

<u>c 346.4</u> A- 93

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

В.Л. Любошиц

1567

2.54

УГЛОВОЕ РАСПРЕДЕЛЕНИЕ # -МЕЗОНОВ. ПО ДАННЫМ ФАЗОВОГО АНАЛИЗА Р-Р РАССЕЯНИЯ ПРИ ЭНЕРГИИ 660 МЭВ В.Л. Любошиц

1567

УГЛОВОЕ РАСПРЕДЕЛЕНИЕ *т* - МЕЗОНОВ ПО ДАННЫМ ФАЗОВОГО АНАЛИЗА *р*-*р* РАССЕЯНИЯ ПРИ ЭНЕРГИИ 660 МЭВ

Дубна 1964

2312/2 y

2

r

Цедавно в Дубне был выполнен фазовый анализ упругого рассеяния протонов в области 660 Мэв^{/1-4/}. При этом использовались не только экспериментальные данные об упругом рассеянии, но также значения полных сечений мезонообразования $\sigma(\pi^+ d)$, $\sigma(\pi^+ pn)$ и $\sigma(pp \pi^0)$.

1

В настоящее время пока еще остается открытым вопрос,из каких состояний происходит образование π -мезонов при p-p соударениях, это затрудняет фазовый анализ, так как решения, полученные в^{/1-4/}, существенно зависят от того, какие из фазовых сдвигов с самого начала полагаются комплексными.

Во всех работах по фазовому анализу p-p рассеяния в области 400-600 Мэв используется резонансная модель образования π -мезонов, предложенная Мандельстамом^{/5/}. Для фазового анализа является важным исходное предположение этой модели, согласно которому образование π -мезонов связано с каналами ${}^{1}D_{2}$, ${}^{3}P_{0,1,2}$ и ${}^{3}F_{2,3}$ (S- и P -разлет^{/5/}). Что касается мнимых фазовых сдвигов, то они находятся непосредственно путем обработки экспериментальных данных.

Известно, что Мандельстам сумел получить удовлетворительное согласие с экспериментом, пренебрегая вкладом состояний ³ F₂ и ³ F₃.

В рамках этих довольно жестких предположений Зулькарнеев и Силин^{/1,2/} получили фактически одно решение, согласно которому мезонообразование происходит в основном из состояний ¹D, и ³P.

Если учесть возможность того, что ${}^{s}F$ - состояния также могут давать вклад в неупругие процессы, появляются новые решения ${}^{/3,4/}$. При этом оказывается, что вклад от ${}^{s}F$ - состояний во всяком случае сравним с вкладом от ${}^{l}D$ и ${}^{s}P$.

£

Для проверки полученных в настоящее время решений следует сравнить их с экспериментальными данными, относящимися не только к упругому, но и к неупругому рассеянию. В частности, имеет смысл выяснить, в какой степени эти решения соответствуют угловому распределению π° - мезонов, усредненному по их спектру. Действительно, данные по угловому распределению π - мезонов не использовались непосредственно при самом фазовом анализе. Экспериментальная же информация об угловом распределении π -мезонов более или менее достоверна. Мы будем рассматривать процесс $pp \rightarrow pp \pi^{\circ}$, так как вследствие тождественности протонов в конечном состоянии он описывается меньшим числом феноменологических параметров, чем процесс $pp \rightarrow \pi^{+}np$.

Для нахождення углового распределения *п*-мезонов удобно использовать розенфельдовскую классификацию переходов, при которой *п*-мезон выделен, а нуклоны объединяются в систему с определенным полным моментом, орбитальным моментом

3

и суммарным спином. Каждому розенфельдовскому переходу соответствует строго определенное угловое распределение *п* -мезонов, не зависящее от динамики процесса. Розенфельдовские переходы, которые допускаются резонансной моделью, можно объ-

единить в таблицу:

Начальное	Конечное состояние нук-	Угловое распределение
состояние	лонов и п тмезонов	
¹ D ₂	$({}^{5}_{1}p)_{2}$ $(\pi^{+}pn)$	$1 + P_2(\cos\theta) = \frac{1}{2}(1 + 3\cos^2\theta)$
	$\begin{pmatrix} {}^{3}P_{2} s \end{pmatrix}_{2} \begin{pmatrix} \pi^{+} np \\ \pi^{0} pp \end{pmatrix}$	изотропное
³ P_	$\binom{s_{p}}{t_{1}} p_{o} (\binom{t_{o}s}{s_{o}})_{o} (\frac{\pi^{+}pn}{\pi^{o}pp})$	изотропное
5	$({}^{1}P_{p})_{o} (\pi^{+}pn)$	
	$({}^{3}P_{p}p)_{I}$ $({}^{\pi^{+}pn}_{\pi^{0}pp})$	$1 - \frac{P}{2}(\cos\theta) = \frac{13}{2}(1 - \cos^2\theta)$
°P 1	$\begin{pmatrix} {}^{3}P_{I}p \end{pmatrix}_{I} \begin{pmatrix} \pi^{+}p\pi \\ \pi^{0}pp \end{pmatrix}$	$- 1 + \frac{1}{2}P(\cos\theta) = \frac{3}{4}(1 + \cos^2\theta)$
	$\binom{(p_p)}{(p_1)}$ (πpn)	
	$(P_2 p)_1 \qquad (\pi^+ pn \ \pi^0 pp)$	$1 - \frac{1}{10} P(\cos \theta) = \frac{21}{20} (1 - 0, 14 \cos^2 \theta)$
	$({}^{3}S_{1}s)_{1}$ $(\pi^{+}pn)_{1}$	изотропное
	$({}^{3}S_{1}d)_{1}$ ($\pi^{+}np$)	$1 - \frac{1}{2} P_2(\cos \theta) = \frac{5}{4} (1 - 0.6 \cos^2 \theta)$
³ P 2	$\binom{3}{1} \binom{3}{1}_{2} (\pi^{+} np)$	$1 + \frac{1}{2} P_2(\cos \theta) = \frac{3}{4} (\hat{1} + \cos^2 \theta)$
	$\begin{pmatrix} 1 \\ \mathbf{S}_{0} \\ \mathbf{d} \end{pmatrix}_{2} \begin{pmatrix} \pi^{+} \\ \pi^{0} \\ pp \end{pmatrix}$	$1 + \frac{P_2}{2}(\cos\theta) = \frac{1}{2}\left(1 + 3\cos^2\theta\right)$
	$\begin{pmatrix} {}^{3}P_{1}p \end{pmatrix}_{2} \begin{pmatrix} \pi^{+}np \\ \pi^{0}pp \end{pmatrix}$	
	$\binom{1}{P_{I}p}_{2}(\pi^{+}np)$	$1 + \frac{7}{10} P_2(\cos \theta) = \frac{1.3}{20} (1 + 1.61 \cos^2 \theta)$
	$({}^{^{o}P_{2}}P)_{2} ({}^{\pi^{+}np}_{\pi^{0}pp})$	$1 - \frac{7}{10} P_2(\cos \theta) = \frac{27}{20} (1 - 0,77 \cos^2 \theta)$
3 F 2	$\left({}^{s}S_{1}d\right)_{2}$ $(\pi^{+}pn)$	$1 + \frac{4p}{72}(\cos\theta) + \frac{4p}{74}(\cos\theta) = \frac{13}{14}(1 - \frac{8}{13}\cos^2\theta + \frac{35}{13}\cos^4\theta)$
	$\binom{1}{S_0}d_2$ $\binom{\pi+pn}{\pi^0}pp$	$1 + \frac{8}{7} P_2(\cos\theta) + \frac{6}{7} P_4(\cos\theta) = \frac{3}{4} (1 - 2\cos^2\theta + 5\cos^2\theta)$
	$\begin{pmatrix} \mathbf{s} \\ (\mathbf{P}_{2} \mathbf{p})_{2} & (\pi^{+} \mathbf{p}\mathbf{n} \\ \pi^{0} \mathbf{p}\mathbf{p} \end{pmatrix}$	$1 - \frac{8}{10} P_2(\cos \theta) = \frac{7}{5} (1 - 0.86 \cos^2 \theta)$
	$\binom{{}^{3}P_{1}}{p_{2}} \binom{pn \pi^{+}}{pp\pi^{0}}$	$1 + \frac{8}{2} P(\cos\theta) = \frac{3}{2} (1 + 2\cos^2\theta)$
	$({}^{1}P_{1}p)_{2}(pn\pi^{+})$	$\frac{1}{10}$ $\frac{1}{2}$ $\frac{1}{5}$ $(1 + 2000)$
³ F 3	$({}^{s}S_{I}d)_{s}(pn\pi^{+})$	$1 + \frac{6}{7} P_2(\cos\theta) + \frac{1}{7} P_4(\cos\theta) = \frac{10}{13} (1+0,6\cos\theta) + \frac{1}{13} + \cos^4\theta$
	$\binom{s_{P_2p}}{s} \binom{pn\pi^+}{pp\pi^0}$	$1 + \frac{13}{5} P_2(\cos\theta) = \frac{7}{10} (1 + l_1 3 \cos^2\theta)$

В рамках резонансной модели переходы из ${}^{1}D_{2}$ происходят по схеме ${}^{1}D_{2} \rightarrow ({}^{2}P_{3/2} \cdot s)_{2} \sim ({}^{3}S, d)_{2}$ (S - разлет), а остальные по схеме $\geq ({}^{2}P_{3/2,1,2} \cdot p)_{2}$ (P - разлет).

Здесь ${}^{2}P_{s/2}$ означает резонанс $\pi - N$ с $s = \frac{1}{2}$, $\ell = 1$, $J = \frac{3}{2}$, S н p — орбитальные моменты второго нуклона^{X/}.

Эксперимент показывает, что вероятность образования дейтона при *Р* -разлете крайне мала (1%).

В теории Мандельстама к образованию дейтона при *Р* -разлете приводят переходы, которым соответствует суммарный орбитальный момент *f* = 2.

Исключив из рассмотрения промежуточные состояния, для которых s=1, f=2, мы можем найти простые кинематические соотношения для некоторых парциальных сечений. В частности,

$$\sigma({}^{3}P_{2} \rightarrow ({}^{3}P_{1} p_{2}); \sigma({}^{3}P_{2} + ({}^{3}P_{2} p_{2})_{2}) = \frac{3}{5} \frac{W(112111)}{W(11211^{\circ})} = 1:3 ,$$

$$\sigma({}^{3}P_{1} + ({}^{9}P_{0} p_{1}); \sigma({}^{9}P_{1} \rightarrow ({}^{9}P_{1} p_{1}); \sigma({}^{3}P_{1} + ({}^{9}P_{2} p_{1})_{2}) =$$

$$= W(11110); 3W(111111); 5W(111112) = 1:\frac{5}{5}; \frac{3}{5} .$$
(1)

Пользуясь (1), представим сечение образования π^{0} -мезонов в следующем виде (вкладом ³F - состояний мы пока пренебрегаем):

$$\frac{d\sigma}{d\Omega} = \sigma_{s_{P_2}}^{\dagger} \left(1 - \frac{7}{20} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} \left(1 + P(\cos\theta)\right) + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma_{s_{P_2}}^{\bullet} + \frac{1}{2} \left(1 - \frac{1}{2} P_2(\cos\theta)\right) + \sigma_{s_{P_2}}^{\bullet} + \sigma$$

/интерференционные члены, которые входят в (2) с малыми коэффициентами, мы не выписываем/. Если следовать решению $^{/1,2/}$, то, как мы уже говорили, можно считать, что мезонообразование происходит только из ${}^{I}D_{2}$ - и ${}^{9}P_{2}$ - состояний.

Заметим теперь, что для нейтральных мезонов переход ${}^{I}D_{2} + ({}^{3}S_{1}p)_{2}$ запрещен, а переход ${}^{I}D_{2} + ({}^{3}P_{2}s)_{2}$ является смещенным (в резонансной модели его вероятность стремится к нулю при $\frac{m_{\pi}}{m_{N}} \rightarrow 0$). Отсюда можно сделать вывод, что $\sigma_{ID} \rightarrow ({}^{3}P_{2}s)_{I}$ мало или во всяком случае величины такого же порядка, как $\sigma_{ID} = ({}^{3}P_{2}s)_{I}$.

Таким образом, если следовать решению $^{/1,2/}$, угловое распределение можно записать в виде: $W = (1 - \frac{7}{20}P_2(\cos\theta)) + x(1 + P_2(\cos\theta)),$

х/ При энергии 700-900 Мэв мало вероятно, чтобы вклад переходов с D -разлетом оказался значительным.

5

$$\mathbf{x} = \sigma \cdot \mathbf{v} / \sigma \cdot \mathbf{v}_{p}$$
,
rде · $\mathbf{y}_{p} = \mathbf{y}_{p}$,

т.е. преимущественный вклад в $\sigma(p + p + p + p + \pi^0)$ вносят резонансные переходы из ³P₂ - состояний. Дунайцев и Прокошкин нашли, что угловое распределение π^0 мезонов при энергии 665 Мэв имеет вид^{/6/}:

$$W = \frac{1}{4} + (0,1 \pm 0,0,3) \cos^2 \theta, \qquad (4)$$

(3)

 $\langle 2$

что соответствует значениям параметра **x** в формуле (3), равным 0,75 \pm 0,6. Эти значения являются разумными, поскольку переход ${}^{3}P_{2} \rightarrow ({}^{1}S_{0}d)_{2}$, хотя и является смещенным, вследствие резонансного взаимодействия нуклонов может давать такой же вклад в угловое распределение, как и несмещенные Pp - переходы.

Таким образом, решение Зулькарнеева и Силина опытам Дунайцева и Прокошкина не противоречит.

Согласно решению Ажгирея и др.⁵⁷, вклад от ${}^{3}F$ - состояний в образование π -мезонов примерно в 6 раз больше вклада от ${}^{3}P$ - состояний. Если сечение ${}^{\sigma_{3p}-2} \cdot ({}^{5}O_{0}d_{2})_{2}$ ненамного меньше парциальных сечений, соответствующих переходам ${}^{3}F_{2} + ({}^{3}P_{1,2}P)_{2}, {}^{5}F_{3} - ({}^{3}P_{2}P)_{3}$, в угловом распределении должен присутствовать член с большим коэффициентом при $\cos^{4}\theta$. Как показывает эксперимент, коэффициент при $\cos^{4}\theta$ близок к нулю и во всяком случае гораздо меньше 1. Таким образом, решение⁽³⁾ можно привести в соответствие с экспериментом, если считать, что $\frac{\sigma({}^{3}F_{2} + ({}^{5}G_{0}d_{2}))}{\Sigma_{\sigma}({}^{3}F_{\sigma} + P_{p})} \ll 1$. Однако ввиду резонансного характера взаимодействия нуклонов в конечном состоянии s - d переход в области 660 Мэв вряд ли может быть очень сильно подавлен по сравнению с остальными переходами из ${}^{3}F_{2}$. В таком случае наиболее значительный вклад в поперечное сечение должен вносить переход ${}^{3}F_{2} + ({}^{3}P_{2}P)_{2}$. Соответствующее ему угловое распределение, имеющее вид

Недавно были опубликованы результаты новых экспериментов по угловому распределению π^{0} -мезонов в области 735 Мэв^{/7/}. Авторы^{/7/} получили угловое распределение π^{0} -мезонов в виде

 $W = 1 + 0.33 \cos^2 \theta + 0.32 \cos^4 \theta$. (5) Появление члена с $\cos^4 \theta$ свидетельствует о заметной роли перехода ${}^3F_a \rightarrow ({}^1S_a d)_a$ при энергии 735 Мэв. Но, как нетрудно видеть, относительный вклад этого перехода, согласно (5), не превышает 10%. Таким образом, угловое распределение (5) моможет быть объяснено переходами из состояния ${}^{3}P_{2}$ с малой примесью переходов из ${}^{3}F_{2}$ и ${}^{3}F_{3}$ - состояний. Естественно, что роль переходов из ${}^{3}F_{2,3}$ - состояний при энергии 735 Мэв должна быть большей, чем при энергии 660 Мэв, что и приводит к отличию углового распределения (7) от углового распределения (4).

Итак, решение Зулькарнеева и Силина^{/1,2/}, на наш взгляд, согласуется с экспериментальными данными по угловому распределению π° -мезонов при более ес тественных предположениях, чем решение^{/3,4/}. Для окончательного выбора необходима более подробная информация о процессах мезонообразования при столкновениях протонов.

Автор выражает глубокую благодарность Л.И. Лапидусу за стимулирование настоящей работы и ценное обсуждение и Ю.Д. Прокошкину за важные замечания.

Литература

- 1. Р.Я. Зулькарнеев, И.Н. Силин. Препринт ОИЯИ Р~1206, Дубна, 1963; ЖЭТФ, <u>44</u>, 1106 (1963).
- 2. Р.Я. Зулькарнеев, И.Н. Силин. Препринт ОИЯИ Р-1217, Дубна (1963); ЖЭТФ, <u>45</u>, 664 (1963).
- Л.С. Ажгирей, Н.П. Клепиков, Ю.П. Кумекин, М.Г. Мешеряков, С.Б. Нурушев, Г.Д. Столетов. Препринт ОИЯИ Р-1266, Дубна, 1963; ЖЭТФ, <u>45</u>, 1174 (1963).
- 4. И. Быстрицкий, Р.Я.Зулькарнеев. Препринт ОИЯИ Д-1236, Дубна, 1963.
- ⁵. S. Mandelstam, Proc.Roy, Soc. <u>A 244</u>, 491 (1958).
- 6. А.Ф. Дунайцев, Ю.Д. Прокошкин . ЖЭТФ, <u>36</u>, 1656 (1959).
- 7. R.J. Cence, D.L. Lind, G.D. Mead and B.J. Moyer. Phys.Rev., vol. 131, 2713 (1963).

Рукопись поступила в издательский отдел 17 февраля 1964 г.