

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

20/18-82

16-82-419

В.Е.Алейников, А.В.Солодилов, Г.Н.Тимошенко, Г.Хан

ИССЛЕДОВАНИЕ ФУНКЦИЙ ОТКЛИКА ПОТОКОМЕРА-ДОЗИМЕТРА НЕЙТРОНОВ ВЫСОКОЙ ЭНЕРГИИ

Повышение точности расчета эффективности регистрации нейтронов сцинтилляционными счетчиками с пластическими сцинтилляторами является актуальной задачей для целого ряда методов в области физики высоких энергий. За последние годы наибольшее распространение получил метод расчета, основанный на прямых статистических испытаниях /метод Монте-Карло/ /8-20/. обладающий значительными преимуществами по сравнению с ранее развитым аналитическим методом /1,2/. В настоящее время существует ряд модификаций программ, предназначенных для таких расчетов, основные особенности которых состоят в использовании различных банков данных по сечениям ядерных взаимодействий и различных описаний энергетической зависимости световыходов протонов, альфа-частиц и ядер отдачи углерода в пластических сцинтилляторах. Точность расчета эффективностей по этим программам достигает 5% ^{/6/}.

В работе /21/ рассчитана эффективность регистрации нейтронов пластическим сцинтиллятором диаметром 120 мм и высотой 120 мм по программе, основанной на аналитическом методе /1/. Была осуществлена экспериментальная проверка корректности расчета эффективности детектора к спектру нейтронов Ри-Ве источника и получено удовлетворительное согласие. В настоящей работе приводится расчет методом Монте-Карло эффективности этого же счетчика в случае облучения его нейтронами с энергией 5÷ ÷ 500 МэВ при различных углах падения нейтронов на сцинтиллятор, выполненный по модифицированной нами программе STANTN ^{/6/}. Нейтронный счетчик предназначается для использования в дозиметре нейтронов высокой энергии в рассеянных полях за защитами

Рис.1. Энергетические зависимости эффективности регистрации аметром 120 мм и высотой 120 мм с охранным сцинтиллятором при различных значениях порога регистрации нейтронного счетчика Т в единицах энергий электронов, рассчитанные методом Монте-Карло по программе /6/.

БИБЛИОТЕКА

ł

Таблица

Зависимость $\epsilon(E, T)$ для детектора ϕ 120 мм и высотой 120 мм с охранным сцинтиллятором в случае бокового падения нейтронов / E, T - MэB; ϵ - имп. нейтрон⁻¹см²/

E	4	10	15	20	25	35	45	55	65	75	80	90	100	200
	15	0.684	0.000	0.000	0,000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	20	4.352	0.220	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	25	7.070	I .75 0	0.085	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	32	7.855	3.98 5	0.900	0.036	0.000	0.000	0.000	0.000	0.000	0.000	C.00C	0.000	0.000
	40	7.654	5.612	3.726	1 .8 II	0.014	0.000	0.000	0.000	0.000	0,000	0,000	0.000	0.000
	50	8.626	5,558	4.176	3,204	0 .82 I	0.004	0.000	0.000	0,000	0.000	0.000	0.000	0.000
	60	9.54C	5,789	4.043	3,136	I.850	0.436	0.004	0.000	0,000	0.000	0.000	0.000	0.000
	70	I0.656	6.768	4.536	3.312	2.016	1.152	0.131	0.007	0,000	0.000	0.000	0.000	0.000
	80	IO.865	7.632	5,184	3.600	2.160	I.440	0.781	0.234	0.018	0.000	0.000	0.000	0.000
	90	I0.95I	8.161	5.760	4.032	2.304	I.447	0.965	0.493	0.094	0.022	0.000	0.000	0.000
I	00	IC.800	8.528	6.480	4.752	2.448	I.452	0.882	0.580	0.270	0.130	0.014	0.000	0.000
	20	IO .224	8.496	6.912	5.472	3.312	I.872	1.040	0.662	0.410	0.317	0.158	0.036	0.000
1	40	9 .73 I	8 .47 I	7.200	6.048	4.032	2.448	I.469	0.922	0.630	0.518	0.317	0.097	0.000
I	60	9.040	7.798	6.829	5.882	4.291	2,963	I .944	I.256	0.767	0.601	0.353	0.238	0.000
	8 0 j	8.665	7.697	6.725	5.886	4.507	3.294	2.380	I.634	I.I48	0.947	0.691	0.526	0.004
2	00	8.359	7.344	6.559	5,890	4.446	3.366	2.498	I.858	I.397	1.159	0.900	0.680	0.072
2	50	6.624	6.048	5 .32 8	4,752	3.744	3.024	2.246	I.7I4	I. 34 6	I.220	I.00I	0.900	0.252
3	00	5,904	5,328	4.896	4.464	3.600	2,880	2.372	I.940	I.588	I.50I	I.350	I.23i	0.616
3	50	5 . 61 6	5.184	4.752	4.392	3.744	3.024	2.462	2.050	I.746	110.1	I.440	I.305	0.925
4	00	5.040	4.752	4.320	4.032	3.312	2.736	2.383	2,038	1.757	I.63I	1.462	I.375	1.094
4	50	4.824	4.464	4.104	3.816	3.312	2.808	2.371	1.975	1 719	1 620	1 510	1 120	1 242
5	200	1.404	1.170	3.999	3.600	3.001	2 502	0.120	T 89.1	T 663	T 580	T 429	1.433 1.336	I.I8I

ускорителей и окружен светозащитным кожухом и охранным пластическим сцинтиллятором в виде стакана, запрещающего регистрацию нейтронным детектором заряженного компонента полей излучения. Порог охранного счетчика постоянный, он равен 1,2 МэВ в эквивалентной по световыходу энергии электронов при толщине стенок охранного сцинтиллятора 1,4 г/см². С помощью дополнения, введенного нами в программу STANTN, учитывается доля энергии, уносимая протонами, покидающими сцинтиллятор, подобно тому, как это делалось в работе /18/. Это позволило учесть геометрию детектора и влияние кожуха и охранного сцинтиллятора на эффективность регистрации нейтронного счетчика, то есть выявить ложные запреты в охранном сцинтилляторе от протонов, рожденных в нейтронном детекторе в n + H - u n + C взаимодействиях. На рис.1 и в таблице представлена энергетическая зависимость эффективности регистрации нейтронного счетчика с охранным сцинтиллятором $\epsilon(\mathbf{E_n})$ при некоторых порогах регистрации Т в единицах эквивалентной энер-

Рис.2. Зависимость функции нейтронного счетчика $\epsilon(\mathbf{E}_n)$ Р с охранным сцинтиллятором от геометрии облучения: А, В, С – направления потоков нейтронов с энергиями 20 и 400 МэВ, для которых исследовалась неизотропность счетчика. Значения $\epsilon(\mathbf{E}_n)$ ·Р нормировались к геометрии А.

гии электронов. При расчете учитывалось собственное аппаратурное разрешение нейтронного счетчика. Для примера указаны статистические ошибки расчета при некоторых значениях энергий нейтронов.

Поскольку измерения дозиметром будут проводиться, как правило, в полях излучения с неизвестным угловым распределением. целесообразно использовать изотропный нейтронный детектор шаровой формы. Однако вследствие того, что такое конструктивное решение привело бы к существенному /в 1,5 раза/ снижению чувствительности дозиметра из-за уменьшения чувствительного объема при заданных габаритах установки, была выбрана цилиндрическая форма нейтронного детектора. Наиболее типичной ситуацией при измерениях потока и дозы нейтронов за защитой ускорителя является преимущественное падение нейтронов на боковую поверхность ципиндрического детектора /рис.2/. Такое расположение дозиметра обусловлено требованием минимального возмущения поля нейтронов элементами конструкции установки. Были проанализированы 3 варианта облучения дозиметра плоским мононаправленным источником нейтронов с энергиями 20 и 400 МэВ, падающими: А/ нормально к боковой поверхности детектора: Б.В/под углами 45° сверху и снизу относительно нормали. В программе разыгрывалось место падения нейтронов на сцинтиллятор. Порог нейтронного счетчика - 1 МэВ эквивалентной энергии электронов. В таблице и на рис.2 представлены значения $\epsilon(\mathbf{E}_n)\cdot\mathbf{P}$, нормированные на геометрию A, то есть величины, пропорциональные отклику детектора в данной геометрии. Здесь Р - максимальная площадь сечения нейтронного сцинтиллятора, перпендикулярного направлению потока нейтронов. Статистическая точность расчетов ~ 1,5% при Е_в = =20 МэВ и ~ 2,5% при Е_л =400 МэВ. Видно, что отклик детектора в пределах 10% не зависит от его ориентации в поле нейтронов даже на границе энергетического диапазона, то есть ε(E_n) · P ≈ const. При использовании прибора в измерениях потоков нейтронов методом, предложенным в работе /21/, результирующая погрешность измерения потока нейтронов не превысит 15% при условии набора хорошей статистики.

<u>Рис.3.</u> Сравнение расчетных и экспериментально измеренных аппаратурных распределений импульсов нейтронного счетчика при облучении его нейтронами из реакции T(d, n)⁴ He. Шкала анализатора градуирована в единицах энергии электронов: случай нормального падения нейтронов на торец детектора /A/ и боковую поверхность цилиндрического детектора /Б/.

Достоинством программы STANTN является возможность расчета аппаратурного спектра импульсов от нейтронного счетчика, что делает возможным проверку не только интегральных, но и дифференциальных характеристик функций отклика. Такая проверка была осуществлена с помощью нейтронов из реакции T(d, n) ⁴Не для двух вариантов облучения цилиндрического детектора нейтронами: а/ падение нейтронов нормально на торец детектора: б/ падение нейтронов нормально на боковую поверхность детектора. Результаты сравнения расчетного и экспериментально измеренного аппаратурного распределения приведены на рис. 3. Шкала анализатора градуирована в единицах энергии электронов. Ошибки на рисунке - статистические. Наблюдается удовлетворительное согласие между расчетами и экспериментом как по форме распределения, так и по абсолютным величинам. Различие расчетных и экспериментальных интегральных характеристик, то есть эффективностей регистрации детектора при пороге нейтронного счетчика 1 МэВ, составляет для первой и второй геометрии соответственно 5 и 6.7%.

В заключение выражаем благодарность Куликову В.А. за помощь при монтаже прибора и д-ру Хелферу за помощь в проведении эксперимента.

ЛИТЕРАТУРА

- 1. Kurz R.J. UCRL-11339, 1964.
- 2. Thornton S.T., Smith J.R. Nucl.Instr. and Meth., 1971, 96, p. 25.
- 3. Textor R.E., Verbinski V.V. ORNL-4160, 1968.
- 4. Verbinski V.V. et al. Nucl.Instr. and Meth., 1968, 65, p. 8.
- 5. Schutter R.J. ONRL-3888, 1968.
- 6. Stanton N.R. C00-1545-92, 1971.
- 7. Edelstein R.M. et al. Nucl.Instr. and Meth., 1972, 100, p. 355.
- Hermsdorf D. et al. Nucl.Instr. and Meth., 1973, 107, p. 259.
- 9. De Leo R. et al. Nucl.Instr. and Meth., 1974, 119, p. 559.
- McNaughton M.W. et al. Nucl.Instr. and Meth., 1974, 116, p. 25.
- 11. McNaughton M.W. et al. Nucl.Instr. and Meth., 1975, 129, p. 241.
- 12. Bersbach A.J. et al. Phys.Rev., 1976, D13, p. 535.
- 13. Del Guerra A. Nucl.Instr. and Meth., 1976, 135, p. 337.
- 14. Renner C. et al. Nucl.instr. and Meth., 1970, 154, p. 525.
- 15. Boccaccio P., Viesti G. Report INFN/TC-79/6, 1979.
- Cecil R.A. et al. Nucl.Instr. and Meth., 1979, 161, p. 439.
- 17. Anginolfi M. et al. Nucl.Instr. and Meth., 1979, 165, p. 217.
- 18. Fajer V., Alvarez L. Nucl.Instr. and Meth., 1981, 184, p. 515.
- 19. Nakayama K. et al. Nucl.Instr. and Meth., 1981, 190, p. 555.
- 20. Devos J. et al. Nucl.Instr. and Meth., 1976, 135, p.395.
- 21. Алейников В.Е. и др. ОИЯИ, Р16-80-453, Дубна, 1980.

Рукопись поступила в издательский отдел 4 июня 1982 года. Алейников В.Е. и др. Исследование функций отклика потокомера- 16-82-419 дозиметра нейтронов высокой энергии

Приводится расчет методом Монте-Карло эффективности пластического сцинтиллятора для детектирования нейтронов в диапазоне энергий 5 + 500 МэВ. Исследована зависимость эффективности от геометрии облучения детектора нейтронами. Приводятся результаты экспериментальной проверки дифференциальных характеристик функций отклика детектора при облучении его нейтронами из реакции T(d, m) ⁴ He.

Работа выполнена в Отделе радиационной безопасности и радиационных исследований ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1982

Alejnikov V.E. et al. Study of the High-Energy Neutron Fluence and Dose Rate Meter Response

5 - 12

16-82-419

1

The calculations of organic scintlilator efficiency using a Monte-Carlo code in the energy range between 5-500 MeV are presented. The efficiency dependence on geometry neutron irradiation of detector is studied. The results of experimental examinations of differential characteristics of the detector resonance by neutrons from $T(d,n)^4$ He reaction are presented.

The investigation has been performed at the Department of Radiation Safety and Radiation Researches, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.