

1964

1684

Беритерия нейтреннем емзик

А.В. Громов, А.П. Кобзев, К. Недведюк, С.С. Паржицкий, В.И. Салацкий, И.В. Сизов, В.И. Фурман

ИССЛЕДОВАНИЕ РЕАКЦИЙ ТРИТИЯ С УГЛЕРОДОМ А.В. Громов, А.П. Кобзев, К. Недведюк, С.С. Паржяцкий, В.И. Салацкий, И.В. Сизов, В.И. Фурман

ИССЛЕДОВАНИЕ РЕАКЦИЙ ТРИТИЯ С углеродом

12 ų, ĩ 1.5 TERA

on e/rese

Настоящая работа является продолженнем ранее выполненных исследований реакций трития с углеродом.

В прежних публикациях $^{/1,2/}$ были изложены результаты измерений в диапазоне 0,3 - 1,2 Мэв. В дальнейшем появилась возможность продолжить эти исследования до энергии 1,8 Мэв, а также дополнить их измерениями угловых распределений a частиц из реакции $C^{12}(t, a) B^{11}$ и упругого расседния ядер трития на углероде.

Основной целью работы явилось получение детальных экспериментальных данных по различным каналам реакцие в доступном диацазоне энергий для их дальнейшего теоретического анализа.

Техника эксперимента

Пучок новов трития, ускоренных на электростатическом генераторе, после прохождения магнитного акализатора и фокусирующих линз направлялся в камеру с твердой углеродной мишенью. Применялись мишени без подложки толщиною 15-25 миг/см², полученные испарением графита в вакууме.

Для измерения относительного выхода реакции в камеру было установлено два полупроводниковых детектора под углом 90⁰ относительно падающего пучка нонов трития.

Один из детекторов, изготовленный из кремния *р* -типа, компенсированного литнем, использовался для регистрации претонов из реакции $C^{12}(t, p)C^{14}$ и группы *а* -частиц из реакции $C^{12}(t, a_0)B^{11}$. Второй цоверхностно-барьерный кремниевый детектор применялся для регистрации двух групп *а* -частиц из реакции $C^{12}(t, a)B^{11}$ Импульсы от обоих детекторов усиливались специальными усилителями с низким уровнем шумов и подавались на два 128-канальных амплитуциых анализатора.

Измерення относительного выхода реакций были выполнены в диапазоне энергий 0,6-1,8 Мэв. Полученные кривые были нормированы на ранее измеренные на газовой мишени абсолютные значения дифференциальных сечений /1-2/.

В измерениях угловых распределений один из детекторов использовался в качестве монитора, второй - вращался вокруг мишени в пределах углов 0-165[°] л.с. Применение двух типов детекторов позволяло измерять одновремение угловые распределения цротонов и группы *а* -частиц, либо *а* - и *а*, -частиц.

В измерениях угловых распределений протонов под малыми углами перед детектором устанавливалась алюминиевая фольга, тормозящая ядра трития, упруго рассеянные на углеродной мишени. Такой метод непригоден при регистрации а -частиц, поэтому в области малых углов возникали трудности в отделении а -частиц от рассеянных ядер трития. По этой причине область малых углов для группы а -частиц ограничена углом ~ 20° л.с. и для группы а, -частиц - углом ~ 35-40° л.с.

Результаты измерений

На рис. 1 приведена зависимость дифференциального сечения реакции $C^{12}(4p)C^{14}$ от энергин бомбардирующих частиц. Кроме ранее наблюдавшихся максимумов при E_4 = 850 и 1117 кэв, обнаружен максимум при энергии 1340 кэв. Угловые распределения протонов слабо меняются в районе этого максимума, и в полном сечении реакции резонанс не выражен столь четко, как в дифференциальном сечении. Появление максимума в дифференциальном сечении можно объяснить проявлением уровня составного ядра N^{15} .

На рис. 2 дана зависимость от энергии дифференциального сечения реакции $C^{12}(t,a_0)B^{11}$ и на рис. 3 – реакции $C^{12}(t,a_0)B^{11}$ для угла 90° л.с. В случае реакции $C^{12}(t,a_0)B^{11}$ проявляется широкий резонанс при энергии 1320 кэв как в дифференциальном, так и полном сечении реакции. Положение этого резонанса на 20 кэв отличается от резонанса при 1340 кэв в протонном канале. Различие в ширинах этих уровней, а также тот факт, что a – частицы и протоны регистрировались одновременно одним и тем же детектором и ошибка в определении относительного положения резонансов, связанная с неточностью калибровки энергии, тем самым исключается, повидимому, указывают на то, что в p_0 и a_0 – каналах проявляются два уровня составного ядра N^{15} с энергией возбуждения 15,92 и 15,91 Мэв соответственно.

В реакция $C^{12}(t,a_1)B^{11^*}$ наблюдается широкий максимум при $E_t \sim 1400$ кэв. На рис. 4,5,6,7 даны угловые распределения протонов из реакции $C^{12}(t,p)C^{14}$, на рис. 8,9,10 - угловые распределения группы a_0 -частиц и на рис. 11,12,13 группы a_1 - частиц из реакций $C^{12}(t,a_1)B^{11}$ в $C^{12}(t,a_1)B^{11^*}$.

Кривые на рис. 4-13 приведены по значениям дифференциальных сечений, вычисленных по формуле $f(\Omega) = \frac{1}{k^2} \sum_i a_i P(\cos \theta)$ -разложения угловых распределений по полиномам Лежандра. Пунктир указывает направление экстраполяции к значениям дифференциальных сечений под 0° и 180°, вычисленным по этой формуле.

Чтобы проследить характер изменений угловых распределений продуктов реакций при прохождении резонансов, в районе резонансов угловые распределения измерялись для нескольких (близких к резонансной) энергий ядер трития. Все угловые распреде-

лення несимметричны относительно 90° с.ц.и. и сильно зависят от энергии бомбардируюших частиц.

В экспериментах при измерениях угловых распределений выход а -частиц или протонов под заданным углом heta нормировался на отсчеты монитора, установленного под углом 90° л.с. Дифференциальное сечение о лаб. в относительных единицах определялось по формуле

$$\sigma_{\text{na6.}} = \frac{N_{\text{пика}}}{N_{\text{мон}}} \eta , \qquad (1)$$

N - число импульсов, соответствующих протонам или а -частицам из изгде N - число отсчетов моннтора, мон. мерений спектра амплитудным анализатором, п – поправочный коэффициент, учитывающий просчеты анализатора, обладающего конечным мертвым временем. Абсолютная среднеквадратичная ощибка в определении σ. вычислялась по формуле

$$\Delta \sigma_{\Pi A G} = \frac{\eta}{N_{MOH}} \sqrt{\Delta^2 + N_{\Pi H K A}^2 + N} \qquad \frac{\left(\Delta \eta\right)^2}{\eta^2} + \frac{N^2}{N_{MOH}^2} \qquad (2)$$

Здесь Д -ошибка в выделении на спектре зарегистрированных импульсов, импульсов от частиц данной реакции.

Для определения просчетов импульсы от вращающего детектора после их усиления регистрировались по двум каналам. "Медленный" канал включал амплитудный ана∽ лизатор, и "быстрый" канал - дискриминатор и пересчетную схему. Порог дискриминатора, согласованный с каналом анализатора, устанавливался так, чтобы пересчетная схема регистрировала импульсы, приходящие в определенное число каналов анализатоpa,

Отношение числа отсчетов пересчетной схемы к числу импульсов, зарегистрированных анализатором в соответствующем количестве каналов, давало коэффициент просчетов. При использовании анализатора со средним "мертимым временем" порядка 100µсек поправка на просчеты только при измерениях с -частиц под малыми углами достигала 10-12%, в остальных случаях она составляла 0,5-1%. Статистические ошибки в N не превышали 1%. Статистика отсчетов N пика определялась определении выходом реакции под данным углом. Для реакции C¹²(t, a₀)B¹¹ составляла 1,5-2%, для реакций $C^{12}(t,p)C^{14}$ и $C^{12}(t,a,)B^{11}$ 1-1,5% и 2-3% соответственно.

Во всех измереннях угловых распределений группы а, -частиц значительные экспериментальные ошибки определялись главным образом неопределенностью выделении пика. То же самое имело место и в случае а - канала при малых углах. Переход из лабораторной системы к системе центра инерции осуществлялся по формулам

$$Cos \ \Omega_{\mu\mu} = Cos \theta_{na6} \sqrt{1 - \gamma^2 sin^2 \theta_{na6}} - \gamma sin^2 \theta_{na6}'$$
(3)

где

$$\gamma = \sqrt{\frac{E_{RAG}m_{I}m_{I}}{m_{2}(m_{II} E_{RAG} + MQ)}},$$
(4)

$$\sigma(\Omega)_{\rm II, II} = \frac{1 + \gamma \cos \Omega_{\rm II, II}}{(1 + \gamma^2 + 2\gamma \cos \Omega_{\rm II, II})^{3/2}}$$

Здесь Ω ци - угол вылета регистрируемой частицы в системе ц.и.,

- Е энергия падающей частицы в Мэв,
- т, масса падающей частицы,
- т,, масса ядра мишени,
- л, масса регистрируемой частицы,
- т, масса ядра-продукта,

$$M = m_1 + m_2 = m_1 + m_{11}$$

Q — энергия реакции в Мэв,

- σ (Ω)_{ц н} дифференциальное сечение в относительных единицах (с.ц.н.) для угла Ω(с.ц.н.).
- $\sigma(\theta)$ дифференциальное сечение в относительных единицах (л.с.) для угла θ (л.с.).

Для перевода дифференциальных сечений в относительных единицах к сечениям, выраженным в миллибарнах на стерадиан, использовались кривые дифференциальных сечений для угла 90⁰ л.с. Нормировочный коэффициент *N* определялся из решения по методу наименьших квадратов следующей системы уравнений :

 $N_{1}\sigma_{1}(\Omega_{i}) = f(\Omega_{i}),$ $N_{2}\sigma_{2}(\Omega_{i}) = f(\Omega_{i}),$ $N_{n}\sigma_{n}(\Omega_{i}) = f(\Omega_{i}),$ $\sigma(\Omega_{o}) = f(\Omega_{o}),$ (5)

- где л число различных серий измерений угловых распределений, выполненных при одной и той же энергии падающих частиц с отличающимном условиями эксперимента (например, измерения с разной геометрней),
 - N нормировочный множитель для данной серии измерений,
 - σ(Ω_i)- дифференциальное сечение в относительных единицах для данного угла Ω, (в с.ц.н.).
- $f(\Omega) = \frac{1}{k^2} \sum a_i p_i (\infty e \Omega)$ представление угловых распределений в виде разложения по полиномам Лежандра (теоретическое значение дифференциального сечения в мбар/стер), k - волновое число, Ω_o - угол в системе ц.и., соответствующий углу 90° л.с.,

σ(Ω₀) - дифференциальное сечение в миллибарнах на стераднан (в с.ц.и.), соответствующее дифференциальному сечению для угла 90 л.с.

В записи системы уравнений (5) подразумевается, что входящие в нее величины сечений имеют ошибки. Нормировочные множители N и коэффициенты разложения по полиномам Лежандра выбираются по методу наименьших квадратов их уклонений. Среднеквадратичные ошибки нормированных сечений $f(\Omega)$ определяются выражением

$$\Delta f_{\text{reop.}} = \sqrt{\left(\Delta f N\right)^2 + \left(\Delta N f\right)^2} , \qquad (7)$$

где ∆f - ошибка сечения, полученная из метода наименьших квадратов (м.и.к.), ∆N - ошибка нормировочного множителя, взятая также из м.н.к.

Нормированное экспериментальное значение дифференциального сечения $\sigma(\Omega)_{\text{эксп.}}^{\text{норм.}}$ определяется произведением $\sigma(\Omega)_{\text{эксп.}}^{\text{отн.ед.}}$ на нормирующий множитель N, а среднеквадратичная ошибка для $\sigma(\Omega)_{\text{норм.}}^{\text{норм.}}$ дается выражением эксп.

$$\Delta \sigma_{\text{secn}} = \sqrt{\left(\Delta N \sigma^{\text{OTH},\text{ed}}\right)^2 + \left(N \Delta \sigma^{\text{OTH},\text{ed}}\right)^2} . \tag{8}$$

Полные сечения реакции определялись по формуле

\$

$$\sigma_{\text{полн}} = \frac{4\pi}{k^2} a_0 , \qquad (9)$$

получаемой после интегрирования кривой *f*(Ω) , описывающей измеренные угловые распределения в виде разложения по полиномам Лежандра. Интегрирование ведется в пределах углов 0-180°. Все вычисления были выполнены на электронной счетной машиие.

В таблицах I, II, III даны значения коэффициентов разложения угловых (распределений по полиномам Лежандра для соответствующих каналов реакции. (все коэффициенты поделены на k^2). На рис. 14 показана зависимость полных сечений от энергии бомбардирующих частиц.

Для угла 135⁰ л.с. были измерены дифференциальные сечения упругого рассеяния ядер трития на углероде в диапазоне энергий 900-1700 кэв. В этой области энергий не обнаружено каких-либо аномалий, свидетельствующих о резонансном рассеянии. По абсолютной величине дифференциальное сечение равно сечению резерфордовского рассеяния при *E*, = 900 кэв и составляет 25% от него при *E*, = 1700 кэв.

Обсуждение результатов

Наиболее полная и важная информация, которую необходимо извлечь из анализа угловых распределений продуктов ядерных реакций трития с углеродом это нахождение матричных элементов S -матрицы ($\ell' r's'/S/\ell a$;), т.е. тех параметров, ко-

торые определяются не кинематикой, а специфическими особенностями процесса. Однако из разложений измеренных угловых распределений по полиномам Лежандра и сравнения с формулой для дифференциального сечения /3/

$$\frac{d\sigma}{d\Omega} = \frac{\lambda^2}{(2l_1+1)(2l_1+1)L=0} \sum_{L=0}^{\infty} B_L P_L(\cos\theta)$$
(10)

не удается сделать однозначный выбор матричных элементов, обеспечивающих описание угловых распределений различных каналов реакции. Неоднозначность обусловлена тем, что матричные элементы содержат большое число действительных параметров, а исследование угловых распределений дает число уравнений значительно меньше числа неизвестных параметров. Исследования реакций с поляризованными частицами могли бы дать дополнительные уравнения для определения параметров. Однако таких экспериментов пока иет. Исходя из этого, были предприняты попытки найти некоторые параметры возбужденных состояний промежуточного ядра N¹⁵ (спин, четность, энергия возбуждения), соответствующих отчетяивым резонансам в реакциях трития с углеродом.

Несмотря на обособленность этих резонансов и малую энергию бомбардирующих частиц, форма угловых распределений и характер их зависимости от энергии не могут быть описаны моделью изолированного уровня составного ядра.

На основе общей теории⁽³⁾ угловые распределения реакции $C^{12}(t,a_1)B^{11}^*$ были проанализированы в предположении интерференции двух уровней составного ядра N^{13} противоположной четности. Для трех энергий в районе резонанса 1,1 Мэв угловые распределения удовлетворительно описываются только комбинацией спинов 1/2 и 5/2. Причем основной вклад в резонансе дает спин 1/2. Таким образом, уровню N^{16} с энергией возбуждения 15,74 Мэв можно приписать значение спина, равное 1/2. Из кинематических соображений более вероятно предположить отрицательную четность. Такой анализ будет продолжен и для других каналов реакции.

Наблюдаемый при $E_{+} \sim 1.4$ Мэв широкий максимум в дифференциальном и полном сечениях реакции $C_{-1}^{12}(t,a_{1})B_{-11}^{11}$, по-видимому, связан с группой близко расположенных уровней N^{15} в области энергий возбуждения ~ 16 Мэв^{/4/}. Данные настоящей работы подтверждают обнаруженные в реакции $B_{-1}^{11}(a,n)N_{-}^{14}$ уровни ядра N_{-}^{15} с энергией возбуждения 15,92 и 15,93 Мэв. Небольшое расхождение по энергетической шкале находится в пределах ошибок измерений энергия бомбардирующих частип. Из резонансов, наблюдавшихся в реакции $C_{-1}^{12}(t,n)N_{-}^{14}$ /5/, по-видимому, только резонанс при $E_{+} = 1.310$ Мэв можно считать аналогом резонанса при

 $E_t = 1,320$ Мэв в $a_0 = канале.$ Остальные три резонанса в области энергии от 1,3 до 1,8 Мэв в реакции $C^{12}(t,n) N^{14}$ в исследуемых нами каналах не про-являются.

Уровень с энергией возбуждення 15,74 Мэв наблюдается в наших экспериментах и в работе^{/6/} для a_1 -канала. В той же работе^{/6/} нет указаний на резонанс при $E_1 = 1,1$ Мэв в протонном канале. Полные сечения реакции $C^{12}(t,a_0)B^{11}$ значительно превышают сечения реакций $C^{12}(t,p)C^{14}$ и $C^{12}(t,n)N^{14}$ /5/. Это обстоятельство, а также устойчивость вида угловых распределений a_0 -частиц в широком интервале энергий может указывать на заметный вклад прямых процессов. Однако окончательное суждение о наличии такого механизма может быть получено лишь путем детального сравнения экспериментальных данных с расчетами по методу искаженных воли и по резонансной теории.

Сопоставление данных настоящей работы $c^{/6/}$ показывает общее совпадение хода кривых дифференциальных и полных сечений и вида угловых распределений. В то же время остается отмечавшееся ранее^{/1/} расхождение в абсолютных значениях диффереициальных и полных сечений реакции $C^{12}(t,p)C^{14}$, значительно превышающее возможные экспериментальные ошибки.

В заключение авторы считают своим долгом выразить благодарность Ф.Л.Шапиро, Г.М. Осетинскому за обсуждение полученных результатов и группе обслуживания электростатического генератора в составе И.А. Чепурченко, Е.С. Смирнова, М.В. Савенковой, Н.Н. Счетчикова.

Литература

1. Б. Кюн, В.И. Селецкий, И.В. Сизов. ЖЭТФ, <u>43</u>, 1660 (1962).

2. К. Недведюк, В.И. Салацкий, И.В. Сизов. ЖЭТФ, <u>44</u>, 1450 (1963).

3. J.M.Blatt, L.C.Biedenham. Rev. Mod. Phys., 24, 258 (1952).

4, F.Ajrenberg-Selove, T.Lauritsen. Nucl. Phys., 11, 179 (1959).

5. П.И. Вацет, Л.Я. Колесников, С.Г. Танапетян. ЖЭТФ, 40, 1257 (1961).

9

6. G.D. Gutsche, H.D.Holmgren, L.M. Cameron, R.L. Johnston. Phys. Rev., 125, 648 (1962).

Рукопись поступила в издательский отдел 18 мая 1964 г.

Е, Мэв	a ₀	e,	a,	۰,	•,	•,	٩,	a ,	۰,
1,10	1,05I ±0,010	-0,307 ±0,017	1,601 ±0,020	-0,45I ±0,028	0,092 ±0,027	0,033 ±0,027	-0,099 ±0,037		
1,12	1,037 ±0,039	-0,359 ±0,019	I,528 ±0,048	-0,407 <u>+</u> 0,019	0,058 ±0,010	0,019 ±0,013			
1,23	0,930 ±0,035	-0,518 ±0,035	1,561 ±0,053	-0,561 ±0,026	-0,140 ±0,009				_
1,30	1,179 ±0,088	-0,664 ±0,058	1,95I ±0,042	-0,490 ±0,025	0,108 ±0,017	-0,044 ±0,016	0,022 ±0,014		_
1,31	1,190 ±0,017	-0,628 ±0,025	1,892 ±0,025	-0,463 ±0,017	+0,074 ±0,017	0,033 ±0,017			_
I,34	1,325 ±0,040	-0,650 ±0,055	2,318 ±0,049	-0,527 ±0,033	0,615 <u>+</u> 0,019	0,035 ±0,016	0,002 ±0,014		_
1,36	I,423• ±0,429	-0,717 ±0,218	2,433 ±0,740	-0,506 ±0,153	0,418 ±0,128	-0,185 ±0,059	0,095 ±0,033	-0,07I ±0,026	
I,42	I,704 ±0,030	-0,403 ±0,053	2,464 ±0,053	0,2I3 ±0,030	0 ,046 <u>+</u> 0,030				
I,54	2,65I ±0,I33	0,238 ±0,028	3,162 ± ^{0,154}	1,910 ±0,091	0,399 ±0,028	-0,055 ±0,090	0,056 ±0,033		
1,58	2,902 ±0,103	0,233 ±0,082	3,292 ±0,055	2,457 <u>+</u> 0,034	0,493 ±0,041	0,110 ±0,034	0 ,04 I <u>+</u> 0,034		
I,64	3,192 <u>+</u> 0,165	0,767 ±0,040	3,225 ±0,152	3,186 <u>+</u> 0,152	0,542 <u>+</u> 0,033	0,073 ±0,040	0,040 <u>+</u> 0,033	0,112 ± ^{0,046}	
1,67	3,520 ±0,130	0,998 ±0,078	3,500 ±0,045	3,779 ±0,052	0,953 ±0,065	0,188 ±0,045	0,097 ±0,058		
1,71	4,038 <u>+</u> 0,151	1,035 <u>+</u> 0,088	3 ,987 <u>+</u> 0,057	3,495 <u>+</u> 0,050	0,883 ±0,057	0,271 ±0,050	0,126 ±0,057		
1,79	4,550 ±0,193	0,682 ±0,163	5,080 ±0,199	3,029 ±0,181	I,340 ±0,109	0,457 ±0,068	0,151 ±0,074	0,077 ±0,069	0,115 ±0,074

Таблица П

E, Mas	Peexans $C^{22}(t, a_g)B^{12}$											
	۰,	e 1	a ,	و ^م	*.	a 5	e ,	۰,	°,	۹,	a ₁₀	a
1.23	8,720	3,909	7,003	7,345	-I,104	-I,I48	-0,736					
	±0,202	±0,228	±0,219	<u>+</u> 0,184	±0,184	±0,131	<u>+</u> 0,II4			-		
1,29	11,812	7,464	II,644	II,644	0,163	2,002	0,596					
	<u>+</u> 0,419	±0,268	±0,25I	±0,25I	±0,243	±0,235	±0,209					
1,32	I2.425	4.316	9,482	10.218	-4.954	-3,654	-1,815	0,474				
	±0,245	±0,409	±0,572	<u>+</u> 0,654	<u>+</u> 0,654	±0,490	±0,368	±0,22I				
1,36	II,300	2,507	7,639	5,833	-6,350	-3,740	-1,926	-0,589		-		
	±0,239	±0,239	±0,239	±0,302	<u>+</u> 0,342	<u>+</u> 0,3I0	±0,279	<u>+</u> 0,191				
I,4I	II,557	I,684	11,710	7,347	-1,607	-0,6%	-0,475					
	±0,153	±0,306	<u>+</u> 0,306	±0,506	±0,383	±0,230	<u>+</u> 0,2I4			_		
1,45	13,192	-0,306	14,756	3,920	-1,207	-I,535	-0,075			-		
	<u>+</u> 0,149	±0,604	<u>+</u> 0,373	<u>+</u> 0,375	±0,298	<u>+</u> 0,3I3	<u>+</u> 0,320					
Ì,54	I4,385	-1,053	13,894	I,930	-1,768	-2,042	-0,702	-0,688	-0,351	-		
	±0,210	<u>+</u> 0,568	<u>+</u> 0,2I0	±0,330	±0,267	±0,316	<u>+</u> 0,316	±0,239	±0,232	_		
1,63	18.053	-0.623	12,530	1,604	-0,849	-1,255	0,365	-0,438	-0,431			
	±0,464	±0,709	<u>+</u> 0,265	±0,358	<u>+</u> 0,285	±0,325	<u>+</u> 0,35I	<u>+</u> 0,272	±0,252			
	21,395	0,739	I2,593	0,263	-I,49I	-1,009	0,655	-1,6%		-		
1,68	±1,092	<u>+</u> 0,154	±0,642	±0,257	±0,321	±0,373	±0,360	±0,379				
I. 74	24,786	9,480	12,145	0,124	I,270	2,720	0,812	2,057	1,531	3,259	I,803	2,212
* 1 1 T	<u>+</u> I,239	<u>+</u> 0,6I3	±0,806	±0,688	<u>+</u> 0,737	<u>+</u> 0,905	<u>+</u> 0,874	±0,979	<u>+</u> 0,948	<u>+</u> I,239	±0,756	<u>+</u> 0,613
T 900	26,837	16,750	I2,788	2.594	-5,890	I.015	-0.304	-0.606				
1,000	<u>+</u> I,32I	<u>+</u> I,02I	<u>+</u> 0,720	<u>+</u> 0,438	±0,528	±0,552	±0,512	<u>+</u> 0,462				

Ξ

		·	Peakung C	(t, a,)B ¹¹	r		
Е, Мав	* o	a ;	۰,	а,	a,	· * * j	
0,67	0 ,202 <u>+</u> 0,0I5	-0,066 ±0,013	-0,006 ±0,018	0,178 ±0,016		*****	
0,77	0,211 <u>+</u> 0,028	-0,103 ±0,084	-0,055 ±0,041	0,107 ±0,035	-0,066 ±0,025		
0,86	0,352 ±0,025	0,038 ±0,000	0,226 ± 0,025	0,176 ±0,025	-0,126 ±0,013		
0,96	0,478 ±0,056	-0,146 ±0,124	0,203 <u>+</u> 0,146	0,070 ±0,135	-0,293 ±0,101	0,070 ±0,054	
I,06	0,962 ±0,082	0,287 ±0,123	0,450 ±0,143	0,737 <u>+</u> 0,123	0 ,082 <u>+</u> 0,092		
1,10	0 ,21 6 ±0,011	-0,032 ±0,014	-0,008 ±0,018	0,131 <u>+</u> 0,014	-0,03I ±0,0I7		
I,I5	0,0759 ±0,0075	0,0008 ±0,0187	0,042I ±0,0225	0,1152 ±0,0 2 43	0,0496 ±0,0150	0,0328 ±0,0122	
I,23	0,0808 ±0,0220	0,0070 <u>+</u> 0,0554	0,0097 ±0,0685	0,1089 ±0,0659	0,0404 ±0,043I	0,0413 ±0,0272	
I,4I	0,158 ±0,015	0,022 <u>±</u> 0,017	0,084 ±0,000	0,03I ±0,025	0,173 ±0,013	0,062 ± ⁰ ,022	
I,57	0,130 ±0,013	0,014 ±0,017	-0,010 ±0,028	-0,113 ±0,023	0,074 ±0,0 20	· · · · ·	

Таблица III

Рис. 2. Дифференциальные сечения реакции $C^{12}(t, a_0) B^{11}$ под углом 90° в л.с.

Рис. 3. Дифференциальные сечения реакции $C^{12}(t,a_1)B^{11}$ под углом 90° в л.с.

5

Рис. 4. Угловые распределения протонов из реакции С¹²(t, p)С¹⁴ (угол в с.ц.н.). Шкала сечений каждой кривой поднята относительно предыдущей на 0,75 мбарна.

Рис. 5. Угловые распределения протонов из реакции С¹²(t,p)С⁴ (угол в с.п.н.). Шкала сечений каждой кривой поднята относительно предыдущей на 0,75 мбарна.

19

ų

Рис. 8. Угловые распределения а -частициз реакции С¹² (t, a) В¹¹ (угол в с.ц.и.). Шкала сечений каждой кривой поднята относительно предыдущей на 5 мбарн.

Рис. 9 Угловые распределения а -частиц из реакции С¹²(t, a₀).В¹¹ (угол в с.ц.и.).

Ģ

Рис. 10. Угловые распределения а -частиц из реакции С¹²(4a₀)B¹¹ (угол в с.ц.н.).

Рис.

ę

11. Угловые распределения а -частиц из реакции С¹²(t,a₁)В^{11*} (угол в с.ц.и.).

Рис. 12. Угловые распределения а -частиц из реакции С¹²(t, a₁)В^{11*} (угол в с.ц.н.).

Рис. 13. Угловые распределения а -частициз реакции С¹²(t, a₁)В^{11*} (угол в с.ц.и.).

ų

Рис. 14. Полные сечения реакций $C^{12}(t,p)C^{14}$, $C^{12}(t,a_j)B^{11}$ в $C^{12}(t,a_j)B^{11}$. Значения получены путем интегрирования кривых вида $f(\Omega) = \frac{1}{k_j}\sum a_i P_j(\infty s\Omega)$, описывающих экспериментальные значения дифференциальных сечений в виде разложения по полиномам Лежандра.