для описания группы К^{*} -частиц, вылетающих строго вперед (~ 30%) можно применить диаграмму одномезонного обмена с образованием К^{*} -мезонов в мезонной вершине.

Автором сделана попытка исследовать образование К -резонансов в событиях с ЛК -парами. Количество случаев, когда обе нейтральные странные частицы зарегистрированы в камере, мало, и на основании только этих взаимодействий трудно сделать какие-либо заключения. По ионизации, δ -электронам, вторичным взаимодействиям частиц, а также с помощью анализа недостающих масс из группы событий с Λ -гиперонами были отобраны взаимодействия, которые с большой вероятностью можно считать событиями с ΛK^+ -парами. Методы выделения ΛK^+ и $K^0 K^+$ -пар описаны в следующей главе. Здесь же рассматриваются лишь спектры эффективных масс $M_{\kappa^+\pi^-}(n_*=2,4)$, которые указывают на интенсивное образование K^{\oplus} (888) -мезонов (рис. 7). Отметим интересную особенность в поведении Λ -гиперонов, образующихся вместе с K^{\oplus} -мезонами, которая состоит в том, что преобладающая часть этих частиц имеет большие импульсы в с.ц.м. (рис.7) и большие отрицательные значения косинусов углов вылета. Этот факт находится в согласии с расчетами, проведеиными нами /10/ и авторами /11/ на основании одномезонных диаграмм, учитывающих рождение K^* -мезонов в мезонной вершине,

Далее рассматривается распределение эффективных масс частиц ($K^{0}\pi^{+}\pi^{-}\pi^{-}$) с суммарным зарядом $\Sigma Q = 1$ и ($K^{0}\pi^{-}\pi^{+}\pi^{-}$)с $\Sigma Q = -1$, которые указывают на наличие нового резонанса с массой 1660 Мэв и $\Gamma/2 = 100$ Мэв, названного нами U -мезоном (рис. 8). U -мезон может распадаться каскадным способом через K^{*}(888) -резонанс. Поскольку система с $\Sigma Q = -1$ может распадаться через состояние K^{*}(888) ($K^{*} + K^{0} + \pi^{+}$), то U - резонанс должен иметь изотопический спин не меньше T = 3/2. Попытки определить спин не привели к успеху. Можно лишь утверждать, что квантовые числа $I^{P} = 0^{+}$ исключаются.

В главе III изложены также результаты поисков нуклонных изобар в событиях с образованием КК -пар и других резонансов (в системе (К2*π*) и т.д.).

В четвертой главе приводятся данные по изучению пар странных частиц $^{/13/}\Lambda K^+$ и K^0K^- . Описаны способы выделения событий с ΛK^+ и K^0K^- парами из общего числа взаимодействий. Установлено, что импульсные и угловые распределения K^+ и K^- ме-зонов ничем не отличаются от соответствующих распределений K^0 -мезонов.

В спектре эффективных масс К⁰, К — мезонов обнаружен максимум (рис. 9). при массе -1080 — Мэв. События, входящие в область максимума, исследованы более подробно. Результаты свидетельствуют о том, что этот пик можно приписать образованию резонанса, однако трудно оценить примесь событий, не относящихся к нему. Резонанс в этой же области наблюдался нами и другими авторами⁽²⁾ в спектре масс $K_1^{0}K_1^{0}$. По-видимому, максимумы в распределениях эффективных масс $K_1^{0}K_{1-H}^{0}$ $K_1^{0}K^{-}$ -пар можио считать проявлением разных мод распада одного и того же резонанса A_1 с изотопическим спином T=1, и, значит, разрешен распад этого состояния на 3π или $\rho\pi$ -частицы. Отсюда следуют квантовые числа для A_1 -мезона, равные $I = 2^{+-}$. На распределении имеется второй выброс за фазовую кривую в области 1300-1350 Мэв, однако он плохо обеспечен статистически. Пик в спектре около массы = 1350 Мэв, приписываемый A_2 -резонансу, был обнаружен авторами⁽¹⁴⁾. Ими же был установлен распад A_2 -мезона на ρ , π -частицы. Таким образом, по-видимому, имеется второй A_2 -резонанс, квантовые числа и моды которого подобны A_1 мезону.

Большая часть главы IV посвящена суммированию и обсуждению результатов настоящего эксперимента.

Основные результаты и выводы диссертации

i. С наибольшей достоверностью установлено образование следующих уже известных резонансов: ρ - и К*(888) -мезонов и Y (1385)-гиперона с ΛК -парами и К (888) и К * (730)-мезонов с КК -парами.

Наши заключения о спинах этих резонансов не противоречат уже известным из других работ данным.

Подробные сведения об образовании этих резонансов вместе со странными частицами при высоких энергиях получены впервые в данной работе.

Получены также указания на возможность генерации других известных резонанс сов: η - , ω -мезонов и новых: A₂ -мезона с массой 1300-1400 Мэв и F -мезона (F + π^+ + π^- + π^+ + π^-) с массой 1340 <u>+</u>70 Мэв, однако эти данные еще мало убедительны и нуждаются в подтверждении. В частности, важно проверить другие предложенные нами интерпретации для максимума 1340 <u>+</u>70 Мэв, кроме возможности F резонанса.

2. Впервые получены сведения об образовании новых резонансов: Y(1660) -гиперона, U-и А₁- мезонов.Y(1660) - и А₁-частицы позже были обнаружены и другими авторами.

• 3. Нами впервые было указано /15/ на возможность каскадных распадов тяжелых резонансов на примерах A₁- U-и F -мезонов. В дальнейшем эта идея была подтверждена открытием новых резонансов, обладающих каскадной схемой распада.

Например: В -мезон^{/16/} (В + ω + π^{\pm} , ω + π^{+} + π^{-} + π^{0} , мезон с массой 959 Мэв[/])^{17/} ($\pi\pi\eta$)* + π^{+} + π^{-} + η , η + $\begin{cases} 2y \\ \pi^{+}\pi^{-}\pi^{0} \\ 3\pi^{0} \end{cases}$.

4. Установлено, что интенсивность образования резонансов в π-р -взаимодействнях при 7,5 Гэв/с очень велика; простая сумма вкладов всех резонансов дает величину, значительно большую 100% (для событий ΛК- и КК -пар четырехлучевых звезд). Это говорит о наличие процессов совместного рождения резонансов в одном акте взаимодействия. Экспериментальная проверка не противоречит этому утверждению. В частности, данные указывают на совместное рождение ρ - и ω -мезонов, ρ- и Yгиперонов.

5. События с образованием двух заряженных частиц сильно отличаются по

генерации резонансов от события с четырьмя заряженными частицами. Кроме К*(888)-мезонов и Y(1385)-гиперонов, обнаруженных в событиях с ЛК - парами, не найдено никаких других резонансов.

6. Важно подчеркнуть одну особенность, касающуюся средних значений полных и поперечных импульсов и энергий частиц в с.ц.м. лэр -взаимодействия. Было замечено, что с увеличением массы образующейся частицы возрастает средний импульс и энергия этих частиц. Увеличивается, хотя и слабо, средний поперечный импульс.

7. Изучение поведения продуктов распада резонансов позволило объяснить обнаруженные нами ранее особенности в угловых и импульсных распределениях А., К.и л-частиц. В частности, было экспериментально проверено наше¹⁰⁷ и авторов¹¹⁷ утверждение относительно возможности описать "двугорбый" спектр А -гиперонов¹⁸⁷ с помощью расчетов по одномезонным диаграммам с учетом зависимости л-К -взаимодействия от энергии в мезонной вершине диаграммы.

Обнаруженный нами ранее избыток над кривыми, рассчитанными по статистической теории, *п* -мезонов с малыми импульсами в с.ц.м. (до 400 Мэв/с), оказалось возможным объяснить влиянием образования Y (1385) -гиперонов и изобар N^{*}_{3/2} 3/2.

8. При анализе угловых распределений в с.п.м. резонансов и частиц замечена интересная особенность, состоящая в том, что с увеличенкем массы образующихся мезонов (π (140) K⁰, ρ , K^{*} и A₁(1040)) увеличивается направленность вылета этих мезонов вперед. Барионы с ростом массы, по-видимому, сильнее коллимированы назад. Указанный эффект отражается и на других характеристиках частиц, в частности, на средних импульсах частиц и т.д. (см. п.7).

9. Поскольку образование ряда резонансов (Υ₁ -гиперонов и ρ -мезонов и др.) не связано с малыми значениями переданных импульсов, то можно думать, что вклад диаграмм, соответствующих периферическим процессам, невелик.

Основные данные, вошедшие в диссертацию, опубликованы в работах /4,5,7,8,12,13,15,19/

Литература

1. T.Bartke, R.Budde, W.A.Cooper et al. Nuovo Cim., 24, 876 (1962).

- a)A.Bigi, S.Brandt, R.Carrara, W.A.Cooper, Aurelia de Marco, G.R.Macleod, Ch.Peyrou, R. Sosnovski, A.Wroblevski, Proc of 1962 Ann Int Conf. on High Energy Phys at Geneva, p. 247.
- b), J.Belliere, M.Bloch, D.Drijard et al. Nuovo Cim, v. XXIX, 339 (1963).
- 3. Ван Ган-чан, М.И.Соловьев, Ю.Н.Шкобин. ПТЭ, 1, 41 (1959).
- 4. В.А.Беляков, Ван Юн-чан, В.И.Векслер, Н.М.Вирясов, Ду Юань-цай, Е.Н.Кладницкая, Ким Хи Ин, А.А.Кузнецов, А.К.Михул, Нгуен Дин Ты, В.Н.Пенев, Е.С.Соколова, М.И.Соловьев. Препринт ОИЯИ, Р-1019, (1962).
- 5. В.А.Беляков, В.И. Векслер, Н.М. Вирясов, Е.Н.Кладницкая, Г.И.Копылов, А.Михул, В.Н.Пенев, Е.С.Соколова, М.И.Соловьев. Препринт ОИЯИ, Р-1506; ЖЭТФ, <u>48</u>, 1967 (1964).
- 6. M.Aderholz, L.Bondar, at al Phys Let. v. 10, 226 (1964).
- 7. В.А.Беляков, В.И.Векслер, Н.М.Вирясов, Е.Н.Кладницкая, Г.И.Копылов, В.Н.Пенев, М.И.Соловьев. Препринт ОИИИ, Р-1807,ч.I (1964).
- 8. В.А.Белядов, В.И.Векслер, Н.М.Вирясов, НЕ.Н.Кладинцкая, Г.И.Копылов, В.Н.Пенев, М.И.Соловьев. Препринт ОИЯИ, Р-1808, ч. II (1964).
- 9. L.Bertanza et al. Proc of 1962 Ann Int Conf. on High Energy Phys at Geneva, p.373.

L.W.Alvarez, M.N.Alston et al, Phys. Rev. Let., 10, 184 (1963).

- В.А.Беляков, Ван Юн-чан. В.И.Векслер, Н.М.Вирясов, И.Врана, Ду Юань-цай, Ким Хи Ин, Е.Н. Кладницкая, А.А.Кузнецов, Э.Михул, Нгуен Дин Ты, И.Патера, В.Н.Пенев, Е.С.Соколова, М.И.Соловьев, Т.Хофмокль, Чень Лин-янь, А.Михул, ЖЭТФ, 44, 433 (1963).
- 11. В.С.Барашенков, Д.И.Блохинцев, Э.К.Михул, И.Патера, Г.Л.Семашко. Препринт ОИЯИ, Р-1245, Дубна, 1963.
- Ван Юн-чан, В.И.Векслер, Ду Юань-цай, Е.Н.Кладницкая, А.А.Кузнецов, А.Михул, Нгуен Дин Ты, В.Н.Пенев, Е.С.Соколова, М.И.Соловьев. ЖЭТФ, 44, 815 (1963).
- В.А.Беляков, Н.М. Вирясов, Е.Н.Кладницкая, В.Н.Пенев, Е.С.Соколова, М.И.Соловьев. Препринт ОИЯИ, Р-1586, (1964).
- 14. V.A.Suh Urk Chung, Orin I Dahl, at al. Preprint UCRL 11371 (1964).
- V.A.,Belyakov, Wang Yung-chang, V.I.Veksler, N.M.Viryasov Du Yuan-cai, E.N.Kladnitskaya, Kim Hi In, A.A.Kuznetsov, A.C.Mikhul, Nguyen Dinh-Tu, V.N.Penev, E.S.Sokolova and M.I.Solov'ev, Proc of High Energy Phys. Conf. at Geneva, p. / 336/ (1962).
- 18. M.Abolins, R.L.Lander, W.W.Melhop, N.Huong and Yager Phys. Rev. Letters, 11, 381 (1963).
- 17. M.Godberg et al. Phys. Rev. Letters, 12, 546 (1964).
- В.И. Векслер, И. Врава, Е.Н. Кладницкая, А.А. Кузвецов, А.К. Михул, Э.К. Михул, Нгуен Дин Ты, В.Н. Пенев, М.И. Соловьев, Т.Хофмокль, Чек Лий-янь. Препринт ОИЯИ, Д-806, Дубиа, 1961.

 V.A.Belyakov, Wang Yung-chang, VI Veksler, N.M.Viryasov, I.Vrana, Du Du Yuan-cai, Kim Hi In, E.N. Kladnitskaya, A.A.Kuznetsov, A.Mihul, E.Mihul, Nguyen Dinh-Tu, I.Patera, V.N.Penev, E.S.Sokolova, M.I.Soloviev, T.Hofmokl. Tshen Lin-yen, M.Schneeberger. Proc. of High Energy Phys. Conf. at Geneva p. 252 (1962).

Рукопись поступила в издательский отдел 25 июля 1964 г.

. . . .

- Рис. 1. а,б. а) Гистограмма эффективных масс ($\pi^+\pi^-$) -комбинаций для случаев в. = 4 типа "Л". Кривая представляей результат сложения фазовых объемов, которая хорошо описывает спектр $M_{\pi}\mp_{\pi}\mp$
 - 6) Идеограмма эффективных масс (π⁺π⁻⁻) комбинаций. Нанесены кривые, соответствующие η - и ω -мезонам. Фоновая кривая нормирована по событиям с М_{пπ}> 0,8 Гэв. Заштриховавная область представляет разброс ошибок при нормировке.

12

Рис. 2. Распределения эффективных масс М_{и Тити} ± для случаев с К⁰ -мезонами (вниз у); распределение М_и ± для событий АК -пар (вверху). Справа расположены эффективные массы М_и+_идля случаев из области пика 950 < М_и-_и-_и ± 1150 Мэв на распределении рис. 2 (внизу).

٠

Рис. 3. Распределение М_{ря}± для событий с К⁰-мезонами (n_g=2). Кривая – фазовый объем для реакций:

15

 $\pi + p \rightarrow \begin{cases} K K N \rho \pi \\ K K N \rho 2\pi \end{cases}$

Рис. 4 а,б,в. Распределения эффективных масс $M_{\Lambda_{\pi}}$ + a) $n_{\mu} = 4$, б) $n_{\mu} = 2$ в(суммарное $n_{\mu} = 2,4$.)

> Плавные кривые соответствуют фазовым объемам, совпадающими с расчетом Монте-Карло. Пунтиром здесь и далее обозначены распределения без геометрической поправки.

.....

Рис. 5. Распределения углов вылета относительно первоначального полета (внизу) А -гиперонов от АК -пар (вверху) К⁰ -мезонов от событий "Х⁰" в системе пентра масс Y⁺ -гиперонов и К^{*-} -мезонов, соответственно. Кривые проведены методом наимевыших квадратов. Заштрихованы события с углом вылета резонансов в с.ц.м. | Сов θ⁺|>0,8.

Рис. 6. (справа) Рапределение углов вылета К^{*} -мезонов в зависимости от их импульсов в с.ц.м. *п*-р-взаимодействия. На спектры углов и импульсов нормированы распределения К⁰ -мезонов, не являющихся продуктами К*(888) -резонансов (п_а-4); (слева) распределения углов вылета(Кп) -систем для событий из областей эффективных масс М_{кп}, соседних с областью резонанса К*(888)

Рис. 7. Распределение М_к+_п- -для событий АК⁺ пар (n₂-2,4) /внизу/. Кривая - результат сложения фазовых объемов, нормирована на весь спектр. Импульсное распределение А -гиперонов (n₂ = 2,4), образующихся вместе с К^{*} -мезонами (вверху).

Рис. 8. Распределения эффективных масс М_к0_π, ⁺, ⁺ Внизу гистограмма эффективных масс событий с недостающей массой М_{нед} М_N + М_к. Заштрихованы события, не допустимые по кинематике. Кривая, нормированная на весь спектр, результат расчета по статистической теории с учетом резонансов ω , ρ , ^N_{N/2} К (зазы К (тао) Отдельно нарисован фазовый объем для реакции с числом частиц в конечном состоянии = - т Пунктириая линия - распределения без геометрической поправки «. На верхней гистограмме нормировано распределение, полученное методом Монте-Карло.

Рис. 9. Распределение эффективных масс М_{ибк}...Кривыерезультаты сложения фазовых объемов и полученная с помощью метода Монте-Карло.