ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

M-198

4575/2-76

HEI

......

......

К.Малушиньска, К.Недведюк, В.И.Салацкий, И.Хальвек

ИССЛЕДОВАНИЕ РЕАКЦИИ ⁹Be (t, n) ¹¹B В ДИАПАЗОНЕ ЭНЕРГИЙ ИОНОВ ТРИТИЯ 1,1 - 1,7 МЭВ

15/x1-76

15 - 9986

15 - 9986

К.Малушиньска, К.Недведюк, В.И.Салацкий, И.Хальвек

ИССЛЕДОВАНИЕ РЕАКЦИИ ⁹Ве (t, n) ¹¹В В ДИАПАЗОНЕ ЭНЕРГИЙ ИОНОВ ТРИТИЯ 1,1 - 1,7 МЭВ

Направлено в "Acta Physica Polonica"

1 Педагогический институт, г.Кельце, ПНР.

²Институт физики Лодзинского университета, ПНР.

Объединенный институт ALEPHEN LA MOROBARIO

Введение

Настоящая работа является продолжением исследований ядерных реакций трития с бериллием при энергии тритонов до 2 *МэВ*.

Исследование реакций тритонов с изотопами легких элементов при низких энергиях представляет значительный интерес. До сих пор остается неясным, почему в реакциях на одних ядрах четко проявляются эффекты, связанные с составным ядром /пики на кривых выхода и резкое изменение формы угловых распределений вылетающих частиц с энергией/, а в реакциях на других ядрах, отличающихся от первых на один или два нуклона. таких эффектов не обнаружено. Кроме того, даже при исследовании непосредственно реакции ⁹ Be(t, n) ¹¹ B при низких энергиях в различных работах получены существенно различающиеся результаты. В работе Вальтера и др. / 1/ на кривой выхода этой реакции обнаружены максимумы, а в работе Серова и Гужовского 127 они не обнаружены. В литературе нет сведений об угловых распределениях нейтронов, соответствующих переходам на различные уровни конечного ядра ¹¹В / рис. 1/.

Таким образом, вопрос о существовании резонансов в реакции ${}^{9}Be(t,n) {}^{11}B$ и соответствующих им состояний составного ядра ${}^{12}B$, приведенных в работе ${}^{/1/}$. так же, как и вопрос о механизме этой реакции, остаются открытыми.

С целью получения дополнительной информации о характеристиках рассматриваемой реакции нами предпринято исследование угловых распределений отдельных групп нейтронов при нескольких энергиях тритонов от 1,1 до 1,7 *МэВ*. Предварительные результаты измерений для наиболее низкой энергии были приведены в работе /3/.

Рис. 1. Схема уровней ядра¹¹ В.

Эксперимент

Тонкая бериллиевая мишень без подложки диаметром 8 мм бомбардировалась тритонами, ускоренными электростатическим генератором ЭГ-2 Лаборатории нейтронной физики ОИЯИ. Количество ядер бериллия на квадратный сантиметр мишени п $Be = /1,2\pm0,1/.10^{18}$ определено по выходу *a* -частиц из реакции ⁹ Be(t, a) и известного сечения этой реакции $^{/4/}$. Число падающих на мишень тритонов определялось по ионному току, измеряемому с помощью интегратора тока.

Спектры нейтронов из реакции ⁹Ве(t,n) измерялись с помощью ядерных фотоэмульсий типа Я-2 размером 20х40 мм и толщиною 250 и 400 мкм. Эмульсии, завернутые в черную бумагу, устанавливались на алюминиевом кольце вокруг мишени под 10 фиксированными углами /через каждые 18° начиная от 0° /. Расстояние между эмульсиями и мишенью составляло 75 *мм*. Угол между направлением вылета нейтронов из мишени и поверхностью эмульсии в среднем составлял ~ 3° . Для получения спектров нейтронов измерялись треки протонов отдачи в эмульсии, лежащие в пирамиде с половинным углом при вершине 10° . Измерение треков выполнено в Институте физики Лодзинского университета, ПНР. Всего было измерено~100 ООО треков.

Результаты

Угловые распределения нейтронов измерены при энергиях тритонов 1,10; 1,30; 1,51 и 1,70 *МэВ*. Один из 40 полученных спектров нейтронов показан на *рис. 2*.

Рис. 2. Спектр нейтронов, полученный с помощью фотоэмульсии.

Отдельные группы нейтронов n_0 , n_1 , n_2 , n_6 и n_8 соответствуют переходам в основное состояние и на 1,2, 6,8 уровни конечного ядра¹¹В /рис. 1/. Группы n_4 и n_5 из-за близкого расположения соответствующих уровней ¹¹В не разделяются. Группы n_3 и n_7 при всех углах и энергиях тритонов перекрываются с группами n_0 и n_1 из реакции ¹²С (t, n). Вклад от этих групп может быть большим из-за загрязнения мишени углеродом. Нейтронная группа n_9 в большинстве случаев перекрывается с группами n_1 , n_2 , n_3 и n_4 из реакции ¹⁶О (t, n). Для энергий нейтронов выше 3 *МэВ* просмотрен объем эмульсии примерно на 30% больший, чем для остальных энергий.

Угловые распределения нейтронов показаны на *рис. 3-6.* В ошибки дифференциальных и полных сечений /в таблице/ не включена ошибка нормировки сечения, составляющая ~30%.

Значения дифференциальных сечений вычислены по формуле

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{n_{\mathrm{L}} n_{\mathrm{Re}}} \frac{\mathrm{d}\psi}{\mathrm{d}\omega}$$

где: n_1 - число тритонов бомбардирующих мишень, n_{Be} - количество ядер бериллия на квадратный сантиметр мишени, $d\psi / d\omega$ - поток нейтронов, измеряемый с помощью ядерной эмульсии, формула для вычисления которого взята из работы $\frac{5}{5}$.

Сплошные линии на рисунках - результат подгонки на ЭВМ экспериментальных данных с помощью линейной комбинации полиномов Лежандра. Коэффициенты разложения по полиномам приведены в *таблице*. Там же и на *рис.* 7 показаны полные сечения для отдельных групп нейтронов, полученные интегрированием угловых распределений.

Рис. 3. Угловые распределения нейтронов из реакции 9 Be(t, n_o)¹¹ B.

Рис. 4. Угловые распределения нейтронов из реакций ${}^{9}Be(t,n_{1}){}^{11}B$ и ${}^{9}Be(t,n_{2}){}^{11}B$.

Рис. 5. Угловые распределения нейтронов из реакций ${}^{9}\text{Be}(t,n_6){}^{11}\text{B}$ $u^{-9}\text{Be}(t,n_8){}^{11}\text{B}$.

8

9

£c

Рис. 6. Угловые распределения нейтронов из реакции 9 Be (t, n_9) 11 B.

Рис. 7. Полные сечения реакций 9 Be $(t,n)^{11}$ B.

Таблица

Полные сечения и коэффициенты разложения по полиномам Лежандра угловых распределений нейтронов

	E, MaB	6. Mospa	a ₀ .10 ⁵	•I•102	a2•10 ⁵	a 3.10 ⁵	•4.10 ⁵	a 5.10 ⁵
-	I,I0	11,10	3670	-50	- 220	- 990	1000	
		± 0,47	±160	±220	±320	±31 0	1370	
n,	1,30	II,CI	3423	-247	53	508	-138	-974
		± 0,57	±1'77	±258	‡35 5	± 411	144I	±474
	1,51	33,92	3964	I43	- IOI	- 790	-124	-448
		± 1,64	±191	±29 5	± 364	± 466	±523	±537
	I,70	26,24	336I	-866	2 0I	- 790	993	-1000
		± 1,28	±164	±245	± 340	± 406	±4 32	±454
	I,IO	I O,4 5	3450	-680	410	- 740	500	
		± 0,47	±160	±24 0	± 320	± 390	±39 0	
ni	I,30	11,68	3354	728	109	- 829	-498	-580
		± 0,54	±165	±23 9	1327	± 390	±4 62	±435
	I,5I	36,91	4313	-640	-340	100	336	194
		± 1,74	±203	±308	±3 8I	± 495	±5 2I	±640
	I,70	28,35	3631	-468	-574	478	-965	1609
_		± 1,35	±173	±273	±373	± 444	±506	±558
	I,IO	7,76	2560	-950	1270	- 320	- 40	
		\$ 0,47	±160	±27 0	±33 0	± 380	±40 0	
ni	I, 3 0	7,36	2289	-414	1022	-1128	202	894
-		± 0,68	±213	±38 I	±4 05	± 533	±548	1881 ×
	I,SI	20,12	2 35 I	35I	343	- 38 I	722	
		± 1,65	±193	± 299	136 I	± 432	±474	
	I,70	17,00	2178	1167	1160	- 935	747	
		± 1,52	±1 95	±34 0	±4 35	± 54 9	±504	
	I,10	18,72	68IO	140	-2260	20	-510	
		± 0,84	±280	±420	±55 0	±720	±690	
n.	1,30	19,86	6176	-954	-242I	- I3I	602	
•		± 1,IO	2344	±54 0	±646	± 742	± 818	
	I.5I	39,05	4563	-1525	-865	123	59	-616
		± 2,66	±311	±508	±58 8	± 7 97	178 9	±826
	1,70	45,26	5927	-1667	-I06I	- 542	1454	-1789
		1 3,74	±47 9	±800	4886	±1150	±1446	±1299
	I,30	32,79	10196	2139	-2263	-2430	- 26I	2129
		11,45	± 453	±723	± 885	±1073	±1174	±1302
Ν.	I,5T	64,23	7494	1584	-2428	-1604	424	
		±4,29	± 4 6I	±667	± 923	± 947	±1084	
	1,70	63,20	8094	2090	- 323	-2777	1690	
		±3, 9I	± 501	±76I	± 990	±1148	±1234	
	I,30	14,78	4599	-619	2305	1709	- 858	1258
n _s		±1,43	± 422	±740	± 824	±1024	±1159	±1254

Заключение

Из рассмотрения угловых распределений нейтронов, имеющих сложную и быстро меняющуюся с энергией форму, и кривых полных сечений можно сделать вывод о том, что механизм реакции ⁹Ве (t, n) при энергии до 2 *МэВ* имеет сложный характер, вклады в него вносят как механизм прямых реакций, так и механизм составного ядра. Этот вывод подтверждает результаты работы $^{/1/}$, в которой на кривой выхода исследуемой реакции обнаружены максимумы, и противоречит измерениям работы $^{/2/}$, в которой такие максимумы не были обнаружены.

Авторы выражают благодарность Л.П.Писаревой, К.Карпик, М.И.Кривопустову за помощь в работе и И.В.Сизову за проявленное внимание к работе.

Литература

- 1. А.К.Вальтер и др. Украинский физический журнал, 6, 457 /1961/.
- 2. В.И.Серов, Б.Я.Гужовский. АЭ, 12, 5 /1962/.
- 3. К. Малушиньска и др. Сообщения ОИЯИ, P15-5148, Дубна, 1970.
- 4. G.Weber et al. Phys. Rev., 104, 1307 (1956).
- 5. R.Braun et al. Zeszyty Naukowe Uniwersytetu Lodzkiego, Seria II, 45 , 1 (1971).

Рукопись поступила в издательский отдел 22 июля 1976 года.