

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

2435/2-81

18/5-8/

16-81-103

В.Е.Алейников, Г.Н.Тимошенко

ВКЛАД ПРОТОНОВ В ПОКАЗАНИЯ ДОЗИМЕТРОВ ИФК_Н, ДН-А-1 И УГЛЕРОДСОДЕРЖАЩИХ ДЕТЕКТОРОВ ЗА ЗАЩИТОЙ СИНХРОЦИКЛОТРОНА ЛЯП ОИЯИ

В практической дозиметрии на ускорителях ОИЯИ для определения индивидуальных доз ионизирующих излучений, получаемых сотрудниками Института, применяется методика индивидуального фотографического контроля дозы нейтронов /ИФКы/, основанная на использовании пленки с ядерной эмульсией типа "К" толщиной 20 мкм. Из промышленных приборов для определения эквивалентной дозы нейтронов с энергией менее 20 МэВ в полях рассеянного излучения от ускорителей используется сцинтилляционный дозиметр ДН-А-1/11/ с детектором быстрых нейтронов, представляющим собой диспергированный в плексигласе порошок ZnS(Ag). Основным недостатком указанных методик является значительное завышение эквивалентной дозы нейтронов при интерпретации показаний дозиметров за сплошной защитой ускорителей протонов на высокие энергии. Было высказано мнение /1/ , что причиной такого завышения является протонный компонент полей излучения, регистрируемый дозиметрами со значительно большей эффективностью, чем нейтроны. В работах /2,3/ исследованы спектральноугловые характеристики протонного компонента поля излучения за 2-метровой бетонной защитой при двух геометриях "источникзащита". В работе 4/ представлен спектр нейтронов в диапазоне энергий 10⁻⁸÷10³ МэВ, измеренный в той же точке поля. Таким образом, имеющаяся информация о поле излучения за защитой в исследованной точке позволяет определить реакцию дозиметров на протонный и нейтронный компоненты поля, оценить достоверность различных методов коррекции показаний ИФК и уточнить степень адекватности показаний ДН-А-1 эквивалентной дозе нейтронов. Помимо этого, становится возможным оценить вклад протонов в реакцию активации углеродсодержащих детекторов. используемых для определения флюенса нейтронов с энергией более 20 МэВ.

ВКЛАД ПРОТОНОВ В ПОКАЗАНИЯ ИФК

Чувствительность ИФК_н с эмульсией толщиной 20 мкм к нейтронам с энергиями от 0,5 до 300 МэВ, падающим нормально на дозиметр, рассчитывалась методом Монте-Карло в работе $^{/5/}$, причем считалось, что треки, наблюдаемые в эмульсии, образованы протонами с энергией $0,5 \le E_p \le 150$ МэВ. Чувствительность дозиметра к протонам, присутствующим в поле излучения, при-

1

Рис.1.Спектры нуклонов за 2метровой бетонной защитой синхроциклотрона ЛЯП ОИЯИ в условиях 1-й и 2-й геометрий. Спектры нормированы на 1 протон пучка. а - спектры протонов. б - спектр нейт-DOHOB.

> нималась равной 1 трек. •протон⁻для 15≤E,≤150МэВ и нулю для E_n <15 МэВ и E_p>150 МэВ. Здесь E_p = =15 МэВ - энергия протона, необходимая для проникновения его через упаковку дозиметра.Вклад в показания ИФК, протонов, образованных в упаковке дозиметра, при расчетах считался пренебрежимо малым. На рис. 1а представ-

лены спектры протонов

с энергией более 40 МэВ за 2-метровой бетонной защитой, полученные по результатам работы /3/ для случая, когда пучок протонов с энергией 630 МэВ падал под углом 30° на защиту /геометрия 1/ и для случая, когда пучок протонов полностью тормозился в медной мишени /геометрия 2/. Анализ расчетных спектров протонов за защитой ускорителей /6,7/ показал, что доля протонов в интервале энергий от 0 до 40 МэВ составляет примерно 15 7 30% от числа протонов с энергией более 40 МэВ. Отсутствие экспериментальной информации о спектрах протонов в области энергий до 40÷50 МэВ не позволяет в настоящее время уточнить вклад таких протонов в общий поток.

На рис. 16 приведен спектр нейтронов в исследованной точке поля излучения за защитой, в условиях геометрии 1 141.

Для дозиметра ИФК, по известным чувствительностям и спектрам нуклонов определялось число треков от протонов и нейтронов (N_p, N_n) на траверсе площадью 0,0225 см², при условии совпадения плоскости облучаемой пленки с внешней плоскостью защиты. Следует отметить, что вследствие сильной анизотропии углового распределения потоков протонов за защитой /2/, часть протонов / ~ 25%/, выходящих из защиты, образует в эмульсии треки,

длина проекций которых менее 5 мкм и не регистрируется при просмотре/случаи, близкие к нормальному падению протонов на пленки/. Полученные результаты после нормировки сравнивались с данными эксперимента^{/8,9/} в точке 2 /см. рис. 2^{/9/}/, проведенного в геометрии. близкой к геометрии 2. Пленки, облученные в этом эксперименте, просматривались по методике разделения треков на "серые" и "черные" (N_C,N_Y) с порогом разделения по энергии протонов 50 МэВ/10/. Результаты сравнения расчетного числа "серых" и "черных" треков на траверсе, полученного на основании имеющейся информации о спектрально-угловых распределениях нуклонов за защитой и экспериментальных данных из работы /10/. представлены в табл. 1. Снижение порога разделения треков до 40 МэВ приводит к уменьшению в 1,4 раза расчетного числа всех "черных" треков, что хорошо согласуется с результатами /10/.

Определение эквивалентной дозы нейтронов по результатам просмотра эмульсий без введения какой-либо коррекции приводит к существенному завышению мощности дозы в исследуемой точке поля излучения /1,62 бэр/ч в условиях геометрии 2/.Применение коррекции /10/ дает значение мощности эквивалентной дозы нейтронов 128 мбэр/ч, а величина, полученная в эксперименте^{/8/} наиболее достоверными способами, после соответствующей нормировки дает значение мошности эквивалентной дозы 87+11 мбэр/ч.

ВКЛАД ПРОТОНОВ В ПОКАЗАНИЯ ДН-А-1

Чувствительность гетерогенного детектора ZnS(Ag) + плексиглас к протонам в значительной мере определяется его толщиной, рядом технологических параметров /прозрачность, диаметр зерен ZnS(Ag). величина навески/ и порогом электронной схемы дозиметра. Для используемого в ДН-А-1 детектора толщиной 3 мм чувствительность к нормально падающим на торец дозиметра протонам принималась равной:*

є =0 при Е_р < 30 МэВ,

 $\epsilon = 1$ имп протон 1 при $30 \le E_p \le 60$ МэВ, $\epsilon = 0,0035$ имп протон 1 при $E_p > 60$ МэВ.

Здесь Е р = 30 МэВ - энергия протона, достаточная для прохождения его через упаковку детектора и создания в нем регистрируемой вспышки света; Е n =60 МэВ - энергия протона, при которой световыход становится меньше регистрируемого. При E_n>60 МэВ чувствительность к протонам принималась равной

* Чувствительность ДН-А-1 к протонам и нейтронам с энергией более 20 МэВ оценена М.М.Комочковым и В.И.Цовбуном /14/.

Таблица I

Сравнение результатов расчета плотности треков /трек.траверс⁻¹/ по спектрам нуклонов и результатов просмотра эмульсий с использованием процедуры разделения треков на "серые" и "черные" с порогом разделения 50 МэВ /10/.

Np	Nn	Ŋ _{р.ч}	Npt	, N _u	N _C	* /10/ Ny	*/10/ N _C	$N_{q} + N_{c}$ $N_{q}^{10/N_{c}^{10}}$	$\frac{N_{C}}{N_{C}^{10}} \frac{N_{H}}{N_{H}^{107}}$
728	28,5	272	510	293,5	517	198,5	463	1,22	1,12 1,48
/691/		/181/		/202,5/				/1,09/	/1,02/

N_D, N_n - расчетная плотность треков, образованных соответственно протонами и нейтронами. N р.ч , N р.с - расчетная плотность "черных" и "серых" треков, образованных протонами. N_ч, N_c - расчетная плотность "черных" и "серых" треков от протонов и нейтронов. * - приведено среднее значение результатов просмотра двух эмульсий. Величины без скобок получены в предположении, что доля протонов в спектре с энергией менее 40 МэВ составляет 30% от протонов с энергией более 40 МэВ. а величины в скобках соответствуют 15% вкладу в спектр от протонов с энергией менее 40 МэВ.

чувствительности к нейтронам соответствующей энергии, обусловленной неупругими взаимодействиями нейтронов в детекторе. Так как спектры протонов за защитой /рис. 1/ известны с энергии 40 МэВ, доля протонов с энергией от 30 до 40 МэВ оценивалась аналогично тому, как это делалось для ИФК... Предполагалось также, что дозиметр ДН-А-1 расположен вплотную к внешней плоскости защиты, т.е. через детектор проходят нуклоны, выходящие из площадки защиты, равной площади переднего торца дозиметра. Чувствительность ДН-А-1 к нейтронам с энергией до 20 МэВ бралась из работы /11/.

Для геометрий 1 и 2, при интенсивности пучка первичных протонов 6,3·10⁹ с⁻¹ были рассчитаны скорости счета дозиметра, обусловленные протонами и нейтронами (Sp,Sp), и значение "кажущейся" эквивалентной дозы нейтронов (Н), полученной путем умножения суммарной скорости счета (S_n+S_n) на градуировочный коэффициент /определенный для ДН-А-1 в поле излучения Ри+Ве источника нейтронов/. Результаты сведены в табл. 2. Видно, что в геометрии 1, в которой отношение потоков протонов и нейтронов достигает 0,11 /2/, протоны определяют реакцию до-

4

Вклад протонов в реакцию ЛН-А-1 и эквивалентную дозу за защитой ускорителя в эксперименте /2,3/

Таблица 2

Гео- мет- рия	S _p c ⁻¹	S _n Н′ с ^{−1} бэр ч	Н _р -1 _{бэр•ч} -1	Н _п бэр •ч ^{−1}	$\frac{H'}{H_n}$	$\frac{H'}{H_{p}+H_{n}}$
1	12110	2160 4,3	1,18	0,93	4,6	2,0
2	225	190 0,124	0,018	0,073	1,7	1,3

S_p, S_p - расчетные скорости счета ДН-А-1, обусловленные протонами и нейтронами. Н' - "кажущаяся" мощность эквивалентной дозы нейтронов. Н_р, Н_р - мощности эквивалентных доз протонов и нейтронов, рассчитанные по измеренным спектрам в диапазоне энергий от 30 до 600 МэВ для протонов и от 10⁻⁸ до 600 МэВ - для нейтронов.

зиметра и значение "кажущейся" дозы. В геометрии 2, при отношении потоков протонов и нейтронов, равном 0,038, их вклад в реакцию дозиметра примерно одинаков. По спектрам нейтронов $\phi_{\rm n}({
m E})$ были рассчитаны эквивалентные дозы ${
m H}_{\rm n}$, обусловленные нейтронами, вышедшими из защиты в обеих геометриях /полагалось, что форма спектра нейтронов в геометрии 2 такая же, как и в геометрии 1/:

 $H_n = \max \int_{10^{-8}}^{600} \phi_n(E) \cdot P_n(E, x) dE.$

Здесь $P_n(E, x)$ - глубинные распределения эквивалентной дозы единичного потока моноэнергетических нейтронов с энергией. Е в фантоме толщиной 30 см^{/12/}, х- координата по глубине фантома. По спектрам протонов $\phi_{p}(E)$ вычислялись эквивалентные дозы H_n, обусловленные протонами, выходящими из защиты с энергией 30-600 МэВ:

 $H = \max \int_{30}^{600} \phi_{p}(E) \cdot P_{p}(E,x) dE,$ $\Gamma_{A} = P_{p}(E,x)^{12} \qquad \text{OTDEREFISET}$ определяется для протонов аналогично P_n (E,x). Так как с уменьшением энергии протонов в диапазоне от 30 до 600 МэВ функции $\phi_{\rm p}({\rm E})$ и $P_{\rm p}({\rm E},{\rm x})$ монотонно возрастают, то максимум глубинного распределения эквивалентной дозы, обусловленной спектром протонов с Е ≥ 30 МэВ, лежит в ткани на глубине пробега протонов с энергией 30 МэВ / ~0,9 см/. Поэтому

5

при интегрировании значения $P_p(E,x)$ для различных энергий протонов брались на глубине 0,9 см. Погрешность вычислений эквивалентной дозы, связанная с приближенным интегрированием, составила 25%. Следует отметить, что погрешность в вычислениях данной дозы возникает также из-за неучета угловых распределений потоков протонов за защитой.

В обеих геометриях наблюдается превышение "кажущейся" мощности дозы нейтронов Н' по отношению к Н_л, тем большее, чем больше протонов присутствует в поле излучения, Однако отношение Н' к мощности суммарной эквивалентной дозы излучения $H_n + H_p$ не превышает 2 даже в случае геометрии 1. Это подтверждает сделанное ранее предположение/1/ о том. что в полях излучения за сплошной защитой ускорителей дозиметр ДН-А-1 измеряет величину, близкую к суммарной эквивалентной дозе излучения. В условиях геометрии 2, соответствующей наиболее типичным ситуациям формирования нуклонных полей за защитой ускорителя, эквивалентная доза Н_р, обусловленная протонным компонентом поля, существенно меньше эквивалентной дозы H_n, обусловленной нейтронами. В геометрии 1, характеризующейся большим содержанием протонов, вклад эквивалентной дозы Н_р в суммарную эквивалентную дозу нуклонов, выходящих из защиты, становится значительным,

ВКЛАД ПРОТОНОВ В РЕАКЦИЮ АКТИВАЦИИ УГЛЕРОДСОДЕРЖАЩИХ ДЕТЕКТОРОВ

Для оценки радиационной обстановки на ускорителях широко применяются углеродсодержащие активационные детекторы. Флюенс нейтронов с энергией более 20 МэВ определяется по скорости реакции активации. Однако интерпретация показаний такого детектора в терминах флюенса нейтронов в поле излучения, содержащем протоны, некорректна, в силу того, что сечение реакции превышает сечение реакции ¹² C(n, x) ¹¹C вплоть до ${}^{12}C(p,x){}^{11}C$ энергий нуклонов ~1 ГэВ/13/. Некорректность такой интерпретации сильно зависит от вида спектра протонов и возрастает с увеличением доли протонов в суммарном потоке нуклонов и со "смягчением" спектра протонов. При расчете вклада протонов в показания детектора делалось предположение, что детектор тонкий и ионизационные потери энергии протонов на его толщине незначительны. В условиях геометрии 1, при интерпретации показаний детектора в терминах флюенса нейтронов, погрешность результатов, обусловленная протонами, достигает 21% /4/ Во второй геометрии вклад протонов в погрешность результатов существенно меньше и составляет 5%.

выводы

1. Подтверждено, что причиной значительного завышения показаний ИФК_Н и ДН-А-1 в полях излучения за сплошной защитой ускорителя являются протоны. Применение метода коррекции пока-

заний ИФ $K_{\rm H}$, описанного в работе^{/10/}, позволило с точностью до коэффициента 1,5 определить эквивалентную дозу нейтронов.

2. В полях излучения за сплошной защитой ускорителя, в которых вклад протонов в суммарный поток нуклонов превышает 10%, следует при определении флюенса нейтронов с помощью углеродсодержащих детекторов учитывать завышение их показаний за счет протонов.

3. Для излучения реакций дозиметров, регистрирующих нейтроны по протонам отдачи, необходимо уточнить характер поведения спектров протонов в области энергий менее 50 МэВ.

В заключение авторы благодарят М.М.Комочкова ѝ М.И.Салацкую за полезные обсуждения и поддержку в работе.

ЛИТЕРАТУРА

1.	Алейников	В.Е. и	др. Neu:	tron	Moni	toring	for	Radiation	Pro-
	tection Pu	rposes,	vol.2,	p. 3	363,	IAEA, N	lienr	ia, 1973.	

- 2. Алейников В.Е. и др. Kernenergie, 1979, No. 22, p. 416.
- 3. Алейников В.Е. и др. ОИЯИ, 16-12732, Дубна, 1979.
- 4. Алейников В.Е. и др. ОИЯИ, Д9-80-637, Дубна, 1980, с. 82.
- 5. Манько Б.В. Труды РИАН СССР, 1977, №30, с. 86.
- 6. Алейников В.Е. и др. ОИЯИ, Д9-80-637, Дубна, 1980, с. 83.
- 7. Гельфанд Е.К. Труды РИАН СССР, 1975, №22, с. 242.
- 8. Алейников В.Е. и др. ОИЯИ, Р16-8179, Дубна, 1974.
- 9. Комочков М.М., Салацкая М.И. ОИЯИ, Р16-8175, Дубна, 1974.
- 10. Гельфанд Е.К. и др. ОИЯИ, Р16-12552, Дубна, 1979.
- 11. Голованов Н.А. и др. Труды СНИИП, Атомиздат, М., 1964, вып. 1, с. 36.
- Атлас дозовых характеристик внешнего ионизирующего излучения /под ред. Е.Е.Ковалева/, Атомиздат, М., 1978.
- 13. Bizard G. et al. Nucl.Instr. Meth., 1975, p. 129.
- 14. Алейников В.Е. и др. В кн.: Neutron Monitoring for Radiation Protection Purposes. vol. 11, 1973, p. 363; Proc. Symp. IAEA, Vienna, 11-15 December, 1972.

Рукопись поступила в издательский отдел 11 февраля 1981 года.

ショー しょうほうせい ション・パクス あち

والمتحمية الأربعين الهجيا المحمية وحداره