

17-84-864

Й.Г.Бранков, В.А.Загребнов, Н.С.Тончев

ОПИСАНИЕ ПРЕДЕЛЬНЫХ ГИББСОВСКИХ СОСТОЯНИЙ ДЛЯ МОДЕЛИ КЮРИ-ВЕЙССА-ИЗИНГА

Направлено в журнал "Теоретическая и математическая физика"

Институт механики и биомеханики БАН, София

1. ВВЕДЕНИЕ

Предельные гиббсовские состояния /распределения/ являются одним из основных понятий современной статистической механики. Они наиболее детально характеризуют состояние термодинамического равновесия системы в пределе бесконечного объема, а также особенности ее поведения в случае фазовых переходов. Понятие предельного гиббсовского распределения впервые появилось в работах Минлоса ^{/1,2/}. Затем в работах Добрушина^{/3,4/} было дано его наиболее общее определение с помощью условных распределений, которое впоследствии развивалось в работах Ланфорда, Рюэля^{/5,6/}.

Существование и описание предельных равновесных /гиббсовских/ состояний в области высоких температур и малых плотностей /или малых активностей/, т.е. в области, где предельная гиббсовская мера единственна, в настоящий момент является классическим результатом, который восходит еще к работе Боголюбова, Хацета /7/, см. также /8,9/. Сюда же относится очень важная теорема Добрушина о единственности предельного гиббсовского состояния /10/ и ее различные варианты, полученные в недавних работах /11,12/. Число нетривиальных моделей, для которых удается дать полное описание всех предельных гиббсовских состояний. очень невелико. В этом направлении следует отметить прежде всего работы Айзенмана /13/ и Хигучи /14/, где дано описание всех предельных гиббсовских состояний для плоской ферромагнитной модели Изинга со взаимодействием ближайших соседей. В этом случае при любых температурах /и нулевом магнитном поле/ все предельные гиббсовские состояния трансляционно-инвариантны и являются линейной выпуклой комбинацией лишь двух крайних точек /чистых фаз/, которые являются предельными гиббсовскими состояниями, соответствующими либо только положительным, либо только отрицательным граничным условиям. На языке квазисредних эти две чистые фазы выделяются с помощью однородного "+ поля". либо "- поля" /15/.

Мотивировкой настоящей работы явилась попытка конструктивного описания всех предельных гиббсовских мер для другой спиновой модели с нетривиальными термодинамическими свойствами - модели Кюри-Вейсса-Изинга /или J/N -модели ^{/16,17/}/. Эта модель достаточно подробно и полно изучалась с самых различных точек зрения и о ее свойствах имеется обширная литература /см. например ^{/16,17/} и цитируемую там литературу/.

Здесь уместно отметить, что несмотря на относительную простоту модели специфика взаимодействия спинов в этой модели /беско-

ABUREDASSION NUMBER

ENEJB-COTENA

нечный радиус взаимодействия, интенсивность которого зависит от объема или числа узлов/ делает невозможным применение традиционных схем исследования предельных гиббсовских распределений - например, уравнения Добрушина-Ланфорда-Рюэля /4-6/.

В настоящей работе для построения предельных гиббсовских состояний использована прямая связь между согласованным семейством вероятностных мер для конфигураций спинов и системой предельных корреляционных функций, которые удается вычислить в явном виде с помощью сформулированного нами обобщенного метода квазисредних.

Основные результаты сводятся к следующему:

 все предельные гиббсовские состояния трансляционно-инвариантны;

2/ они являются линейной выпуклой комбинацией двух крайних точек /чистых фаз/, которые соответствуют "+ полю" и "- полю" Выше критической температуры они совпадают, т.е. предельное гиббсовское состояние единственно.

Работа построена следующим образом.

В п.2 определена модель и установлена связь между гиббсовским распределением в конечном объеме и соответствующими корреляционными функциями. Основная теорема доказана в п.3. Там же сформулирован обобщенный метод квазисредних для описания всех предельных гиббсовских состояний. В заключение в п.4 обсуждаются особенности использования обобщенного метода квазисредних для настоящей модели и связь с традиционным подходом, который отвечает заданию граничных условий.

МОДЕЛЬ КЮРИ-ВЕЙССА-ИЗИНГА.СВЯЗЬ ВЕРОЯТНОСТНОГО РАСПРЕДЕЛЕНИЯ В КОНЕЧНОМ ОБЪЕМЕ С КОРРЕЛЯЦИОННЫМИ ФУНКЦИЯМИ

Как известно, гамильтониан ферромагнитной модели Кюри-Вейсса-Изинга имеет вид

$$\mathcal{H}_{\Lambda}(\sigma^{\Lambda}) = -\frac{J}{2|\Lambda|} \sum_{i,j \in \Lambda} \sigma_i \sigma_j , \qquad /2.1/$$

где J>0, а $\Lambda \subset \mathbb{Z}^d$ является конечным подмножеством d=мерной решетки \mathbb{Z}^d .Здесь случайные величины $\sigma^{\Lambda} = \{\sigma_i\}_{i \in \Lambda}$ в каждом узле принимают /для простоты/ значения ± 1 , а $|\Lambda|$ равно числу узлов в области Λ .

Совместное вероятное распределение для { σ^{Λ} } определяется гиббсовским распределением

$$P_{\Lambda}(\sigma^{\Lambda}) = Z_{\Lambda}^{-1} \exp\{-\beta H_{\Lambda}(\sigma^{\Lambda})\}, \qquad (2.2)$$

где $\beta^{-1} = \theta$ - температура системы.

Для статистической механики принципиальный интерес представляют предельные вероятностные распределения для случайного поля {σ^{Zd}},так как они полностью описывают равновесные состояния системы в термодинамическом пределе. Эти распределения получаются с помощью некоторой предельной процедуры из распределения в конечном объеме /2.2/ и называются предельными гиббсовскими распределениями /состояниями/.

Ниже мы построим все предельные гиббсовские состояния для модели /2.1/ по следующей схеме.

1. Установим связь между конечномерным распределением /1.2/ и корреляционными функциями

$$\langle \sigma_{\rm T} \rangle_{\Lambda} \equiv \sum_{\sigma \Lambda} P_{\Lambda}(\sigma^{\Lambda}) \sigma_{\rm T}$$
, /2.3/

где

$$\sigma_{\rm T} \equiv \prod_{i \in {\rm T}} \sigma_i, \quad {\rm T} \subset \Lambda.$$

2. Проблема определения предельного гиббсовского распределения будет сведена, с помощью теоремы Колмогорова о продолжении вероятностной меры для согласованного семейства конечномерных распределений /см. например ^{/18/}/, к вычислению корреляционных Функций в термодинамическом пределе.

3. Из явного вида и свойств предельных корреляционных функций, построенных с помощью обобщенного метода квазисредних, будет дано описание всех предельных гиббсовских состояний для модели /2.1/.

Перейдем теперь к доказательству следующего утверждения. Лемма 2.1. Для модели /2.1/ конечномерные распределения в области Λ связаны с корреляционными функциями следующим образом:

$$P_{\Lambda}^{S}(\sigma^{S} = \tilde{\sigma}^{S}) = \sum_{\sigma \Lambda \setminus S} P_{\Lambda}(\sigma^{\Lambda \setminus S} \cup \tilde{\sigma}^{S}) = \sum_{T \subseteq S} k_{T}(\tilde{\sigma}^{S}) < \sigma_{T}^{S} > /2.5/$$

для любого подмножества SC Λ . Здесь коэффициенты k $_T$ не зависят от области Λ .

Доказательство. Имеет место тождество

Левую часть этого тождества можно представить в виде

$$Z_{\Lambda}^{-1} \sum_{\sigma \Lambda} \exp\{-\beta \mathcal{H}_{\Lambda}(\sigma^{\Lambda})\} \prod_{i \in S} (\sigma_{i} + \tilde{\sigma}_{i}) =$$

$$= \mathbb{Z}_{\Lambda}^{-1} \sum_{\sigma \Lambda \setminus S} [\sum_{\sigma S} \exp\{-\beta \mathbb{H}_{\Lambda} (\sigma^{\Lambda \setminus S} \cup \sigma^{S})\} \prod_{i \in S} (\sigma_{i} + \overline{\sigma_{i}})] = /2.7/$$
$$= \mathbb{Z}_{\Lambda}^{-1} \sum_{\sigma \Lambda \setminus S} \exp\{-\beta \mathbb{H}_{\Lambda} (\sigma^{\Lambda \setminus S} \cup \overline{\sigma}^{S})\} \prod_{i \in S} 2\overline{\sigma}_{i} = \mathbb{P}_{\Lambda}^{S} (\sigma^{S} = \overline{\sigma}^{S}) \prod_{i \in S} 2\overline{\sigma}_{i}.$$

Из уравнений /2.6/ и /2.7/ следует равенство /2.5/, где

$$\mathbf{k}_{\mathrm{T}}(\boldsymbol{\sigma}^{\mathrm{S}}) = \mathbf{k}_{\mathrm{T}}'(\boldsymbol{\sigma}^{\mathrm{S}}) \left(\prod_{i \in \mathrm{S}} 2\boldsymbol{\sigma}_{i}\right)^{-1} \cdot \Box$$

3. ОСНОВНАЯ ТЕОРЕМА. ОБОБЩЕННЫЙ МЕТОД КВАЗИСРЕДНИХ

Как следует из леммы 2.1, описание всех предельных конечномерных распределений

$$P^{S}(\sigma^{S}) = \lim_{\Lambda \uparrow \mathbb{Z}^{d}} P^{S}(\sigma^{S}), \qquad (3.1)$$

для любого конечного множества $S \subset \mathbb{Z}^d$, которые порождаются гиббсовским распределением /2.2/ в конечном объеме, сводится к описанию всех возможных термодинамических пределов для корреля – ционных функций

$$\langle \sigma_{\rm T} \rangle = \lim_{\Lambda \uparrow \mathbb{Z}^{\rm d}} \langle \sigma_{\rm T} \rangle_{\Lambda}$$
 /3.2/

для любых конечных множеств $T \subset Z^d$.

Различные термодинамические пределы для корреляционных функций соответствуют либо различному выбору граничных условий вне области Λ , либо различным способам выключения /в термодина-мическом пределе/ внешних магнитных полей $\{h_i\}_{i \in \Lambda}$, взаимодействие с которыми вводится в гамильтониан системы /2.1/ следующим образом:

$$\mathfrak{H}_{\Lambda}(\sigma^{\Lambda},\vec{\mathbf{h}}) = \mathfrak{H}_{\Lambda}(\sigma^{\Lambda}) - \sum_{\mathbf{i} \in \Lambda} \mathbf{h}_{\mathbf{i}} \sigma_{\mathbf{i}} .$$

$$/3.3/$$

Допустим, что пределы /3.2/ существуют. Тогда имеют место следующие утверждения.

Лемма 3.1. Конечномерные распределения /3.1/ задают согласованные семейства вероятностных мер на пространстве (Ω, Σ) , где $\Omega = \{1, -1\}^{Z^d}$ -пространство всех спиновых конфигураций на решетке /с топологией прямого произведения/, а Σ есть минимальная σ -алгебра, порожденная цилиндрическими множествами $\{\sigma^S \ \times \{1, -1\}^{Z^d} \setminus S \}_{S \in Z^d}$.

Доказательство. Пусть конечное множество TC S,где S тоже является конечным. Тогда согласно соотношениям /2.5/ и /3.1/ для предельного конечномерного распределения $P^{T}(\sigma^{T})$ имеем:

$$\begin{split} & \mathbb{P}^{\mathbf{S}}(\sigma^{\mathbf{T}} \times \{1, -1\}^{\mathbf{S} \setminus \mathbf{T}}) = \sum_{\sigma \mathbf{S} \setminus \mathbf{T}} \lim_{\Lambda \uparrow \mathbf{Z}^{\mathbf{d}}} \mathbb{P}^{\mathbf{S}}(\sigma^{\mathbf{T}} \cup \sigma^{\mathbf{S} \setminus \mathbf{T}}) = \\ & = \lim_{\Lambda \uparrow \mathbf{Z}^{\mathbf{d}}} \sum_{\sigma \mathbf{S} \setminus \mathbf{T}} \mathbb{P}^{\mathbf{S}}_{\Lambda}(\sigma^{\mathbf{T}} \cup \sigma^{\mathbf{S} \setminus \mathbf{T}}) = \lim_{\Lambda \uparrow \mathbf{Z}^{\mathbf{d}}} \mathbb{P}^{\mathbf{T}}_{\Lambda}(\sigma^{\mathbf{T}}) = \mathbb{P}^{\mathbf{T}}(\sigma^{\mathbf{T}}), \end{split}$$

что и выражает условие согласованности. □

Предложение 3.1. /Колмогоров, см., например, $^{/18/}$. Если на пространстве Ω задано согласованное семейство вероятностных распределений, то на (Ω, Σ) существует единственное вероятностное распределение $P(\cdot)$, такое, что при любом конечном S распределение $P^{S}(\cdot)$ совпадает с проекцией $P(\cdot)$ на множество $\{1, -1\}^{S}$. Замечание 3.1. Вероятностные распределения $P(\cdot)$, построенные с помощью теоремы Колмогорова и проекций /3.1/, мы, следуя $^{/1,2/}$, будем называть предельными гиббсовскими распределениями, а функционалы <-> /3.2/ - предельными гиббсовскими состояниями для модели /2.1/.

Обратимся теперь к вопросу о существовании пределов /3.2/. Лемма 3.2. Все термодинамические пределы для корреляционных функций /3.2/ существуют и имеют вид:

$$\langle \sigma_{\mathbf{T}} \rangle = \lambda \langle \sigma_{\mathbf{T}} \rangle_{+} + (1-\lambda) \langle \sigma_{\mathbf{T}} \rangle_{-}$$
, $\mathbf{T} \in \mathbf{Z}^{\mathbf{d}}$, $|\mathbf{T}| \langle \infty, /3.4/$

где $0 \le \lambda \le 1$. Здесь квазисредние $<\sigma_T>_{\pm}$ определяются следующим стандартным образом:

$$\langle \sigma_{\mathbf{T}} \rangle_{\pm} = \lim_{\mathbf{h} \to \pm 0} \lim_{\Lambda \stackrel{\circ}{,} \mathbf{Z}^{\mathbf{d}}} \langle \sigma_{\mathbf{T}} \rangle_{\Lambda} (\mathbf{h}) , \qquad (3.5)$$

где <->_ (h) обозначает гиббсовское состояние в конечном объеме с гамильтонианом

$$\mathcal{H}_{\Lambda}(\sigma^{\Lambda}, h) = \mathcal{H}_{\Lambda}(\sigma^{\Lambda}) - h \sum_{i \in \Lambda} \sigma_{i} .$$
 (3.6/

Доказательство. Для пространственно неоднородного внешнего поля $\mathbf{h} = \{\mathbf{h}_i\}_i \in \mathbf{Z}^d$ с конечной вариацией /т.е. для конфигураций поля $\mathbf{H} = \{\mathbf{h} \in \mathbf{R}^{\mathbf{Z}d}: |\mathbf{h}_i| < \infty, i \in \mathbf{Z}^d\}$ с помощью /3.3/ получаем следующее представление для корреляционных функций:

$$<\sigma_{\mathbf{T}}>_{\Lambda}(\vec{\mathbf{h}}_{\Lambda}) = \frac{<\prod_{\mathbf{i}\in\mathbf{T}}\mathsf{th}(\mathbf{h}_{\mathbf{i}} + \mathbf{x}\sqrt{\beta \mathbf{J}/|\Lambda|})\prod_{\mathbf{j}\in\Lambda}\mathsf{ch}(\mathbf{h}_{\mathbf{i}} + \mathbf{x}\sqrt{\beta \mathbf{J}/|\Lambda|})_{0}}{<\prod_{\mathbf{j}\in\Lambda}\mathsf{ch}(\mathbf{h}_{\mathbf{j}} + \mathbf{x}\sqrt{\beta \mathbf{J}/|\Lambda|})_{0}},$$
(3.7/

где

$$\langle - \rangle_{0} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx e^{-\frac{1}{2}x^{2}} (-) \qquad \varkappa \stackrel{\rightarrow}{h_{\Lambda}} = \{h_{i}\}_{i \in \Lambda}$$

Введем функцию

$$f_{\Lambda}(\beta, \vec{h}_{\Lambda}; y) = \frac{1}{2} Jy^{2} - \frac{\beta^{-1}}{|\Lambda|} \sum_{j \in \Lambda} \ln ch \left[\beta (Jy + h_{j})\right]. \qquad (3.8)$$

Тогда выражение /3.7/ можно представить в виде

$$\langle \sigma_{\mathrm{T}} \rangle_{\Lambda} (\vec{h}_{\Lambda}) = \frac{\int_{-\infty}^{\infty} \mathrm{d}y \prod_{j \in \mathrm{T}} \mathrm{th} [\beta (\mathrm{J}y + h_{j})] e^{-\beta |\Lambda| f_{\Lambda}(\beta, h_{\Lambda}; y)}}{\int_{-\infty}^{\infty} e^{-\beta |\Lambda| f_{\Lambda}(\beta, h; y)} \mathrm{d}y} . \quad /3.9/$$

Поскольку нас интересует описание всех предельных гиббсовских состояний в нулевом внешнем поле $(\vec{h} = 0)$, то ниже мы рассмотрим пространственно неоднородные конфигурации поля, такие, что \vec{h} равномерно сходится к нулю:

$$\{ \vec{h} \Rightarrow 0 \} = \{ \sup_{i \in Z^{d}} |h_{i}| \Rightarrow 0 \quad M \quad \sum_{j \in Z^{d}} |h_{i}|^{2} \Rightarrow 0 \}.$$
 (3.10/

Представим функцию /3.8/ в виде суммы четной и нечетной частей по переменной у:

$$f_{\Lambda}(\beta, \vec{h}_{\Lambda}; y) = f_{\Lambda}^{+}(\beta, \vec{h}_{\Lambda}; y) + f_{\Lambda}^{-}(\beta, \vec{h}; y), \qquad (3.11)$$

где соответствующие выражения при h => 0 имеют вид

$$f_{\Lambda}^{+}(\beta, \vec{h}_{\Lambda}; y) = \frac{1}{2} Jy^{2} - \beta^{-1} \ln ch(\beta Jy) + \frac{1}{|\Lambda|} \mathcal{O}\left(\sum_{j \in \Lambda} h_{i}^{2}\right),$$

$$f_{\Lambda}^{-}(\beta, \vec{h}_{\Lambda}; y) = -\frac{1}{|\Lambda|} \left(\sum_{j \in \Lambda} h_{j}\right) th(\beta Jy) + \frac{1}{|\Lambda|} \mathcal{O}\left(\sum_{j \in \Lambda} h_{j}^{3}\right).$$
(3.12)

Для анализа всех возможных пределов /3.10/ в выражении /3.9/ удобно ввести семейство функций ρ_{Λ} : $\mathbf{R}^{|\Lambda|} \rightarrow \mathbf{R}^{1}$, где $\Lambda \subset \mathbf{Z}^{d}$ и $|\Lambda| < \infty$:

$$\rho_{\Lambda}(\mathbf{\hat{h}}) = \sum_{\mathbf{j} \in \Lambda} \mathbf{h}_{\mathbf{j}} .$$
 (3.13/

Из выражений /3.9/ и /3.12/ видно /подробности, доказательства см. в приложении/, что с помощью функции /3.13/ эти пределы классифицируются следующим образом.

Случай 1. Пусть поле f равномерно сходится к нулю при ΛZ^d , причем

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \rho_{\Lambda}(\mathbf{\hat{h}}_{\Lambda}) = 0.$$
 (3.14/

Тогда получим

$$\lim_{\Lambda \uparrow \mathbb{Z}^{d}} \langle \sigma_{T} \rangle_{\Lambda}(\vec{h}) = \frac{1}{2} [\langle \sigma_{T} \rangle_{+} + \langle \sigma_{T} \rangle_{-}], \qquad (3.15)$$

где

$$\langle \sigma_{\rm T} \rangle_{\pm} = (\pm y_0)^{|\rm T|}$$
, /3.16/

а Уо является неотрицательным решением уравнения

$$y = th(\beta Jy), \qquad /3.17/$$

которое определяет точки перевала в интегралах /3.9/. Как обычно, при температуре выше критической $\beta \leq \beta_c = J^{-1}$ мы имеем единственную точку перевала $y_0 = 0$; при $\beta > \beta_c$ их имеется две: $y_0^{\pm} = \pm y_0 \neq 0$. Случай 2. Пусть поле ћ равномерно сходится к нулю при $\Lambda \uparrow \mathbb{Z}^d$, причем

$$\lim_{\Lambda \uparrow \mathbb{Z}} \rho_{\Lambda}(h_{\Lambda}) = \rho, \quad 0 < |\rho| < \infty.$$
(3.18/

Тогда из выражений /3.9/-/3.12/ получаем

$$\lim_{\Lambda \uparrow \mathbf{Z}^{\mathbf{d}}} \langle \sigma_{\mathbf{T}} \rangle (\dot{\mathbf{h}}_{\Lambda}) = \lambda \langle \sigma_{\mathbf{T}} \rangle_{+} + (1 - \lambda) \langle \sigma_{\mathbf{T}} \rangle_{-} , \qquad (3.19)$$

где λ является функцией температуры и параметра ρ и имеет вид

$$\lambda = \frac{e^{\beta \rho y_0}}{e^{\beta \rho y_0} + e^{-\beta \rho y_0}}, \qquad (3.20)$$

а < $\sigma_{\rm T}$ > \pm и у определены выше, см. /3.16/, /3.17/. Случай 3. Пусть поле в равномерно сходится к нулю при $\Lambda \uparrow Z^{\rm d}$, причем

$$\lim_{\Lambda \uparrow \mathbf{Z} d} \rho(\mathbf{h}_{\Lambda}) = \pm \infty.$$
 (3.21/

Тогда из /3.10/ и /3.13/ следует, что

$$\lim_{\Lambda \uparrow \mathbb{Z}^{d}} |\Lambda|^{-1} \rho_{\Lambda}(\dot{h_{\Lambda}}) = 0.$$
(3.22/

Заметим, что и в этом случае отношение второго члена в разложении /3.12/ для функции $f_{\Lambda}(\beta,h_{\Lambda};y)$ к первому члену стремится к нулю при $\Lambda \uparrow \mathbb{Z}^d$, см. приложение. Поэтому с помощью метода перевала получаем

$$\lim_{\Lambda \uparrow \mathbb{Z}^{d}} \langle \sigma_{T} \rangle_{\Lambda} \stackrel{\rightarrow}{(h_{\Lambda})} = \begin{cases} \langle \sigma_{T} \rangle_{+}, \rho_{\Lambda} (h_{\Lambda}) \rightarrow \infty \\ \langle \sigma_{T} \rangle_{-}, \rho_{\Lambda} (h_{\Lambda}) \rightarrow -\infty, \end{cases}$$
(3.23/

где < σ_T>+ определены формулой /3.16/.

На этом доказательство леммы заканчивается. Замечание 3.1. Отметим, что рассмотренный выше случай 1 является прямым следствием случая 2 при $\rho \to 0$, в то время как случай 3 является лишь его формальным следствием при p → ± ∞. Замечание 3.2. /О квазисредних/. При доказательстве леммы 3.2. для построения различных пределов корреляционных функций использовался метод выключения внешнего поля в форме, отличающейся от канонического метода квазисредних Боголюбова /15/. Метод Боголюбова позволяет выделить чистые состояния /фазы/ в системах, испытывающих фазовый переход со спонтанным нарушением симметрии /19-21/ Для этого включаются внешние источники, нарушающие симметрию гамильтониана, с последующим их выключением после термодинамического предельного перехода. Как установил Боголюбов /мл/ /20/, в некоторых случаях эта процедура не дает определенного результата. Поэтому в /20/ был предложен новый метод введения квазисредних, когда выбор источников связан с параметром порядка. Кроме того, как было показано в /22/, существует и другой способ введения квазисредних путем нарушения коммутационных соотношений для операторов, определяющих структуру Гамильтониана. В настоящей работе продемонстрирована плодотворность идеи использования внешних источников. Нами показано, что для описания всех термодинамических пределов для корреляционных функций, которые определяют предельные гиббсовские состояния системы /в том числе смешанные, трансляционно-неинвариантные и т.п./, необходимо отказаться от требования трансляционной инвариантности внешнего поля и от определенного в методе квазисредних порядка перехода к пределам. А именно: стремление к нулю пространственно неоднородных внешних полей осуществляется одновременно с термодинамическим пределом. Отметим, что результат, соответствующий случаю 3, дает то же, что и обычная процедура вычисления квазисредних Боголюбова /см. /3.5//. В то же время случай 1 соответствует модели с внешним полем, тождественно равным нулю.

Замечание 3.3. Как следует из доказательства леммы 3.2 /см. также приложение/, все возможные термодинамические пределы корреляционных функций модели /2.1/ характеризуются пределами функции ρ_{Λ} , поэтому их можно получить, ограничиваясь только пространственно однородными полями с соответствующей асимптотикой /по | Λ | / убывания их амплитуды.

Основная теорема. Все предельные гиббсовские распределения P(.) для модели /2.1/ трансляционно-инвариантны и описываются следующим образом: 1/ для $\beta \leq \beta_c$ предельное гиббсовское распределение единственно:

$$P(.) = P_{+}(.) = P_{-}(.),$$
 /3.24/

2/ для $\beta > \beta_c$ они являются линейной выпуклой комбинацией двух эргодических компонент /чистых состояний/:

$$P(\cdot) = \lambda P_{-}(\cdot) + (1 - \lambda) P_{-}(\cdot), \quad 0 < \lambda < 1.$$
 /3.25/

Здесь крайние точки Р_±(.) являются вероятностными распределениями, построенными по теореме Колмогорова с помощью проекций /см. /2.5/ и /3.5//

$$P_{\pm}^{S}(\cdot) = \sum_{T \subseteq S} k_{T}(\cdot) < \sigma_{T} >_{\pm} .$$
 (3.26/

Доказательство. Трансляционная инвариантность предельных распределений /см. /2.5/, /3.1// является прямым следствием трансляционной инвариантности предельных корреляционных функций, для которых были получены явные выражения /3.4/ и /3.16/:

$$\langle \sigma_{\rm T} \rangle = \langle \sigma_{\rm T+a} \rangle$$
, /3.27/

где а- вектор решетки Z^d , а множество $T + a = \{i \in Z^d : i - a \in T \}$. Формулы /3.24/-/3.26/ являются следствием леммы 1.1, выражений /3.1/, /3.2/ и леммы 2.2. \Box

Замечание 3.4. Для $\beta \leq \beta_c$ можно привести явное выражение для проекций $P^{S}(\cdot)$ единственного предельного вероятностного распределения /3.24/. Из выражений /3.16/ и /3.26/ при $y_0 (\beta \leq \beta_c) = 0$ получаем

$$P_{\pm}^{S}(\cdot) = K_{\phi}(\cdot) = (\frac{1}{2})^{|S|}(\cdot).$$
 (3.28/

Замечание 3.5. Предельные гиббсовские распределения $P_{\pm}(.)$, соответственно состояния $\langle - \rangle_{\pm}$, являются чистыми /или чистыми фазами /23,84/ /, поскольку они обладают свойством / m-кратного/ перемещивания:

$$\lim_{R \to \infty} \langle \prod_{j=1}^{m} \sigma_{T_j + a_j} \rangle_{\pm} = \prod_{j=1}^{m} \langle \sigma_{T_j} \rangle_{\pm} ,$$

$$R = \min_{1 \le i \le j \le m} \operatorname{dist}(T_i + a_i, T_j + a_j) ,$$
(3.29)

В действительности, для рассматриваемой модели /2.1/ свойство /3.29/, в силу равенства /3.16/, выполняется для любого набора конечных множеств $\{T_j\}_{j=1}^m$, таких, что $T_j \cap T_j = \{ \phi \} (j \neq i), т.е.$ в наиболее сильной форме, соответствующей независимым случайным величинам в различных узлах решетки \mathbb{Z}^d .Ясно, что смешанные состояния /см. /3.4/ при $\lambda \neq 0, 1$ / ни свойством /3.29/, ни более слабым свойством эргодичности не обладают.

4. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

В заключение отметим, что стандартный способ построения предельных гиббсовских распределений /состояний/ заключается в нахождении термодинамического предела для распределений /состояний/ в конечном объеме при произвольных граничных условиях ^{/3-5, 23, 24/}. В настоящей работе для выполнения этой программы предложен обобщенный метод квазисредних /см. замечание 3.2/. Из результатов и доказательства основной теоремы /п.3/ следует, что при построении всех предельных гиббсовских состояний для модели /2.1/ с помощью метода квазисредних достаточно ограничиться /причем от второго из условий /3.10/ теперь можно отказаться/ трансляционно-инвариантными внешними полями с соответствующим подбором асимптотики их выключения в термодинамическом пределе. Например, из доказательства леммы 3.2 следует, что случаи 1,2 и 3 сводятся, по-существу, к следующему выбору этих асимптотик:

$$h_i = h(\Lambda) \sim |\Lambda|^{-\alpha}$$
, 1. $\alpha > 1$, 2. $\alpha = 1$, 3. $0 < \alpha < 1$. $/4.1/$

Поэтому для модели /2.1/ результаты, полученные выше с помощью обобщенного метода квазисредних, можно получить, апеллируя к стандартному способу построения предельных гиббсовских состояний с помощью граничных условий. Действительно, фиксирование значений спиновых переменных в слое Г, прилегающем к границе области А, приводит гамильтониан /2.1/ к виду

$$\mathcal{H}_{\Lambda} (\sigma^{\Lambda \setminus \Gamma} \cup \tilde{\sigma}^{\Gamma}) = -\frac{J}{2|\Lambda|} \sum_{i,j \in \Lambda \setminus \Gamma} \sigma_i \sigma_j - \frac{J}{|\Lambda|} \sum_{i \in \Gamma} \sigma_i \tilde{\sigma}_j - \frac{J}{2|\Lambda|} \sum_{i,j \in \Gamma} \tilde{\sigma}_i \tilde{\sigma}_j .$$

$$10 \qquad j \in \Gamma$$

Это соответствует включению однородного, зависящего от объема системы, внешнего поля

$$n = \frac{J}{|\Lambda|} \sum_{i \in \Gamma} \tilde{\sigma}_{i} .$$
 (4.3/

Поэтому различный выбор асимптотик числа узлов $|\Gamma|$ в этом слое при $|\Lambda| \to \infty$ и конфигураций спинов $\tilde{\sigma}^{S}$ позволяет реализовать все три случая, рассмотренные выше при доказательстве леммы 3.2. В частности, при $\beta > \beta$, h=0 для любого m: $\langle \sigma_i \rangle_{=} \leq m \leq \langle \sigma_i \rangle_{+}$ можно построить ровно одно предельное равновесное состояние $\langle - \rangle$,такое, что m совпадает с намагниченностью $\langle \sigma_i \rangle$ в этом сосстоянии.

Настоящая работа была инициирована замечанием Н.Ангелеску о возможности построения для модели /2.1/ /при температуре ниже критической и нулевом поле/ состояний с промежуточной намагниченностью. Мы благодарны ему за постоянный интерес к работе и ряд полезных замечаний. Один из нас /B.A.3./ благодарен ИЯИЯЭ и ИМБ Болгарской академии наук за гостеприимство во время пребывания в этих институтах настоящая работа была завершена.

ПРИЛОЖЕНИЕ

Заметим, что четная и нечетная части /3.11/ для функции /3.8/ имеют вид

$$f_{\Lambda}^{+}(\beta, \vec{h}_{\Lambda}; y) = f^{+}(\beta, y) + \delta_{\Lambda}^{+}(\beta, \vec{h}_{\Lambda}; y) ,$$

$$f^{+}(\beta, y) = \frac{1}{2} Jy^{2} - \beta^{-1} \ln ch \beta Jy , \qquad /\Pi.1/$$

$$\delta^{+}_{\Lambda}(\beta, \overrightarrow{h}_{\Lambda}; y) = -\frac{1}{2\beta |\Lambda|} \sum_{j \in \Lambda} \ln[(1 + th^{2}\beta h_{j})(1 - th^{2}(\beta Jy) th^{2}(\beta h_{j}))],$$

$$f_{\Lambda}(\beta, \vec{h}_{\Lambda}; y) = -\frac{1}{\beta |\Lambda|} \operatorname{th} \beta J y \sum_{j \in \Lambda} \operatorname{th}(\beta h_{j}) \phi(\beta, \vec{h}_{\Lambda}; y),$$

$$\phi(\beta, \vec{h}_{\Lambda}; y) = \frac{1}{2 \operatorname{th}(\beta J y) \operatorname{th}(\beta h_{i})} \ln \frac{1 + \operatorname{th}(\beta J y) \operatorname{th}(\beta h_{j})}{1 - \operatorname{th}(\beta J y) \operatorname{th}(\beta h_{i})}$$

Так как нас интересует случай предела /3.10/, обозначим $\sup_{j \in \Lambda} |h_j| = \epsilon_{\Lambda}$. Тогда из равномерной ограниченности функций $\delta^+_{\Lambda}(\beta, \dot{h}_{\Lambda}; y)$ и

 $\phi(\beta,\vec{h}_{\Lambda};y)$ по у следует, что для $f_{\Lambda}^{\pm}(\beta,\vec{h}_{\Lambda};y)$ имеют место соотношения /3.12/, причем

$$|\delta^{+}_{\Lambda}(\beta,\vec{h}_{\Lambda};y)| \leq \frac{1}{2\beta|\Lambda|} \sum_{j \in \Lambda} th^{2}\beta h_{j} \leq \frac{1}{2}\beta \epsilon_{\Lambda}^{2} . \qquad /\Pi.2/$$

Если представить нечетную часть функции /3.8/ в виде

$$\mathbf{f}^{-}(\beta, \mathbf{\vec{h}}_{\Lambda}; \mathbf{y}) = -\frac{1}{|\Lambda|} \operatorname{th} \beta J \mathbf{y} \sum_{\mathbf{j} \in \Lambda} \mathbf{h}_{\mathbf{j}} + \delta_{\Lambda}^{-}(\beta, \mathbf{\vec{h}}_{\Lambda}; \mathbf{y}) ,$$

$$\delta_{\Lambda}^{-}(\beta, \mathbf{\vec{h}}_{\Lambda}; \mathbf{y}) = -\frac{1}{\beta |\Lambda|} \operatorname{th} \beta J \mathbf{y} \sum_{\mathbf{j} \in \Lambda} (\operatorname{th} \beta \mathbf{h}_{\mathbf{j}} - \mathbf{h}_{\mathbf{j}} \beta) \phi(\beta, \mathbf{\vec{h}}_{\Lambda}; \mathbf{y})$$

то при достаточно малых сд получаем оценку /см. /3.10/ и /3.12//:

$$|\delta_{\Lambda}^{-}(\beta,h;y)| \leq \frac{1}{3\beta m} \left(\frac{1}{2\epsilon_{\Lambda}} \ln \frac{1+\epsilon_{\Lambda}}{1-\epsilon_{\Lambda}}\right) \sum_{j \in \Lambda} (\beta h_{j})^{3} = \mathbb{C}(\epsilon_{\Lambda}^{2}) \frac{1}{|\Lambda|} \sum_{j \in \Lambda} h_{j}|.$$
/ $\Pi_{\circ}3/$

Поскольку оценки /П.1/-/П.3/ равномерны по переменной у и по конфигурациям внешнего поля $\{h_j\}_{j \in \Lambda}$, то удобно ввести параметры $\epsilon = \sup_{j \in \mathbb{Z}^d} |h_j|$ и $\rho_{\Lambda} = \sum_{j \in \Lambda} h_j$. Тогда вычисление интегралов

/3.9/ в пределе $\Lambda \uparrow \mathbf{Z}^d$ сводится к методу перевала для задачи с дополнительными параметрами ϵ и ρ_{Λ} :

$$I_{1}(\vec{h}_{\Lambda}) = \int dy \left[(th \beta Jy)^{|T|} + |T| C(\epsilon) \right] \exp \left\{ -\beta |\Lambda| \left[f^{+}(\beta; y) + C(\epsilon^{2}) \right] \right\} + C(\epsilon^{2}) \left[th \beta Jy + C(\epsilon^{2}) \right] \right\}, \qquad (\Pi, 4)$$

$$I_{2}(\vec{h}_{\Lambda}) = \int dy \exp \left[-\beta |\Lambda| \left[f^{+}(\beta, y) + C(\epsilon^{2})\right] \left\{\exp \left[\beta \rho_{\Lambda} \left[th\beta Jy + C(\epsilon^{2})\right]\right]\right\}.$$

Асимптотика интегралов $I_{1,2}(h_{\Lambda})$ при $\Lambda^{\dagger} Z^{d}$ равномерна по параметрам ϵ и $\rho_{\Lambda}^{/25/}$, поэтому можно перейти к соответствующим пределам по ϵ и ρ_{Λ} , характеризующим конфигурации внешнего поля. В результате получаем

$$\lim_{\epsilon \to 0} \lim_{\Lambda \uparrow \mathbf{Z}^{d}} |\mathbf{z}| = \lim_{\substack{f \to 0 \\ \Lambda \uparrow \mathbf{Z}^{d}}} \int_{\Lambda \uparrow \mathbf{Z}^{d}} |\mathbf{z}| = \frac{1}{1} \lim_{\substack{f \to 0 \\ f \to 0 \\ f \to 0 \\ f \to 0 \\ -\infty}} \int_{-\infty}^{+\infty} |\mathbf{z}| |\mathbf{z}| = \frac{-\beta |\Lambda| f(\beta, y)}{e^{\beta \rho_{\Lambda} th \beta J y}} = \frac{\beta \rho_{\Lambda} th \beta J y}{e^{\beta \rho_{\Lambda} th \beta J y}}$$

Так как $|\Lambda|^{-1} \rho_{\Lambda} \leq \epsilon$, то предел в /П.5/ определяется перевальными точками функции f⁺(β , y) и зависит от асимптотики параметра ρ_{Λ} /3.13/. Эта зависимость и обсуждается при доказательстве лем-мы 3.1.

ЛИТЕРАТУРА

- Минлос Р.А. Функциональный анализ и его приложения, 1976, 1, №2, с. 60-73.
- Минлос Р.А. Функциональный анализ и его приложения, 1967, 1, №3, с. 40-53.
- 3. Добрушин Р.Л. Теория вероятностей и ее применения, 1969, 13, №2, с. 201-229.
- Добрушин Р.Л. Теория вероятностей и ее применения, 1970, 15, №3, с. 469-497.
- Lanford O.E., Ruelle D. Commun.Math.Phys., 1968, 13, No 3, p. 194-215.
- 6. Ruelle D. Commun Math.Phys., 1970, 18, No 2, p. 127-159.
- 7. Боголюбов Н.Н., Хацет Б.И. ДАН СССР, 1949, 66, №3, с. 321-324.
- Боголюбов Н.Н., Петрина Д.Я., Хацет Б.И. Теорет. и матем. физика, 1969, 1, №2, с. 251-274.
- 9. Загребнов В.А. Теорет. и матем. физика, 1982, 51, №3, с. 389-402.
- Добрушин Р.Л. Функциональный анализ и его приложения, 1968, 2, №4, с. 44-57.
- 11. Simon B. Commun.Math.Phys., 1979, 68, No 2, p. 183-185.
- 12. Klein D. Commun.Math.Phys., 1982, 86, No 2, p. 227-246.
- 13. Aizenman M. Commun.Math.Phys., 1980, 73, No 1, p.83-94.
- Higychi Y. In: Random Fields, Colloquia Mathematica Sociatatis Janos Bolyai, 1981, 27, vol.1, p. 517-534.
- Боголюбов Н.Н. Избранные труды в трех томах. "Наукова думка", Киев, 1971, т.3, с. 174-243.
- 16. Ellis R.S., Newman Ch.M. J.Stat.Phys., 1978,19, No 2, p. 149-161.
- Боголюбов Н.Н. /мл./ и др. Метод аппроксимирующего гамильтониана в статистической физике. София, Изд-во БАН, 1981, гл. Ш, §1.
- Гихман И.И., Скороход А.В. Введение в теорию случайных процессов. "Наука", М., 1977, гл.П, §2.
- 19. Wagner H. Z.Physik, 1966, 195, No 3, p. 273-299.
- Боголюбов Н.Н. /мл./ Метод исследования модельных гамильтонианов. "Наука", М., 1974.
- 21. Гриб А.А., Дамаскинский Е.В., Максимов В.М. УФН, 1970, 102, №4, с. 587-620.
- 22. Bogolubov N.N. (jr.). J.Math.Phys., 1973, 14, No 1, p.79-83.
- Ruelle D. Thermodynamic Formalism. Reading. Mass.: Addison-Wesley, 1978.
 13

- 24. Малышев В.А. Элементарное введение в математическую физику бесконечночастичных систем. ОИЯИ, Р17-83-363, Дубна, 1983.
- 25. Федорюк М.В. Метод перевала. "Наука", М., 1977, гл. II, §2.

СООБЩЕНИЯ, КРАТКИЕ СООБЩЕНИЯ, ПРЕПРИНТЫ И СБОРНИКИ ТРУДОВ КОНФЕРЕНЦИЙ, ИЗДАВАЕМЫЕ ОБЪЕДИНЕННЫМ ИНСТИТУТОМ ЯДЕРНЫХ ИССЛЕ-ДОВАНИЙ, ЯВЛЯЮТСЯ ОФИЦИАЛЬНЫМИ ПУБЛИКАЦИЯМИ.

Ссылки на СООБЩЕНИЯ и ПРЕПРИНТЫ ОИЯИ должны содержать следующие элементы:

- фамилии и инициалы авторов,
- сокращенное название Института /ОИЯИ/ и индекс публикации,
- место издания /Дубна/,
- год издания,
- номер страницы /при необходимости/.

Пример:

1. Переушин В.Н. и др. ОИЯИ, Р2-84-649, Дубна, 1984.

Ссылки на конкретную СТАТЬЮ, помещенную в сборнике, должны содержать:

- фамилии и инициалы авторов,
- заглавие сборника, перед которым приводятся сокращенные слова: "В кн."
- сокращенное название Института /ОИЯИ/ и индекс издания,
- место издания /Дубна/,
- год издания,
- номер страницы.

Пример:

Колпаков И.Ф. В кн. X1 Международний симпозиум по ядерной электронике, ОИЯИ, Д13-84-53, Дубна, 1984, с.26.

Савин И.А., Смирнов Г.И. В сб. "Нраткие сообщения ОИЯИ", № 2-84, Дубна, 1984, с.3. Принимается подписка на препринты и сообщения Объединенного института ядерных исследований.

Установлена следующая стоимость подписки на 12 месяцев на издания ОИЯИ, включая пересылку, по отдельным тематическим категориям:

индекс	ТЕМАТИКА	Цена на	под	писн	ан
1.	Экспериментальная физика высоких энергий	10	p.	80	коп.
2.	Теоретическая физика высоких энергий	17	р.	80	коп.
3.	Экспериментальная нейтронная физика	4	p.	80	коп.
4.	Теоретическая физика низких энергий	8	p.	80	коп.
5.	Математика	4	p.	80	коп.
6.	Ядерная спектроскопия и радиохимия	4	p.	80	коп.
7.	Физика тяжелых ионов	2	p.	85	коп.
8.	Криогеника	2	р.	85	коп.
9.	Ускорители	7	p.	80	коп.
10.	Автоматизация обработки экспериментальных данных	7	р.	80	KON.
11.	Вычислительная математика и техника	6	р.	80	kon.
12.	Химия	1	р.	70	коп.
13.	Техника физического эксперимента	8	p.	80	KOR.
14.	Исследования твердых тел и жидкостей ядерными методами	1	p.	70	коп.
15.	Экспериментальная Физика ядерных реакций при низких энергиях	1	p.	50	коп.
16.	Дозиметрия и физика защиты	1	p.	90	коп.
17.	Теория конденсированного состояния	6	p.	80	кол.
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники	2	2 p.	35	коп.
19.	Биофизика		I p.	20	коп.

Подписка может быть оформлена с любого месяца текущего года.

По всем вопросам оформления подписки следует обращаться в издательский отдел ОИЯИ по адресу: 101000 Москва, Главпочтампт, п/я 79. Бранков Й.Г., Загребнов В.А., Тончев Н.С. 17-84-864 Описание предельных гиббсовских состояний для модели Кюри-Вейсса-Изинга

Метод квазисредних использован для описания предельных равновесных состояний ферромагнитной модели Кюри-Вейсса-Изинга в нулевом магнитном поле. Показано, что они трансляционно инвариантны и являются линейными выпуклыми комбинациями двух крайних точек /чистых фаз/.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1984

Перевод Т.Ю.Думбрайс

Brankov J.G., Zagrebnov V.A., Tonchev N.S. Limit Gibbs States for Curie-Weiss-Ising Model

We give a complete description of the limit equilibrium states for Curie-Weiss-Ising in zero magnetic field by means of a generalized quasiaverage method. All of them are shown to be translation-invariant and can be written only as a convex combination of two extremal states (pure phases).

17-84-864

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1984