

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

B79

16-89-353

1989

И.Воточкова*, В.П.Зорин, А.Г.Молоканов, Ф.Спурны*

ИЗМЕРЕНИЕ ДОЗИМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК ТЕРАПЕВТИЧЕСКИХ ПРОТОННЫХ ПУЧКОВ

*Институт радиационной дозиметрии ЧСАН, Прага

1. ВВЕДЕНИЕ

На терапевтических протонных пучках фазотрона ЛЯП ОИЯИ с помощью ионизационных детекторов были проведены измерения мощности поглощенной дозы. Наличие в составе клинико-физического комплекса (КФК) ЛЯП ОИЯИ гамма-облучателя РОКУС-М позволяет использовать его в качестве калибровочного стенда для сравнения показаний различных дозиметрических приборов.

Целью данной работы явилось проведение измерений мощности поглощенной дозы в терапевтических протонных пучках КФК ЛЯП с помощью дозиметрической аппаратуры, отградуированной на первичном эталоне — источнике гамма-излучения ^{во}Со в ИРД ЧСАН; калибровка дозиметров, используемых при проведении дозиметрических измерений на этих пучках; обоснование использования гамма-излучателя при калибровке дозиметрической аппаратуры.

2. МЕТОДИКА И РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Измерения проводились с использованием двух ионизационных камер, более подробно описанных в работе^{/1/}. Одна из них изготовлена из тканеэквивалентной пластмассы $A150^{/2/}$, другая — из алюминия, чувствительный объем каждой составляет 1,42 см³ и заполнен воздухом при атмосферном давлении. Градуировка камер проведена на первичном эталонном пучке гамма-излучения ⁶⁰Со в ИРД ЧСАН^{/3/}. Измерительный прибор, сконструированный в ИРД, позволяет проводить измерения мощности дозы или ее интеграла.

Для дозиметрии протонных пучков в ЛЯП ОИЯИ используются клинические дозиметры типа KD-27012 производства ГДР с ионизационными камерами VAK-251 (объем 50 мм³) и VAK-253 (объем 1,5 см³) со стенками из воздухоэквивалентного материала. С их помощью были проведены измерения мощности экспозиционной дозы в поле гаммаизлучения установки РОКУС-М для проверки градуировки ионизационных камер ИРД. Получены следующие величины мощности экспозиционной дозы в опорной точке на расстоянии 750 мм от источника:

ТЭ (тканеэквивалентная) камера — 142,0 Р/мин,

Al (алюминиевая) камера — 143,1 Р/мин, что на 1% и на 1,5%, соот-

1 .

Рис. 1. Горизонтальное — а, вертикальное — б и глубинное дозное — в распределения протонного пучка со средней энергией 180 МэВ.

ветственно, выше значений, полученных при калибровке этого облучателя с учетом уменьшения мощности дозы вследствие распада источника /4/.

Измерения проводились на протонных пучках, сформированных в кабинах № 1 $(\bar{E} = 180 \text{ M}_3\text{B})^{/5/}$ и № 2 ($\bar{E} =$ = 130 M₃B)^{/6/}, а в кабине № 1 — также в пучке протонов со средней энергией 90 M₃B, полученном в результате замедления пучка в плексигласовом фильтре. Кроме того, измерения проводились в пике Брэгга.

Все камеры последовательно устанавливались в одной и той же точке на оси пучка, все измерения нормировались на счет монитора, в качестве которого использовалась плоскопараллельная воздушная конизационная камера. Пучок в этой точке расширялся с целью более равномерного облучения объема камер. Горизонтальный и вертикальный профили, а также глубинное распределение дозы для пучка со средней энергией 180 МэВ приведены на рис.1.

Таблица 1. Отношение мощностей доз протонов, измеренных различными камерами, к показаниям ТЭ-камеры

	190	130	<u> </u>	
Тип камеры	180	100	30	шик брята
Аl камера ИРД	0,97	_	1,00	0,96
KD-27012 № 31038	0,96	0,98	0,96	0,97
KD-27012 № 31076	1,003	0,98	1,00	1,00

В табл.1 даны отношения мощностей доз, измеренных Al камерой ИРД и двумя калибровавшимися клиническими дозиметрами, к мощности дозы, определенной с помощью тканеэквивалентной камеры ИРД при различных средних энергиях протонного пучка.

Следует отметить хорошее согласие результатов измерений: при всех значениях средней энергии протонного пучка расхождения не превышают 4%.

3. СРАВНЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ ИОНИЗАЦИОННЫМИ КАМЕРАМИ В ПРОТОННЫХ ПУЧКАХ И В ПОЛЕ ГАММА-ИЗЛУЧЕНИЯ

Доза, поглощенная в ткани от градуировочного источника гаммаизлучения ⁶⁰Со, может быть определена из соотношения Брэгга — Грея:

$$D_{TK}^{\gamma} = S_{air}^{wall} \cdot \frac{(\mu en / \rho)_{TK}}{(\mu en / \rho)_{wall}} \cdot W_{air}^{\gamma} \cdot J_{air},$$

где S wall — относительная тормозная способность вторичных электронов в стенках камеры и в воздухе, заполняющем ее чувствительный объем; W_{air}^{γ} — средняя энергия, необходимая для образования пары ионов в поле гамма-излучения; J_{air} — число пар ионов, образованных в чувствительном объеме камеры; (µеп/ρ)_{TK}/(µеп/р)_{wall} — отношение массовых коэффициентов передачи энергии в стенках камеры m и в ткани.

Тогда градуировочную константу ${\tt R}^{\gamma}$ в поле гамма-излучения выразим как

$$\mathbf{R}^{\gamma} = \frac{\mathbf{D}_{\mathrm{TK}}^{\gamma}}{\mathbf{J}_{\mathrm{air}} \cdot \mathbf{M}} = \mathbf{S}_{\mathrm{air}}^{\mathrm{wall}} \cdot \frac{(\mu \,\mathrm{en} \,/ \,\rho)_{\mathrm{TK}}}{(\mu \,\mathrm{en} \,/ \,\rho)_{\mathrm{wall}}} \cdot \frac{\mathbf{W}_{\mathrm{air}}^{\gamma}}{\mathbf{M}}$$

где M — масса воздуха в камере.

При измерениях в пучках протонов градуировочная константа будет зависеть от соотношения размеров чувствительного объема камеры и пробега вторичных электронов. Если размер чувствительного объема камеры значительно превышает длину пробега вторичных электронов в воздухе, то большинство регистрируемых электронов возникает в воздухе внутри камеры, и величину поглощенной дозы можно определить по формуле /?/

$${}^{1}D^{P}_{TK} = \frac{\left[\left(dE/dx\right)/\rho\right]_{TK}}{\left[\left(dE/dx\right)/\rho\right]_{air}} \cdot W^{P}_{air} \cdot J_{air} ,$$

где $(dE/dx)/\rho$ массовые тормозные способности протонов; W_{air}^{P} - средняя энергия, необходимая для образования пары ионов в протонном пучке.

Градуировочная константа в этом случае ¹ R^P будет равна

$${}^{i}R^{P} = \frac{\left[\left(\frac{dE}{dx} \right) / \rho \right]_{TK}}{\left[\left(\frac{dE}{dx} \right) / \rho \right]_{air}} \cdot \frac{W_{air}^{P}}{M}$$

Если размеры камеры значительно меньше пробега вторичных электронов, то большая часть зарегистрированных электронов возникает в стенках камеры. В этом случае поглощенная доза определяется следующим образом:

$${}^{2}D_{TK}^{P} = S_{air}^{wall} \cdot \frac{\left[\left(\frac{dE}{dx}\right)/\rho\right]_{TK}}{\left[\left(\frac{dE}{dx}\right)/\rho\right]_{wall}} \cdot W_{air}^{P} \cdot J_{air}$$

а градуировочная константа ² R^P тогда будет равна

$${}^{2}\mathbf{R}^{\mathbf{P}} = \mathbf{S}_{air}^{wall} \cdot \frac{\left[\left(\frac{d\mathbf{E}}{d\mathbf{x}}\right)/\rho\right]_{\mathrm{TK}}}{\left[\left(\frac{d\mathbf{E}}{d\mathbf{x}}\right)/\rho\right]_{wall}} \cdot \frac{\mathbf{W}_{air}^{\mathbf{P}}}{\mathbf{M}}.$$

Отношения градуировочных констант в полях гамма-излучения и протонов для этих двух крайних случаев будут следующими:

$$\frac{\mathbf{R}^{\gamma}}{{}^{1}\mathbf{R}^{\mathbf{P}}} = \mathbf{S}_{\mathbf{air}}^{\mathbf{wall}} \cdot \frac{(\mu \, \mathbf{en} \, / \, \rho)_{\mathbf{TK}}}{(\mu \, \mathbf{en} \, / \, \rho)_{\mathbf{wall}}} \cdot \frac{\left[\left(\, \mathrm{dE} \, / \, \mathrm{dx} \right) \, / \, \rho \right]_{\mathbf{wall}}}{\left[\left(\, \mathrm{dE} \, / \, \mathrm{dx} \right) \, / \, \rho \right]_{\mathbf{TK}}} \cdot \frac{\mathbf{W}_{\mathbf{air}}^{\gamma}}{\mathbf{V}_{\mathbf{air}}}$$

или

$$\frac{\mathbf{R}^{\gamma}}{\mathbf{R}^{\mathbf{P}}} = \frac{(\mu \, \mathrm{en} \, / \, \rho)}{(\mu \, \mathrm{en} \, / \, \rho)}_{\text{wall}} \cdot \frac{\left[\, (\, \mathrm{dE} \, / \, \mathrm{dx} \,) \, / \, \rho \, \right]}{\left[\, (\, \mathrm{dE} \, / \, \mathrm{dx} \,) \, / \, \rho \, \right]}_{\mathrm{TK}} \cdot \frac{\mathbf{W}^{\gamma}}{\mathbf{w}^{\mathrm{air}}_{\mathrm{air}}}$$

В табл.2 дается химический состав стенок использовавшихся камер, зная который, на основе данных, опубликованных в^{/8-13/}, можно определить необходимые для проведения этих расчетов величины. Энергетические зависимости величин отношений линейных передач энергии в стенках камер и в воздухе к линейной передаче энергии в ткани приведены на рис.2. Параметры, характеризующие передачу энергии для гамма-излучения ⁶⁰Со, имеются в табл.3. Если принять, что $W_{air}^{\gamma} / W_{air}^{P} = 0.986^{/7.14/}$, то можно вычислить данные соотношения для всех камер. Результаты расчета этих величин сведены в табл.3. Таблица 2. Химический состав стенок камер (вес в процентах)

	Al	KD-27012	ТЭ-камера	Биол.ткань
н		3,2	10,13	10,2
С		52,2	77,55	12,3
N	_	—	3,51	2,8
0	_	12,0	5,23	72,6
F	_	25,6	1,74	
Na	_	7,0	—	0,08
Al	100		—	_
Ca	—	—	1,84	
ост.	_	-	_	1,02

Рис.2. Энергетические зависимости отношений массовых тормозных способностей протонов в различных материалах к тормозной способности протонов в ткани.

Из расчетов следует, что отношение градуировочных констант очень слабо зависит от размеров камер и определяется в основном химическим составом их стенок. Так, для ТЭ-камеры это отношение практи-

чески равно единице, т.е. если эта камера отградуирована на гаммаисточнике в единицах поглощенной дозы в ткани, камера будет измерять такую же величину и в протонном пучке. Для воздухоэквивалентной камеры дозиметра KD-27012 гамма-градуировочная константа на 3-4% меньше, чем для протонов. Это означает, что использование градуировочной константы в рентгенах с точностью 1% соответствует измерению дозы в ткани в радах.

Точность калибровки дозиметров определяется в основном точностью, с которой известны параметры, характеризующие передачу энергии в протонных пучках, и гамма-излучением. Относительные погрешности этих параметров составляют 1-2% $^{/8-12/}$, за исключением погрешности W^{γ}_{air} , которая равна 4% $^{/7,14/}$. В расчетах относительные тормозные способности протонов, ко-

В расчетах относительные тормозные способности протонов, которые в диапазоне энергий от 10 до 200 МэВ меняются не более, чем на 1%, принимались не зависящими от энергии. Таблица 3. Значения некоторых параметров, характеризующих передачу энергии гамма-излучения ⁶⁰Со Таблица 4. Отношения градуировочных констант для гамма-излучения и для протонов

$\frac{(\mu \text{ en }/\rho)_{\text{m}}}{(\mu \text{ en }/\rho)_{\text{TK}}} S_{\text{m}}^{\text{TK}}$	$\frac{R^{\gamma}}{{}^{1}R^{P}}$	$\frac{R^{\gamma}}{2R^{P}}$
Аl-камера 0,8772 1,2928	Al-камера 0,880	0,898
КD-2712 0,9317 1,1235 ТЭ-камера 1,0014 1,0000	ТЭ-камера 0,991	1,009
воздух 0,9110 1,132	КД-камера 0,964	0,974

Не учитывались ядерные взаимодействия, которые, по оценкам, сделанным в работе^{/13/}, даже для протонов с энергией около 600 МэВ не превышают 1%.

В целом, с точностью до 5-6%, полученные данные можно считать равными дозе в ткани от протонов в месте измерения на уровне статистической достоверности 95%.

4. ВЫВОДЫ

1. На терапевтических протонных пучках проведены измерения мощности поглощенной дозы.

2. Проведена калибровка клинических дозиметров с помощью аппаратуры, отградуированной на первичном эталоне — источнике ⁶⁰Со в ИРД ЧСАН в Праге.

3. Обосновано использование гамма-облучателя РОКУС-М в качестве калибровочного стенда для клинических дозиметров.

ЛИТЕРА ТУРА

- 1. Spurny F., Votočkova I. Jaderna energie, 1981, 27, p. 434.
- 2. Neutron Dosimetry in Biology and Medicine. ICRU Report No. 26, ICRU, Washington, 1977.
- 3. Klumpar J., Jirousec P. Isotopen praxis, 1974, 10, p. 184.
- 4. Вагнер Р. и др. Сообщение ОИЯИ 16-87-935, Дубна, 1987.
- 5. Абазов В.М. и др. ОИЯИ, Р9-86-648, Дубна, 1986; Медицинская радиология, 1988, № 1, с. 67.

- 6. Абазов В.М. и др. Сообщение ОИЯИ 9-87-280, Дубна, 1987.
- 7. Verhey L.J. et al. Radiation Research, 1979, v. 79, p.34.
- 8. Radiation Dosimetry. (ed. F.N.Attix et al.) Academic Press, New York and London, v. I 1968, v. III 1969.
- 9. Absorbed Dose Determination in Photon and Electron Beams. An International Code of Practice; 'AEA Techn, Rep.Ser. No. 277, IAEA, Vienna, 1987.
- 10. Stopping Powers for Electrons and Positrons; ICRU Report 37, ICRU, Washington, 1984.
- 11. Basic Aspects of High Energy Particle Interactions and Radiations Dosimetry. ICRU Report 28, ICRU, Washington, 1978.
- 12. Janni J.J. Proton Range-Energy Tables. Atomic Data and Nuclear Data Tables, 1982, v.27, No. 2-5.
- 13. Pernicka F., Spurny F. Nucl. Instr. Meth., 1980, 172, p.435.
- 14. ICRU Report No. 31, ICRU, Washington, 1979.

Рукопись поступила в издательский отдел 19 мая 1989 года.