СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

10/18

В.И.Цовбун

3309/9-73

63496

4-76

ЭЛЕКТРОННЫЕ УСКОРИТЕЛИ НА ЭНЕРГИИ 0,5-100 МЭВ КАК ИСТОЧНИКИ ИЗЛУЧЕНИЯ

ТДЕЛ НОВЫХ МЕТОДОВ УСНОРЕНИЯ

16 - 7104

В.И.Цовбун

ЗЛЕКТРОННЫЕ УСКОРИТЕЛИ НА ЭНЕРГИИ 0,5-100 МЭВ КАК ИСТОЧНИКИ ИЗЛУЧЕНИЯ

Введение

Знания о выходе ионизирующего излучения из ускорителей являются исходными при оценках полей излучения вблизи ускорителей, при расчетах биологической защиты, а также решении других вопросов, связанных с радиационной безопасностью.

В настоящей работе был проведен анализ такой информации, *опубликованной в открытой печати за 1950-1971 годы. Сравнение работ Прайса и других //, Кимеля, Машковича н других /2/, где предлагаются используемые до последнего времени в качестве основных методики расчетов защиты электронных ускорителей, с работами 1968-1971 годов /3-8/ показывает согласие современных данных с информацией, рекомендуемой работой //, и несогласие с работой /2/ относнтельно углового распределення тормозного излучения, выходящего из мишеней.

Здесь сделана попытка обобщения современных данных по выходу излучения нз мишеней, бомбарднруемых электронами с энергней 0,5-100 Мэв. Отобранные данные былн обработаны с целью более удобного представлення для расчетов защиты электронных ускорителей и оценки радиационных полей вокруг них.

Мишени

Здесь будет рассматриваться нанболее характерная ситуация, когда тонкий пучок электронов с энергией E₀ падает нормально на плоскопараллельную пластину

Для ускорителей электронов.

толщиной t. Вылетающие из мишени фотоны и нейтроны Будут предметом рассмотрения. Материалы мишени выбирались с большим атомным номером z (*Ta*, *W*, *Au*, *Pb*), средним z (*Fe*, *Cu*) н малым z (*A1*), насколько позволяло наличие информации.

Проектировщики обычно рассматривают защиту от тормозного излучения электронов для мишеней "оптимальной" толщины, т.е. толщины, при которой выход тормозного излучения максимален. Поэтому в работе приводится выбранная информация о тормозном излучении для толщин мишеней, близких к "оптимальным" /насколько это было возможно/. К сожалению, термин "оптимальность" в литературе понимается неоднозначно: так, Лент и Диккенсон ^{/5/} определяют оптимальную толщину по отношению к тормозному излучению, вылетевшему под О° к направлению движения падающих электронов, а Бергер и Зельтцер^{/7/} - по отношению к тормозному излучению, вылетевшему во всех направлениях.

В работе ^{/5/} предлагается формула для расчетов оптимальных толщин мишеней /по отношению к излучению под О°/ для энергий электронов 1-10 Мэв.

$$t_{opt} = 0.89 (E_0 - 0.7)^{0.46} z^{-0.17 E_0 - 0.2} / r/cm^2 /, /1/$$

где E_0 - кинетическая энергия падающего электрона, Мэв; ² - атомный номер вещества мишени. Сравнение с данными работ ^{/9,10/} показало, что эта формула применима и при энергиях до 25 Мэв /сравнений при более высоких энергиях не приводилось/. В табл. I представлены рассчитанные по формуле /1/ оптимальные толщины мишеней в г/см² для материалов Al, Fe и материалов с большим z.

В скобках указаны оптимальные толщины мишеней из работ ^{/7,8/}, авторы которых придерживаются второй трактовки оптимальности.

Тормозное излучение

Угловые распределения интенсивности тормозиого излучения, приведенные в ^{/3-8/} для различных энергий

Т<u>аблица I</u>

Энергия	Оптимальные толенан имееней, г/см2								
N9B	Al	Fe	W						
I	0,33	0,29	0,24						
2	0,69	0,62	0,53	(0,55)					
3	0,92	0,84	0,72						
4	I,II	I,0I	0,88						
5	1,27	I,I7	1,02	(1,32)					
6	I,4I	1,30	I ,I4						
7	I,54	I,43	1,26						
8	I,67	I,54	I,36						
9	I,78	1,65	I,46						
10	I,89	I,75	I,55	(2,3)					
II	I,99	I,85	I,65						
12	2,08	I,94	I,74						
13	2,17	2,03	I,82						
14	2,26	2,11	1,90						
15	2,35	2,19	I,98	(3,42)					
16	2,43	2,27	2,05						
17	2,51	2,35	2,12						
18	2,59	2,42	2,19						
19	2,66	2,49	2,26						
20	2,73	2,56	2,52	(4,05)					
21	2,80	2,63	2,39						
22	2,87	2,70	2,45						
23	2,94	2,76	2,51						
24	3,01	2,82	2,57						
25 30 100	3,07 -	2,89	2,63	(5,04) (10,5)*					

в) Тоящяна слоя полубесконсчной свинцовой мишени, в которой наблюдается наксмыум интелсивности торкозного излучения /8/

.

электронов и различных материалов мишеней, обрабатывались в настоящей работе по формуле/2/ для того, чтобы получить мощности поглощенной дозы в воздухе на расстоянии 1 метр от мишени при падении на нее тока электронов в 1 миллиампер.

$$P(\theta) = KJ(\theta) \int_{0}^{E_{0}} f(E, \theta) \mu_{a}(E) dE ,$$

$$\sum_{\substack{E_{0} \\ 0 \\ \int} f(E, \theta) dE = 1.$$

$$/2/$$

Здесь $P(\theta)$ - мощность дозы тормозного излучения, $J(\theta)$ интенсивность тормозного излучения в направлении θ , $i(E, \theta)$ - спектральное распределение интенсивности, $\mu_a(E)$ коэффициент поглощения энергии фотонов в воздухе, K- коэффициент пропорциональности.

Эти данные в единицах рад.м²/ма.мин сведены в табл. 2. При обработке производилось сглаживание /на глаз/ провала интенсивности в области 90°, который в работах /3-7/ является следствием того, что мишень представлялась в виде бесконечной пластины. В расчетах учитывалось различие в спектрах фотонов, вылетающих под разными углами, насколько это позволяло наличие информации. Значения углов, для которых эта информаиня имелась, можно найти в работах /3-7/ для различных энергий падающих на мищень электронов. В табл. 2 приведены также результаты работы /1/. Исходными данными для расчетов углового распределения тормозного излучения от свинцовой мншени для электронов 100 Мэв послужили угловые распределения числа фотонов и интегральный по всем углам спектр фотонов в "оптимальной" глубине полубесконечной свинцовой мишени /8/. Степень приближения этих данных к геометрии с мишенью - пластиной не оценивалась.

На основе данных табл. 2 построен график зависимости мощиости дозы тормозного излучения в направлении движения пучка электронов от энергии электронов /рис.1/, где точками обозначены данные табл. 2 для различных энергий падающих электронов и материалов мишени. Предлагается аппроксимация этой зависимости аналитическими выражениями /3/, /4/, /5/.

Таблица 2. Мощности поглощенной довы в воздухе, рад. "/ме.мин

аергия зехтроков, зв	: : 0,5		1 1 1			· · · · ·			I,25			
TRONP	: Al	Fe	· AL	·Fe	Au	:	AC	Cu	Au			
103,	:0,548	0,257	°0,548	0,613	0,753	:	0,4	0,35	0,5			
радусы	: r/oz ²	r/cu ²	'r/ow ²	г/сж ²	r/cm ²	2	r/c# ²	г/сж ²	r/ca ²			
0	6,3	8,6	36	56	79		49	70	150			
10	5,6	8,1	35	49	73		42	68	125			
20	5,I	7,4	87	41	63		30	50	100			
30	4,5	6,4	19	32	54		24	35	ز ب			
40	3,8	5,7	14	27	48		80	32	80			
50	2,7	4,9	12	22	42		16	28	70			
60	2,2	3,9	9,4	19	33		14	20	60			
70	1,7	3,4	7,9	15,8	28,2	2	12	19	58			
80	1,0	2,2	4,8	11,0	21,6	5	10	10	56			
90	0,6	1,0	2,0	4,3	16,0	5	6	17	55			
100	0,7	1,4	2,6	6,3	31,0	5	5,5	16	53			
110	0,9	. 2,1	5,1	7,9	38		5 <u>,</u> 0	15	,6 <u>5</u> I			
120	1,2	2,6	3,0	9,2	38		4,5	18	50			
130	1,2	8,8	3,0	9,2	38		4,0	16	,5 49			
140	1,1	2,4	3,0	9,2	38		3,5	14	,0 48			
150	0,9	2,1	3,0	7,7	37		3,0	15	,5 47			
160		-	-	•	-		2,5	i				
170	(4	-	-	•	-		2		• •			
I 80	-	-	-	-	-		2					

Энергия	:		:			:			
адектронов, Мав	1	, 50	:		1,75	:		2	
NEBOHS	Al	Cu	Au :	AE	Cu	Au :	Al	Fe	AU
Угод, градусы	0,5 г/см ²	0,4 r/c# ²	0,35 r/cm ²	0,6 r/cm ²	0,55 r/cu ²	0,45 г/сы ² :	1,2 r/cm ²	1,3 r/cm ²	1,62 r/cm
0	82	125	810	126	200	330	248	355	444
10	72	118	205	100	160	290.	184	266	397
20	46	90	180	66	122	230	121	197	303
30	32	65	150	51	100	200	63	134	238
40	26	50	130	46	65	1 60	65	102	I 84
50	. 22	45	120	40	55	160	52	83	153
60	20	38	110	32	50	150	32	65	115
70	31	35	100	25	40	140	18	52	83
80	13	30	90	19	33	130	16	38	58
90	8	26	80	15	27	125	11	28	48
100	7	23	78	13	25	115	13	30	83
110	6,5	20	76	11	22	105	13	25	100
120	6	18	75	10	20	100	12	25	109
130	5,5	17	74	9	18	95	8	25	105
140	5,0	16	73	9	17	90	7	22	100
150	4,5	15	72	7	16	85	7	18	97
160	4,0	-	-	6	-	-	•	-	-
170	3,0	-	•	5,5	-	-	•	•	-
180	2,5	-	-	5	•	-	-	-	-

Теблица 2 (продолжение)

Таблица 2 (продолжение)

Элергия электронов, Нов	: ,: :	2	,35		: : :	2,8	:	4	::	9
Muzens	;	AL	Cu	Au	: AL	Fe	Au :	Sn	:	Sn
Yros,	•	0,7	0,65	0,55	:1,73	2,31	2,27 :	1,01	:	1,6 r/cm ²
градусы	:	r/cu ²	r/cm ²	r/c# ²	:r/cm ²	r/cu ²	r/cm ² :	r/cw ²	:	
0		340	460	730	793	937	1038	2676		1,56.104
to		262	408	670	505	850	830	1839		4,6. 10 ³
20		166	290	530	277	423	607	1085		3,23.103
30		110	215	420	165	297	468	651		2,66.10 ³
40		68	140	340	133	232	371	714		2,05.10 ³
50		50	125	290	83	166	290	602		1,54.10 ³
60		40	90	255	67	117	244	508		1,15.10 ³
70		33	65	230	50	83	195	416		8,58,10 ²
80		26	57	210	33	50	114	304		5,73.102
90		20	45	190	25	30	107	264		4,26.10 ²
100		81	38	1 80	30	53	130	381		6,39.10 ²
110		16	35	170	34	51	163	509		5,25.10 ²
120		14	28	160	34	68	212	263		4,53,10 ²
130		12	27	145	17	68	195	227		4,02.10 ²
140		11	28	130	17	51	195	199		3,64.10 ²
150		10	25	120	17	51	179	176		3,36.10 ²
160		9	-	-	-	•	-	157		3,15.10 ²
170		8,5	-	-	-	-	-	141		2,98.10 ²
160		8	-	-	-	-	-	129		2, 95. 10 ²

Энергия электроков, Изэ	: 10	: 30 : :	60	: 100
Maise i P	: W	: V :	W	: P6
Угол , гредусы	: 1,55 : r/cm ²	:;5,04 ; r/cm ² ;	; 7,25 r/cu ²	: ; 10,5 : r/cm ²
o	4,62.104	1,00.10 ⁶	6,63.10 ⁶	1,15.107
10	ī,63.10 ⁴	1,81.10 ⁵	4,92.105	8,46.10 ⁵
20	7,87.103	7,80.104	1,75.10 ⁵	2,27.105
30	5,12.103	3,79.104	6,54.10 ⁴	8.46.10 ⁴
. 40	3,25.103	2,12.104	2,84.104	5.75.104
50	2,13.103	1,34,104	1,60,104	4.08.104
60	1,25.103	9.13.103	9.15.104	3.39.104
70		5.42.103	5.70.103	3.05.104
90	-	3.04.103	2.28.103	2.89.104
90	÷	1.04.103	7.40.10 ²	8.71.104
100	-	1.44.103	P.44.10 ²	8.51.104
110	-	1.70.103	5,19,10 ³	2,10,104
120	-	1.70.103	1.15.103	1 79 104
130	-	1.70.10 ⁵	1.12.103	1,00100 1,00 10 ⁴
140	•	1.57.10 ³	1.09.103	1 29.104
150	-	1.44.10 ³	1.08.103	1,0010
160	-	-	- 100110	1,10110
I 70	-	_	-	1,00,10,
1 80	-	•	-	9,48.10 ³

Таблица 2 (продолжение)

Точность аппроксимации ±40% во всем диапазоне рассматриваемых энергий.

$P(E_0) = 82E_0^{2,63}$	для	Ta-W-Au-Pb,	/3/
$P(E_0) = 56 E_0^{2,63}$	дл я	Fe-Cu,	/4/
$P(E_0) = 36 E_0^{2,63}$	для	AI .	/5/

Здесь $P(E_0)$ - мощность поглощенной дозы в воздухе, рад. м²/ма. мин; E_0 - энергия падающих на мищень электронов, Мэв.

Угловые распределения, рекомендуемые работой $^{/2/}$, рассчитывались по формуле Лоуссона $^{/10/}$ Однако в $^{/11/}$ показана возможность применения этой формулы только до толщины мишеней О,1 радиационной длины и для углов менее 30°.

Некорректность применения этой формулы привела к расхождению данных /2/ с даниыми табл. 2 настоящей работы, доходящему до трех порядков при энергиях в несколько десятков Мэв и углах более 90°.

Спектральные распределения дозы тормозного излучения рассчитывались при использовании спектральных распределений фотонов или интенсивности/3-7/. Процентные вклады фотонов различных энергетических групп [ДЕ, в полную дозу тормозного излучения представлены в табл. З для нескольких энергий падающих электронов и материалов мишени. Как видно из таблицы, изменения дозовых спектров от угла, энергии электронов и материала мишени необходимо учитывать при расчетах защиты. Следует заметить, что форма спектрального распределения слабо зависит от энергии падающих электроков и матернала мишени за исключением случаев, когда электроны с энергией менее 3 Мэв падают на из матернала с высоким атомным номером мншень происходит самопоглощение мягкой части спектра H материалом мишени. Форма спектрального распределеиия дозы под большими углами значительно "мягче" распределения под углом О°.

Фотонейтроны образуются в ядрах мишени по реакциям (γ, n) , (γ, xn) , (γ, pn) и т.д., начиная с некоторого порога, определяемого энергией связи нейтрона в ядре. Почти для всех элементов эта энергия равна 6 Мэв и более. Исключением являются бериллий и дейтерий, для которых пороговые значения (γ, n) - реакции соответственно равны 1,67 и 2,23 Мэв.

Рождение фотонейтронов обусловлено процессами испарения нейтронов из возбужденного ядра, когда фотон взаимодействует с ядром кък с целым и передает свою энергию на возбуждение ядра, прямыми процессами, когда фотон взаимодействует с отдельными нуклонами в ядре либо группами нуклонов. Для делящихся элеменгов имеют место также процессы фоторасщепления ядер с испусканием нейтронов. Выход фотонейтропов можно приближенно определить /14/:

$$Y(E_0) = N_e \int_0^{E_0} T(E_0, E_\gamma, t) n \sigma(E_\gamma) dE_\gamma$$

где N_e - число падающих электронов энергии E_0 , *n* - число ядер мищени в см³, $\sigma(E_\gamma)$ - сечение фотообразования нейтронов, $T(E_0, E_\gamma, t)$ - длина пробегов фотонов тормозного излучения (photon track length) в см/Мэв.

Расчеты Т-функции производятся на основе теорни развития электронно-фотонных ливней и методом Монте-Карло.

В работах /7,14/ приведены результаты расчетов функции Т методом Монте-Карло для некоторых мишеней и необходимые ссылки на оригицалы.

Так как расчет выхода нейтронов $Y(E_0)$ часто связан с непростыми вычислениями, бывает удобно пользоваться данными экспериментов и расчетов, имеющимися в открытой печати.

О выходе фотонейтронов из мишени можно сказать, что он растет с увеличением атомного номера мишени /исключение составляют мишени из дейтерия и бериллия/ и энергин падающих электронов, причем начиная с энергий 30-40 Мэв наблюдается прямо пропорциональная зависимость выхода фотонейтронов от энергия падающих электронов /16/. Выход фотонейтронов для различных энергий падающих электронов, материалов и размеров мишеней показак на рис. 2.7.

Угловое распределение фотонейтронного излучения электронных ускорителей на энергии до 50 Мэв можно считать изотропным /17,18/. Отклонение от изотропности экспериментальных результатов либо лежит в пределах ошибок, либо обусловлено спецификой условий измерения. Как показано в работе /17/, спектры фотонейтронов, вылетающих из мишени под углами О^си 90° при бомбардировке ее электронами 45 Мэв, не различаются в пределах экспериментальных ошибок.

Спектральное распределение фотонейтронов, вылетающих из мишеней неделящихся элементов, бомбардируемых электронами с энергией до 50 Мэв, удовлетворительно описывается распределением Максвелла для энергий нейтронов $\epsilon << E - Q$, где E - энергия фотона, Q - энергия связи нейтрона в ядре $^{/17/}$.

 $N(\epsilon) d\epsilon \sim \epsilon \exp(-\epsilon/\theta) d\epsilon$.

 θ - постоянная ядерная температура, различная для разных ядер. Средняя энергия такого спектра равна 2θ .

Отклонения от максвелловского спектра при малых энергнях обусловлены реакциями $(\gamma, 2n); (\gamma, pn); (\gamma, 3n)$. При энергиях более 3 Мэв заметеи вклад в спектральное распределение нейтронов прямых процессов взаимодействия фотонов с ядром /17/ /рис. 8/. На рис. 9 приведены спектры для свинца и урана, заимствованные из работы /17/. Для мишени из меди и энергий электронов 50 и 100 Мэв в работе /18/ предлагается аналитическая аппроксимация спектрально-угловых распределений фотонейтронов.

Литература

^{1.} Б.П.Прайс, К.Хортон, К.Спинни. Защита от ядерных излучений, Москва, ИЛ, 1959.

- Л.Р.Кимель, В.П.Машкович, А.М.Панченко. Защита от излучений электронных ускорителей с максимальной энергией ускоренных электронов до ЗО Мэв. В сборнике "Приборы и методы анализа излучений". Вып. 111, Москва, 1962.
- D.H.Rester, W.E.Dance, J.T.Derrickson. Thick Target Bremstrahlung Produced by Electron Bombardment of Targets of Be, Sn and Au in the Energy Range 0.2-2.8 MeV. Journal of Applied Physics, 41 (6), 2682-2692 (1970).
- W.E.Dance, D.N.Rester, B.J.Farmer, J.H.Jonson. Bremsstrahlung Produced in Thick Aluminium and iron Targets by 0.5 to 2.8 MeV Electrons. Journal of Applied Physics, 39 (6), 2881-2889 (1968).
- W.C.Dickinson, E.M.Lent. Calculation of Forward Bremsstrahlung Spectra from Thick Targets. University of California, UCRL -50442, 1968.
- 6. J.A.Lonergan, D.C.Shreve, Parametric Fit to Electron Transport Properties. NASATM-X-2440, p. 832-841, 1971.
- M.J.Berger, S.M.Seltzer. Bremsstrahlung and Photoneutrons from Thick Tungsten and Tantalum Targets. Phys.Rev., 2C (2), 621-631 (1970).
- H.H.Nagel. Electron-Photon-Kaskaden in Blei. Zeitschrift für physik, 186 (4), 319-346 (1965).
- 9. K.M.Murray. Shielding Moderate-Energy Electron Accelerators. Nucleonics, 22 (2), 61-67 (1964).
- Ю.В.Р.Ковалев, В.П.Харин, В.В.Гордеев, М.С.Борисов. Поле тормозного излучения как функция атомного номера и толщины мишеней для энергий электронов 12-22 Мэв, АЭ, 31 / 3/, 289-291/1971/.
 - L.H.Lanzi, A.O.Hanson. Z-Dependence and Angular Distribution of Bremsstrahlung from 17 MeV Electrons. Phys.Rev., 83 (5), 959 (1951).
 - A.A. O'Dell, C.W.Sandifer, R.B.Knowlen, W.D.George. Measurement of Absolute Thick-Target Bremsstrahlung Spectra. Nucl. Instr. and Meth., 61 (3), 340-346 (1968).
 - W.C.Barber, W.D.George. Neutron Yields from Targets Bombarded by Electrons. Phys.Rev., 116 (6), 1551-1559 (1959).
 - R.G.Alsmiller, H.S.Moran. Electron-Photon Cascade Calculations and Neutron Yields from Electrons In Thick Targets. Nucl.Instr. and Meth., 48 (1), 109-116 (1967).
 - R.G. Alsmiller, H.S.Moran, Photoneutron Production from 34 and 100 MeV Electrons in Thick Uranium Targets. Nucl. Instr. and Meth., 51 (2), 339-340 (1967).
 - G.C.Baldwin et al. Neutron Production by Electron Bombardment of Uranium. Phys. Rev., 104 (6), 1652-1653 (1956).

- D.B.Gayther, P.D.Goode. Neutron Energy Spectra and Angular Distribution from Targets Bombarded by 45 MeV Electrons. Journal of Nuclear Energy, 21 (9), 733-747 (1967).
- 18. J.A. Gabried. Analytic Representation of Photonucleon and Photopion Differential Yields resulting from High Energy Electrons (50 ≤ E 0 ≤ 400 MeV) Incident on Infinite Copper Target. ORNL -4442, UC-34 (1969).

Рукопись поступила в издательский отдел 28 мая 1973 года.

<u></u>		BD	and a	iosy top	Camoro 1	SLY TORIES								
Энергия электро- нов, Мав	Энергети <u>интервал</u> материал	ч. ИФВ Угол	0-0,4	0,4-0,8	0,8-1,2	1,2-1,6	1,6-2,0	2,0-2,	,4 2 ,4-	2,9 2,	8-3,2	3,2~3,6	3,6-	4,0
		0	22,8	21,1	18,0	12,2	9,I	6,9	5,1	3,	7	I,4	0,73	
	1	30	28,8	24,7	17,0	11,5	7,8	4,9	3,0	I,	5	0,7ź	0,12	
4	Sn	60	31,1	28,7	17,2	10,8	6,8	4,0	2,2	Ι,	r	0,46	0,07	2
		120	40,1	25,6	15,1	8,9	5,1	2,8	1,5	0,	72	0,28	0,04	2
		150	40,9	26,0	14,9	8,6	4,7	2,6	1,3	0,	53	0,23	0,03	5
	Эмергети имтернал	, Non	0-0,4	0,4-0,8	0 ,8- 1,6	1,6-2,4	2,4-3,2	3,2-4	4-4,8	1,8-5,6	3 5,8-	6,4 6,4	.7,2	7,2-8,0
		0	13,7	13,0	20,3	15,0	1,3	8,5	6,5 4	4,9	3,6	2,5		0,76
8		30	17,2	15,8	23,4	15,8	10,6	7,1	4,6	2,9	1,6	0,70	3	0,13
	Sn.	60	20,6	18,5	25,4	15,2	9,0	5,3	3,0	1,7	0,83	0,34	1	0,053
		150	26,5	20,1	24,9	13,4	7,3	3,9	2,1	1,1	C,49	0,18	3 (0,025
		150	27,4	20,7	25,0	13,1	6,9	3,6	1,8 (3,91	0,40	0,15	; (0,021
	Энергетич интервал,	Non	0-0,5	0,5-1 1-	1,5 1,5-	-2 2-3 3-	4 4-5 :	5-8 5-	7 7-8	8-9	9-10)		
10	W	0	12,0	11,4 10),4 9,I	14,0 1	1,5 9,4	7,86,	4 4,7	2,8	0,4			

Таблика 3. Процентские жилали ботонов различных сторготических групп В полнув доку торновного излучения

.

Рис. 1. Зависимость мощности дозы тормозного излучения в направлении движения пучка электронов от энергии электронов.

Рис. 2. Число фотон атронов, вылетевших из медной мишени, в зависимости от энергии падающих электронов. Цифрами указаны толщины мишеней в радиационных длинах to.to = 12,7 г/см².

18 -

Рнс. 3. То же, что и рис. 2 для свинца, $t_0 = 5.8 \text{ g/cm}^2$.

Рис. 4. То же, что и рис. 2 для урана, $t_0 = 5.4 \text{ г/см}^2$.

C	рөд	ние	пробеги электронов в вольфраме /7/								
Энергия электроно Мэв	в,	2	5	10	15	20	30	40	50	60	
Средний пробег, г/см-		I,6I	3,69	6,23	8,14	9,66	12,0	13,8	15,3	16,5	

Рис. 5. Отношение числа фотонейтронов Y_n к энергии падающих электронов E_0 в зависимости от толщины вольфрамовой /7/ мишени /в долях средних пробегов электронов z/r_0 /.

Рис. 6. Выходы фотонейтронов из танталовой, свинцовой и урановой мишеней, в зависимости от толшины мишеней / t_{0 Ta}= 6,3 г/см² //¹⁴,15/.

Рис. 7. Выход фотонейтронов из танталовой мишени в зависимости от толщины и радиуса цилиндрической мишени. Энергия падающих электронов 100 Мэв/14//р_{га} =16,4г/см³/.

Рис. 9. Спектры нейтронов для мишеней из свинца и урана толщиной 3 радиационных длины, бомбардируемых электронами с энергией 45 Мэв.