

Объединенный институт ядерных исследований

дубна

16-85-35

В.П.Бамблевский

ОПРЕДЕЛЕНИЕ ВЫХОДА И УГЛОВОГО РАСПРЕДЕЛЕНИЯ АДРОНОВ ИЗ ТОЛСТОЙ МЕДНОЙ МИШЕНИ ПРИ БОМБАРДИРОВКЕ ЯДРАМИ ⁴ Не И ¹² С С ЭНЕРГИЕЙ 3,65 ГЭВ/НУКЛОН

Направлено на 17 Симпозиум по физике радиационной защиты /Дрезден, 1985 г./

введение

Проектирование и эксплуатация ускорителей релятивистских ядер требует надежных методов расчета размеров радиационной защиты. Целью данной работы, как и работ^{71,27}, является получение экспериментальных данных для проверки методов расчета /см., например, ^{/3,4/} / основных источников вторичного излучения - мишеней и деталей оборудования, облучаемых ускоренными ядрами. Важными характеристиками таких источников излучения являются полный выход и угловое распределение вторичных Частиц. Так же как и в /1/, эксперименты проводились на синхрофазотроне Лаборатории высоких энергий ОИЯИ в пучках ускоренных ядер ⁴ Не и ¹²С с энергией 3,65 ГэВ/нуклон, которые падали на медную мишень размером Ø100x130 мм². Геометрия эксперимента показана на рис.1. Используемые реакции активации для адронов и их характеристики указаны в табл.1. С помощью активационных детекторов установлено, что на расстояниях от 0,4 до 2 м от центра мишени нарушения "закона г²" не наблюдается и около 90% первичных частиц падает в центральный круг мишени радиусом 1,5 см.

Дифференциальный выход адронов у [адрон/ядро] из мишени определяли двумя путями: зависимость у $^{\theta}$ от угла θ - у $_{a}^{\theta}$ [адрон/ядро ⁴ He/cp], у $_{C}^{\phi}$ [адрон/ядро ¹²C/cp] и распределение у^t по поверхности мишени - у $_{a}^{t}$ [адрон/ядро ⁴ He], у $_{C}^{t}$ [адрон/ядро ¹²C] / см.рис.1/. Детекторы 1,8 регистрируют первичные ядра ⁴ He и ¹²C пучка и адроны, вылетающие с торцов мишени площадью S₁ = S₈ = 78,5² см; детекторы 2-7 регистрируют адроны с боковой поверхности мишени площадью 408 см², а каждый из детекторов 2-7 - адроны с площади S₂ = S₃ = ... S₇ = 68 см². Одновременно с детекторами на мишени и в 60 см от нее в качестве мониторов потоков первичных частиц облучались детекторы из алюминия и углеродсодержащие в падающих пучках ⁴ He и ¹²C, что позволило свести к минимуму систематические ошибки, связанные с временными поправками и определением отношений активностей.

2

1. ИЗМЕРЕНИЕ СЕЧЕНИЙ РЕАКЦИЙ АКТИВАЦИИ

С помощью телескопа из двух счетчиков $^{/21/}$ с пластическими сцинтилляторами 5x5x0,5 см³ при пониженной интенсивности пучка ("10⁴ ядер/цикл) измерялись сечения реакций активации 12 C(4 He, x) Cu 12 C(12 C,x) 11 C. При этом счетчики работали в режиме совпадений, и релучались два углеродсодержащих детектора,

MACE JI AND BUT BUT AND RA

Таблица 1. Характеристики реакций для адронов

		Порог реакции		5 ³	É.	Литера-
РЕАКЦИЯ	8	МәВ	Литера- тура	(MØ]	(MəB)	тура
$^{12}C(\alpha, X)^{fi}C$	Ι	≈20	5	25	≥20	5,6,7
$^{27}\mathrm{Al}(\alpha, X)^{18}\mathrm{F}$	2	≈45	12	7	≥45	I2,I3,I4, I5,I6
²⁷ A1(<i>a</i> , <i>x</i>) ²⁴ Na	3	≈6	8	77	≈ 2 0	8-
	× .			IO `	>20	9,10,11

Рис.1. Геометрия эксперимента

/а/ и схема расположения де-

Ч<u>астица пучка</u> 1-У^{tii} ¹²С

HOMEP AETEKTOPA

текторов /б/.

 Q
 Монитор
 МЕДНАЯ
 МИШЕНЬ

 4
 He
 12
 4
 9
 130 - 100 нгг

 4
 He
 12
 2
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9

Рис.2. Распределение выхода адронов у^{ti1} с поверхности мишени для различных частиц пучка. $E_a \gtrsim 20$ МэВ; реакция ${}^{12}C(a,x) {}^{-11}C$.

укрепленных на каждом из сцинтилляторов и имеющих одинаковые с ними размеры. Активность измерялась на низкофоновой установке $\gamma - \dot{\gamma}$ -совпадений с двумя кристаллами NaJ(T1) Ø150x120 и Ø150x100 мм по регистрации двух аннигиляционных γ -квантов энергией 511 кэВ. Ошибка измерения активностей изотопа ¹¹С при этом не превышала 5%. Примесь других заряженных частиц (P,d) в пучке ⁴Не и P, d, ⁴Не в пучке ¹²С была незначительна /не более 5%/. и учитывалась при определении сечений реакций активации. Облучения углеродсодержащих детекторов проводились не менее 5 раз при различных интенсивностях /2-6/х10⁴ ядер/цикл, что исключало случайную ошибку и позволяло сделать вывод об отсутствии просчетов телескопа, по крайней мере, при интенсивностях $\leq 5 \cdot 10^4$ ядер/цикл.

Измеренные значения сечения σ_a^{01} и σ_a^{01} соответственно реакций активации ${}^{12}C({}^{4}He,x){}^{11}C$ и ${}^{12}C({}^{12}C,x){}^{11}{}^{c}C$ при энергиях налетающих ядер 3,65 ГэВ/нуклон оказались равными /42+3/ мб и /57+4/ мб. В ${}^{(17,18)}$ измеренные σ_a^{01} и σ_c^{01} при энергиях ядер ${}^{4}He$ и ${}^{12}C$ 2,1 ГэВ/нуклон оказались равными /43,5+3,5/ мб и /60,9+0,6/ мб соответственно. В этих же работах систематизированы данные указанных реакций при меньших энергиях и сделан вывод о том, что при энергиях \geq 0,5-1 ГэВ/нуклон указанные сечения имеют слабую/ энергетическую зависимость. Полученные нами результаты подтверждают этот факт.

Для других используемых реакций 27 Al(4 He,x) 18 F, 27 Al(4 He,x) 24 Na, 27 Al(12 C,x) 18 F, 27 Al(12 C,x) 24 Na соответствующие сечения активации σ_a^{02} , σ_a^{03} , σ_c^{02} , σ_c^{03} опре́делены с помощью уже известных сечений σ_a^{01} и σ_c^{01} . Для этого стопка из углеродсодержащих и алюминиевых детекторов одновременно облучалась в пучках 4 He и 12 C.

Таблица	2.	Сечени	ія ј	реак	ций	акти	зации
	пля	ядер	⁴ He	и	^{12}C		-
с эн	ерг	ией З.	65	гэ <u>я</u>	 / нvк	лон	

РЕАКЦИЯ	²⁷ A1(4He, x) ¹⁸ F	²¹ A1 ⁽⁴ He, x) ²⁴ Na		
HOMEP, j	2	3		
G_{d}^{0}/G_{d}^{01}	0 ,29±0,02	0,40±0,03		
Ga (MO)	12,2±1,2	I6,8±I,7		
РЕАКЦИЯ	27 Al($^{12}C, X$) 48 F	27A1(12C, x)24 Na		
HOMEP, i	2	3		
"G _c ⁰ <i>j</i> /G _c ⁰¹	0,30±0,02	0 ,4 4 ± 0,03		
Gc (MO)	17,1±1,7	25,0±2,5		
$G_{d}^{01} = (42 \pm 3) \text{ MO}, G_{c}^{01} = (57 \pm 4) \text{ MO}$				

Рис.3. Распределение выхода рис.4. Распределение выхода адронов у^{ti2} с поверхности мишени для различных частиц пучка. шени для различных частиц пучка. $E_a \ge 45$ МэВ; реакция ²⁷Al(a, x)¹⁸ F. $6 \le E_a \le 20$ МэВ; реакция ²⁷Al(a, x)²⁴Na.

После облучения и определения активностей изотопов 11 С, 18 F, 24 Na определялись отношения сечений относительно сечений σ_a^{01} и σ_c^{01} . Активности изотопов в этом случае определялись с помощью тщате́льно отградуированного на протяжении нескольких лет одно-кристального сцинтилляционного ѓамма-спектрометра с кристаллом NAJ (TI) размером ϕ 120x100 мм^{/19/};измерение активностей изотопов 11 С. и 18 F проводилось таќже на установке $\gamma - \gamma$ -совпадений. Полученные отношения указаны в табл.2. На основании этих отношений определены сечения реакций активации для ядер 4 Не и 12 С с энергией 3,65 ГэВ/нуклон, значения которых и указаны в табл.2.

У 2. ОПРЕДЕЛЕНИЕ ВЫХОДА АДРОНОВ

После облучения детекторов, указанных на рис.1, измерений активности каждого детектора определялись величины q_{a}^{tij} и $q_{a}^{\theta j}$ [расп/с/ядро ⁴He/c]

 $q_{a}^{\text{tij}} = (A_{a}^{\text{tij}} - A_{a}^{\text{oj}} K) \cdot \sigma_{a}^{\text{oj}} / A_{a}^{\text{oj}} \cdot S_{0}, \quad i = 1, 2, ... = 8, \ j = 1, 2, 3; /1/$ $q_{a_{a}}^{\theta_{j}} = A_{a}^{\theta_{j}} \cdot \sigma_{a}^{\text{oj}} / A_{a}^{\text{oj}} \cdot S_{0}, \quad \theta = 15^{\circ}, \ 30^{\circ}, ... = 135^{\circ}, \ j = 1, 2, 3, /2/$

где A_a^{oj} , A_a^{tij} , $A_a^{\theta j}$ [расп/с ядро] – активности при бесконечном времени облучения на одно ядро детектора, облученного соответ-

ственно в пучке ядер ⁴Не, на мишени и на расстоянии R = 60 см от нее; S₀[см²] - площадь детектора в пучке ядер ⁴Не; К коэффициент, учитывающий вклад от пучка ⁴Не в активности детекторов №1,8 /К = 0 для всех остальных детекторов/. Значение К для детекторов №1 равно 1, а для детекторов №8 К вычислялось на основании данных ^{20/} о сечении неупругого взаимодействия ядер. ⁴Не с энергией ~4 ГэВ/нуклон и в предположении экспоненциального убывания первичных ядер ⁴Не по длине вдоль мишени. С заменой индексов "*a*" на " С" формулы /1/ и /2/ становятся справедливыми для случая облучения мишени пучком ядер ¹²С с аналогичными объяснениями всех входящих в них величин.

По данным q_a^{tij} и $q_a^{\theta j}$ определялись выходы адронов с поверхности мишени y_a^{tij} [адрон/ядро 4 He] и угловое распределение выхода адронов $y_a^{\theta j}$ [адрон/ядро 4 He/ср]

$$y_a^{tij} = q_a^{tij} \cdot S_i / \sigma_a^j$$
, $i = 1, 2, ..., 8; j = 1, 2, 3;$ /3/

 $y_a^{\theta j} = q_a^{\theta j} \cdot R^2 / \sigma_a^j$, $\theta = 15^\circ$, $30^\circ \dots 135^\circ$, j = 1, 2, 3, /4/.

где $S_i[cm]$ – площадь і -й поверхности мишени, с которой регистрирует адроны і -й детектор; R = 60 см; σ_a^j указаны в табл.1. Заменив индексы "*a*" в /3/, /4/ на "C" получим соответствующие выходы для случая облучения мишени ядрами ¹²C.

- В формулах /1/-/4/ индекс ј указывает номер используемой реакции /см.табл.1,2/, индексы ј, θ - соответственно номер детектора на мишени и угол вылета адронов из мишени /рис.1/.

['] Значения сечений для используемых реакций активации для частиц пучка $\sigma_a^{
m oj}$, $\sigma_c^{
m oj}$ /j = 1,2,3/ приведены в п.1 и в табл.2. Суммируя значения у ^{tij} и численно интегрируя у θ_j , получим интег-

Рис.5. Угловое распределение адронов у $^{\theta_1}$ из мишени для различных частиц пучка. $E_a \gtrsim 20$ МэВ; реакция. $^{12}C(a,x)^{11}C$.

ральные значения выходов адронов Y_a^{tj} , Y_c^{tj} и $Y_a^{\theta j}$, $Y_c^{\theta j}$ соответственно в углы 4π и $3,57\pi$ на одну первичную частицу /частицу пучка/.

Значения у^{ti3} и у^{θ 3} для адронов в интервале 6-20 МэВ определены из q^{ti3} и q^{θ 3} для реакций ²⁷Al(a,x)²⁴Na с вычетом вклада адронов с энергией $E_a \ge 20$ МэВ; значения q́^{ti3} />20 Мэ́В/ и q^{θ 3} / ≥ 20 Мэ́В/ определены из q^{ti1} и q^{θ 1} для реакции ⁻¹²C(a,x)¹¹C.

В большинстве случаев мониторирование потока частиц пучка I°[первичная частица/с] проводилось также с помощью ионизационной камеры^{/21/}/рис.1/. Сравнение I° с величинами $(\sigma_a^{oj}/A_a^{oj} \cdot S_0)^{-1}$, $(\sigma_a^{oj}/A_a^{oj} S_0)^{-1}$ в формулах /1/, /2/ обнаруживало расхождение не более 5-10%. Значения у^{tij}, у^{θj}, Y^{tj}, Y^{θj} представлены на рис.2-5 и в табл.3.

1

Таблица 3. Значения выходов адронов Y^{tj}[адрон/частица пучка•4*π*] и Y^{dj}[адрон/частица пучка•3,57*π*] с эпергией E_a из медной мишени \$100x130 мм, облучаемой протонами, ядрами ⁴Не и ¹²С с энергией 3,65 ГэВ/нуклон

частица	реакция, ј	¹² C(a,x) ¹¹ C, 1	²⁷ Al(a,x) ¹⁸ F, 2	²⁷ Al(a,x) ²⁴ Wa, 3
пучка	Еα, МэВ	≥20 -	≥45	6÷20
P /1/	$\mathbf{Y}_{p}^{tj}[\frac{a dPOH}{nPOTOH+4\pi}]$	4,7±0,7	3,5±0,5	I,8±0,4
	Чр ^д [<u>адрон</u> протон•3,51я]	4,8±0,7	3,8±0,6	I,4±0,3
•	Y ^{tj} [<u>адрон</u>]	18,7±2,8	I4,6±2,2	7,3±1,1
4 _{He} .	Y ₄ ^{tj} /Y _p ^{tj}	4,0±0,8	4,2±0,8	4,I±0,8
	Чд ^д ј [<u>адрон</u> [4 <u>не•3,5</u> 777]	18 , 3±2,7	12,1±1,8	5,9±0,9
	Y ^{0j} /Y ^{0j}	3,8±0,8	3,2±0,6	4,0±0,8
12 _C	$\mathbf{Y}_{c}^{tj} \begin{bmatrix} \underline{a \partial P O H} \\ 1^{2}C \cdot 4 \pi \end{bmatrix}$	47±7	3 6,3±5,4	22 ±4
	Y ^{tj} /Y ^{tj} _p	10 ± 2	10,4 ± 2,1	12 ,2±2, 5
	Υ ^θ j [<u>адрон</u> ¹² C·3, 57π]	44 ± 7	32 ± 5	
	Y ^{θ j} /Y ^{θ j} p,	9,2±1,8	8,5±1,7	· `

Результат данной работы.

выводы

Значения выходов Y^{t1} в угол 4 π с энергией \geq 20 МэВ увеличились в /4,0+0,8/ раза для ядер ⁴Не и в /10+2/ раза для ядер ¹²С с энергией 3,65 ГэВ/нуклон по сравнению с выходом адронов для протонов с энергией 3,65 ГэВ /табл.3/.

Для рассматриваемых в данной работе условий облучения мишени /толщина по пучку 116 г/см²/ выходы адронов с энергией ≥ 20 МэВ на одно неупругое взаимодействие частицы пучка оказались равными: для протонов - 8,3+1,3 [адрон/протон], для ядер ⁴Не -25+4 [адрон/ядро ⁴Не] и для ядер ¹²С - 55+8 [адрон/ядро ¹²С]. Данные о сечениях неупругого взаимодействия частиц пучка с ядром мишени определены из ^{/20,22/}.

В ^{/3/}проводится дальнейшее обоснование и совершенствование метода эквивалентных протонов /МЭП/.

Как видно из рис.2-5, относительное распределение выхода адронов с поверхности мишени и форма углового распределения приблизительно одинаковы для ядер-снарядов P, ⁴He, ¹²Ć. Это свидетельствует о корректности предположения в МЭП подобия формы угловых распределений тех или иных характеристик поля излучения вторичных частиц от протонов, ядер ⁴He и ¹²C.

Угловые распределения у⁰, полученные в данной работе, более изотропны, чем угловые распределения заряженных частиц ²¹⁷.

Полученные в данной работе значения сечений реакций активации на алюминии и углероде для ядер ⁴Не и ¹²С могут быть использованы для мониторирования частиц пучка при решении других вопросов в области физики защиты и дозиметрии, а также других прикладных задач.

В заключение автор выражает благодарность М.М.Комочкову за постановку задачи и постоянную поддержку работы, Г.Н.Тимошенко за помощь в определении сечений реакций активации. Автор также благодарит В.Е.Алейникова, Бе Ен Гвана и А.Н.Резуника за помощь в проведении экспериментов.

ИТЕРАТУРА

- 1. Алейников В.Е. и др. В кн.: Труды VIII Всесоюзного совещания по ускорителям заряженных частиц. ОИЯИ, Дубна, 1983, т.2, с.192.
- 2. Алейников В.Е. и др. В кн.: Труды VIII Всесоюзного совещания по ускорителям заряженных частиц. ОИЯИ, Дубна, 1983, т.2, с.189.
- 3. Комочков М.М. ОИЯИ, Р16-83-190, Дубна, 1983.
- 4. Gabriel T.A., Bishop B.L., Lillie R.A. ORNL/TM-8952, Oak Ridge, 1984.
- 5. Bizard G. et al. Nucl.Instr. and Meth., 1975, 129, p.569.

- 6. Charalambus St. et al. CERN, DI/HP 90, Geneva, 1966.
- 7. Cumming J.B. Ann. Rev. Nucl. Sci., 1963, 13, p.261.
- 8. Крамер-Агеев Е.А., Трошин В.С., Тихонов Е.Г. Активационные методы спектрометрии нейтронов. Атомиздат, М., 1976.
- 9. Patterson H.W., Thomas R.H. Accelerator Health Physics. Academic Press, New York and London, 1973.
- 10. Bayhurst B.P. et al. Phys.Rev., 1975, C12, p.451.
- 11. Cumming J.B. et al. Nucl.Instr.and Meth., 1981, 180, p.37.
- 12. Williams I.R., Fulmer C.B. Phys.Rev., 1967, 162, p.1055.
- 13. Friendlander G. Phys.Rev., 1955, 99, p.263.
- 14. Денисов Ф.П., Мехедов В.Н. Ядерные реакции при высоких энергиях. Атомиздат, М., 1972.
- 15. Parikh V. Nucl. Phys., 1960, 18, p.638.
- 16. Cumming J.B. et al. Phys.Rev., 1962, 128, p.2396.
- 17. Geaga J.V. et al. Phys.Rev.Lett., 1980, 45, p.1993.
- Smith A.R., McCaslin J.B., Geaga J.V. Phys.Rev., 1983, C28, p.1614.
- 19. Бамблевский В.П., Гречко В.В. ОИЯИ, Б2-16-12123, Дубна, 1978.
- 20. Ставинский В.С. ОИЯИ, 2-80-66, Дубна, 1980.
- 21. Алейников В.Е., Тимошенко Г.Н. ОИЯИ, 16-83-359, Дубна, 1983.
- Барашенков В.С., Тонеев В.Д. Взаимодействие высокоэнергетических частиц и атомных ядер с ядрами. Атомиздат, М., 1972.

Рукопись поступила в издательский отдел 17 января 1985 года. Бамблевский В.П. 16-85-35 Определение выхода и углового распределения адронов из толстой медной мишени при бомбардировке ядрами ⁴Не и ¹⁹С с энергией 3.65 ГэВ/нуклон

Определены выходы и угловые распределения адронов из толстой медной мишени при бомбардировке ядрами ⁴Не и ¹²С с энергией 3,65 ГэВ/нуклон. Выходы адронов измерены активационными детекторами с использованием реакций ¹²С(a,x)¹⁴C, ²⁷Al(a,x)¹⁸F. ²⁷Al(a,x)²⁴Na в диапазонах энергий адронов $E_a \ge 20$ МэВ, $E_a \ge 45$ МэВ и $6 \le E_a \le 20$ МэВ. Проведено сравнение с результатами аналогичного эксперимента на протонах с энергией 3,65 ГэВ. Измерены также сечения реакций активации ¹²C(⁴He,x)¹¹C, ¹²C(¹²C,x)¹¹C, ²⁷Al(⁴He,x)¹⁸F, ²⁷Al(¹²C,x)¹⁸F, ²⁷Al(⁴He,x)²⁴Na , ²⁷Al(¹²C,x)¹⁸F, ²⁷Al(⁴He,x)¹⁸F, ²⁷Al(⁴He,x)²⁴Na , ²⁷Al(¹²C,x)¹⁸F, ²⁷Al(⁴He,x)¹⁸C, ¹²C(¹²C,x)¹⁴C, ²⁷Al(⁴He,x)¹⁸F, ²⁷Al(⁴He,x)²⁴Na , ²⁷Al(⁴He,x)²⁴Na для ядер ⁴He и ¹²C

с энергией 3,65 ГэВ/нуклон.

Работа выполнена в Отделе радиационной безопасности и радиационных исследований ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубиа 1985

Перевод О.С.Виноградовой

4

Bamblevskij V.P. 16-85-35 Determination of the Yield and Angular Distribution of Hadrons from Thick Copper Target Irradiated by ⁴He and ¹²C at 3.65 GeV/Nucleon

The yields and angular distributions of hadrons from thick copper target irradiated by ⁴He and ¹²C at 3.65 GeV/nucleon have been determined. The hadron yields have been measured with activation detectors using reactions ¹²C(a,x)¹¹C, ²⁷Al(a,x)¹⁸F and ²⁷Al(a,x)²⁴Na in the energy range of hadrons $E_a \ge 20$ MeV, $E_a \ge 45$ MeV and $6 \le E_a \le 20$ MeV. Comparison has been made with the results of similar experiment on 3.65 GeV protons. The absolute cross sections for activation reactions ¹²C(⁴He,x)¹¹C, ¹²C(¹²C,x)¹¹C, ²⁷Al(⁴He,x)¹⁸F, ²⁷Al(¹²C,x)¹⁸F, ²⁷Al(⁴He,x)²⁴Na, ²⁷Al(¹²C,x)²⁴Na have been also measured for nuclei ⁴He and ¹²C at 3.65 GeV/nucleon.

The investigation has been performed at the Department of Radiation Safety and Radiation Researches, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1985